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Abstract

We have conducted a study investigating the use of au-
tomated tutors for educating players in the context of
serious gaming (i.e., game designed as a professional
training tool). Historically, researchers and practition-
ers have developed automated tutors through a process
of manually codifying domain knowledge and translat-
ing that into a human-interpretable format. This pro-
cess is laborious and leaves much to be desired. In-
stead, we seek to apply novel machine learning tech-
niques to, first, learn a model from domain experts’
demonstrations how to solve such problems, and, sec-
ond, use this model to teach novices how to think like
experts. In this work, we present a study comparing
the performance of an automated and a traditional,
manually-constructed tutor. To our knowledge, this
is the first investigation using learning from demon-
stration techniques to learn from experts and use that
knowledge to teach novices.

Introduction

An increase in the sheer number and complexity of
missile threats to national security have prompted re-
searchers in the Department of Defense to develop in-
novative decision support tools that promote better
decision-making for the warfighter. For the air and
missile defense mission, initial research in this area be-
gan with simple Red/Blue wargaming exercises, where
warfighters played against each other (i.e., red for of-
fense and blue for defense) in order to solve challenging,
unsolved tactical problems. Playing these games not
only allowed the warfighter to discover and learn new
tactics, techniques, and procedures, but also allowed
the researchers to solicit feedback from the warfighter
in order to refine the development of their decision sup-
port tools. While the data and feedback collected were
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invaluable, the training and educational aspects were
static and limited by the sample size and update rate.
Limitations in conveying and collecting information
across relevant sample sizes have motivated a data-
driven, game-based simulation approach. For example,
industry and academia alike are keenly interested in un-
derstanding player types and behaviors in games to bet-
ter tailor the gameplay experience (Drachen et al. 2012;
Nygren et al. 2011; Pirovano et al. 2012; Shaker, Yan-
nakakis, and Togelius 2011; Thurau and Bauckhage
2010; van Lankveld et al. 2011). A key component of
understanding player behavior is performance predic-
tion. Performance prediction allows the educator to
efficiently focus attention on those students who are
struggling and need help. Further, performance pre-
diction allows one to determine with less time spent
on testing whether a student is actually proficient in a
domain and ready to proceed to the next subject.

Still others within the field of education have thereby
sought to develop methods for understanding why stu-
dents, or players, drop out of educational programs
(Clifton, Mandzuk, and Roberts 1994; Deslandes et al.
1999; Graunke and Woosley 2005; Mcinnis 2002). Stu-
dents becoming disengaged in learning exercises is a
chronic problem that greatly hampers the ability of ed-
ucators to give students the tools they need to suc-
ceed (Clifton, Mandzuk, and Roberts 1994; Deslan-
des et al. 1999; Graunke and Woosley 2005; Mcinnis
2002). Researchers in artificial intelligence and machine
learning have sought to develop methods for predicting
student and player retention (Bauckhage et al. 2012;
Mahlmann et al. 2010), which is a strong first step in
correcting the problem of trainee dropout.

We have conducted a study investigating the use
of automated tutors for educating players in the con-
text of serious gaming (i.e., game designed as a pro-
fessional training tool). Within the context of au-
tomated tutors, many researchers have sought meth-
ods to improve education (Albert and Thomas 2000;
Kumar 2005; McLaren et al. 2004; Mostow et al. 2003;
Rahman, Sanghvi, and El-Moughny 2009; Remolina
et al. 2009; that Listens 1997). Kumar proposes an
automated tutor that can generate problems and an-
swers to those problems; however, this tutor is man-



Figure 1: This figure depicts the problem of ASMD.

ually programmed by an expert (Kumar 2005). Rah-
man et al. manually develop an automated tutor for
learning Braille (Rahman, Sanghvi, and El-Moughny
2009). These techniques have in common that the tutor
designer must solicit manually codify domain experts’
knowledge within the tutor’s software.

However, we know from prior work, that while do-
main experts are readily able to provide you with the
important features of their problem, they are less able
to tell you how they use those features to solve their
problem. Thus, it is imperative we can learn from
demonstration. One of the few works we are aware
of that uses a learning from demonstration paradigms
is that by McLaren et al., (McLaren et al. 2004). In
their work, McLaren et al. propose a technique in
which student interaction log data is used to create
a skeleton model of a tutor for how to use a soft-
ware tool. With this skeleton, users can improve the
model with their own data or data of other users in a
semi-autonomous fashion. However, this algorithm is
only semi-autonomous, requiring an expert to manu-
ally parse data, incorporate new modules, and adjust
the models representation.

We have developed an an automated tutor, Claire,
which can fully autonomously learn an accurate model
of how experts solve resource allocation problems and
can use that knowledge to teach novices to do the same.
Claire relies on a state-of-the-art technique in learn-
ing from demonstration, which we call apprenticeship
scheduling (Gombolay et al. 2016). While this tech-
nique is useful for autonomous control, there will al-
ways be domains in which a human must be ultimately
responsible for acting. These humans must be educated
to make those decisions. Thus, extracting domain ex-
pert knowledge to teach novices to be proficient is criti-
cal. In this work, we present a study comparing the per-
formance of an automated and manually-constructed
tutor. To our knowledge, this is the first investigation
using learning from demonstration techniques to learn
from experts and use that knowledge to teach novices.

Problem Domain

For out investigation, we study the problem of anti-
ship missile defense (ASMD), which is a complex vari-
ant of the weapon-to-target assignment problem (Lee,
Su, and Lee 2003). As depicted in Figure 1, the prob-
lem of ASMD entails defending one’s ship from a raid of
enemy, anti-ship missiles through the use of hard- and
soft-kill weapons. Hard-kill weapons (e.g., missile inter-
ceptors) disable enemy missiles with kinetic or chemical
energy. On the other hand, soft-kill weapons (e.g., de-
coys and countermeasures) fall under the class of elec-
tronic warfare, in which the aim is to seduce, distract, or
confuse enemy missiles. These soft-kill weapons mimic
certain characteristics of naval vessels in order to cause
the enemy missile to divert its attack away from those
vessels. Because of the relatively high cost and limited
availability of hard-kill weapons, the navy is particu-
larly interested in the development of tactics for the
use of soft-kill weapons.

The development of tactics for ASMD is extremely
challenging. Operators may face situations where a sin-
gle missile can only be defeated by the use of multiple,
differing decoys. Alternatively, a single decoy may be
able to defeat multiple enemy missiles. When faced
with multiple missiles at the same time (i.e., a raid),
countermeasures must be deployed to defeat all of those
missiles, each of which may be using differing targeting
characteristics. Further, the deployment of a single de-
coy could cause “fratricide,” a condition in which the
decoy may save one’s own ship but now cause another
ship to fall into harms way. AMSD falls into the hard-
est class of scheduling problems defined in the Korsah
et al. taxonomy (Korsah, Stentz, and Dias 2013).

Investigative Platform

We have developed a game-based simulation, called
Strike Group Defender (SGD), to emulate ASMD ex-
ercises. SGD, shown in Figure 2, provides users across
a variety of locations and platforms with both single-
and multi-player training experiences in the context of
relevant naval scenarios. SGD collects participant ac-
tions and game events in order to analyze and refine
the educational experience of the users either post hoc
or in real time. The data-based collection capability of
SGD has opened the way for the development of ma-
chine learning approaches that can analyze and improve
the user educational experience.

In SGD, users must learn and employ the tech-
niques and tactics relevant to the defense of naval as-
sets against anti-ship missiles (hereafter referred to as
ASMD). The game focuses on the proper use of naval
electronic warfare — the use of signals instead of missiles
for ship defense, otherwise known as soft-kill weapons
(i.e., decoys) — but also includes hard-kill weapons (i.e.,
interceptor missiles) and information, surveillance, and
reconnaissance (ISR) elements.

SGD is comprised of two level types: training and
test. There is one training level for each enemy mis-
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Figure 2: SGD enables development of automated
teaching tools for ASMD.

sile type to afford players an simple scenario to develop
techniques to combat each of those missiles. There is
also an introductory tutorial level and an tutorial exam.
The tutorial levels are as follows: “Basics Tutorial”,
“Hungry Missile Tutorial”, "Moth Missile Tutorial”,
“Catfish Missile Tutorial”, “Longshot Missile Tutorial”,
“Weasel Missile Tutorial”, “Muffled Missile Tutorial”,
“Headhunter Missile Tutorial”, “Cerberus Missile Tu-
torial”, and the “Tutorial Exam”.

There are also three test levels: “Daily Performance
Evaluation”, “Operation Neptune”, and “Final Count-
down”. Daily Performance Evaluation is a level where
threat types are randomized, and threat bearings are
spread across a range of angles such that it appears
one’s own ship is surrounded. The Daily Performance
Evaluation provides a randomized threat scenario each
time the user plays that level. Operation Neptune and
Final Countdown are difficult, but deterministic, levels.

In each level, players assign and deploy soft-kill
weapons (e.g., flare, chaff, etc.) to deceive or distract
enemy missiles away from valuable ships. The proper
coordination of soft-kill decoys with hard-kill intercep-
tor missiles and ISR limitations ensures the long-term
survivability of the ships in the strike group against a
formidable raid of heterogeneous anti-ship cruise mis-
siles.

Data Set

To train Claire’s apprenticeship scheduling algorithm,
we needed to collect a data set of human domain ex-
perts solving representative ASMD problems. To col-
lect this data, we conducted a “March Madness” Tour-
nament in which domain experts would compete in a
bracket-based competition. Games were scored as fol-
lows: 10,000 points were received each time a threat was
neutralized and 2 points for each second each threat
spent homing in on a decoy. 5,000 points were sub-
tracted for each threat impact and 1 points for each
second each threat spent homing in on one’s own ship.
Lastly, 25-1,000 points were subtracted for each deploy
of a decoy, depending on the type.

We focused on the Daily Performance Evaluation be-

cause it is randomized and is more well-suited to test
the ability of a player to generalize learning as opposed
to repeatedly playing a deterministic level or playing
drastically different, deterministic levels. The collected
data set consisted of 311 games played from 35 human
players across 45 threat configurations or “scenarios” in
this level. We sub-selected sixteen threat configurations
such that each configuration had at least one human
demonstration that mitigated all enemy missiles. For
these sixteen threat configurations, there were 162 total
games played by 27 unique human demonstrators. We
then used the best human demonstration from each of
the sixteen threat configurations to train the appren-
ticeship scheduling algorithm, which we will now de-
scribe.

Apprenticeship Scheduling

In this section, we review the apprenticeship scheduling
algorithm developed by (Gombolay et al. 2016). This
approach works by learning from demonstrations of hu-
man domain experts how to solve scheduling problems,
such as ASMD. The approach has been shown suitable
for learning high-quality policies from ASMD experts
(Gombolay et al. 2016).

Consider an ASMD problem containing a set of en-
emy missiles p € M, decoys a € A, locations to deploy
those decoys = € X, as well as a set of actions taken
at each moment in time 7, = (u,a,z,t). A trajectory
given by a human domain expert demonstrator then
provides a time-sequence of ordered actions. For each
action the expert takes, we can compute the set of al-
ternative actions 7; the expert could have taken.

Each action, scheduled and unscheduled, has an as-
sociated real-valued feature vector, ~,,. Features of this
vector may include the time the decoy will evaporate, its
bearing, etc. Further, there is a common feature vector,
&, which captures features that are not well described
by pairwise comparisons, such as the total number of
decoys remaining.

priority pm o o m _
0 Ti,Tj> T [677 Vi ’YTJ} 7y<‘ri,‘rj> 1’
V1o € T\Ti, VOm € O|7; scheduled in Oy, (1)
priority pm . _ m _
0 .,-.7.77-7.’> = [6"'7 Yra 'le] ’ y<"'_7‘77'7‘,> 07
V72 € T\7i, VO, € O|7; scheduled in Oy, (2)

These vectors serve to create the training data, as
shown in Equations 1-2. For each observation (i.e., a
specific time point within a schedule), the apprentice
scheduler creates a set of positive and negative exam-
ples. To create these examples, the apprentice sched-
uler subtracts the feature vector of the action not taken
-, from the feature vector describing the action taken,
~-,. To this difference, the algorithm concatenates the
common feature vector vector, £-. This concatenated
vector then serves as a positive example. To create the
corresponding negative example, the subtraction opera-
tion is reversed: The apprentice scheduler subtracts the



feature vector of the action taken ~,, from the feature
vector describing the action not taken, v,

With these examples, the apprentice scheduler trains
a classifier fyriority(Ti, 7j) to predict whether action 7;
or 7; is better. The function returns a probability in
[0,1]. To predict which is the best overall action at a
given moment in time, the apprentice scheduler evalu-
ates Equation 3. The equation requires computing |7 |
comparisons. We apply a decision tree classifier to learn
fpriority(Ti, Tj). In turn, the computational complexity
of Equation 3 is O(|7|?d), where d is the depth of the
tree.

7; = argmax Z Jpriority (Ti, Ta) ()
TiET TLET

Claire: An Autonomous Tutor

We pose the challenge of developing an autonomous tu-
tor that has the ability to receive questions from hu-
man students and autonomously generate answers to
those questions in the context of serious games. In our
approach, we develop an Al tutor by first, employing
apprenticeship scheduling to learn from human domain
expert example how to perform the intended task and,
second, using the trained apprenticeship scheduler to
tutor human students. We call our tutor “Clair,”?.

Students interact with Claire via a human-computer
interface we developed to facilitate the tutoring session
(Figure 3). A player might want assistance from Claire
if, for example, he or she was unable to defeat a cer-
tain combination of enemy missiles. The player would
construct a representative scenario specifying the num-
ber of enemy missiles, their types, and their bearings.
In turn, Clair would use its apprenticeship scheduler to
predict how a human expert would respond to those
enemy missiles. Specifically, Claire would place a set of
soft kill weapons of the type and bearing predicted by
the apprenticeship scheduler.

To give Claire the ability to respond to the stu-
dents’ raid scenarios, we trained Clair on data from
our March Madness tournament, which contains exam-
ples of human domain experts responding to representa-
tive ASMD raid scenarios. Specifically, we trained our
model on a set of the best demonstrations of users play-
ing the “Daily Performance Evaluation” level, which
best captures the skills required for a robust policy. Ro-
bustness is important because we want Claire’s recom-
mendations to be applicable to a wide range of students’
queries.

Human Benchmark

To validate the efficacy of our approach, we developed
a second tutor, the “Human Tutor”, based upon hard-
coded responses by a human domain expert (i.e., one
of the game’s designers). Codifying rules for a raid
of k missiles with n; missile types from n; bearings

!Claire’s name is inspired by the word “clairvoyant.”

(a) This figure depicts the welcome screen with instruc-
tions for participants.
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(b) This figure depicts an example in which the partici-
pant asked Clair how to respond to two threats: a hun-
gry missile and moth missile, at bearings 90° and 225°,
respectively. Clair responded by deploying an IR flare
at bearing —45°, which mitigates the moth missile, and
chaff at 135°, which mitigates the hungry missile. Clair’s
response is a generalization of knowledge it learned from
training the apprenticeship scheduling algorithm on data
of human experts’ demonstrations.

Figure 3: Figures 3a-3b depict the tutoring interface
used for players in both the human tutor and computer
tutor (i.e., Claire) condition. We note that participants
in the human tutor condition would only be able to
specify one missile threat because of the lack of scala-
bility of the manually codified knowledge.



requires considering O((™'*)) scenarios, which grows to
be intractable for a human demonstrator with even one
or two missiles. Instead, we asked the human domain
expert to develop a set of one-to-one rules (e.g., “deploy
a flare ten degrees starboard if you see a moth missile”).
These rules provide effective strategies for mitigating
one threat with one decoy, but they do not scale well
to handling multiple missiles with multiple decoys. The
interaction effects between the missiles and decoys can
cause these myopic rules to become quite suboptimal as
more missiles and decoys are added to the environment.

We embedded these rules in the same interface used
by Claire (Figure 3), where users could similarly in-
put an enemy raid and receive a recommendation based
on the human experts’ rules. In turn, the human tu-
tor would respond with the relevant soft kill deploy-
ment and ship-turn movement using the codified rules.
The Human Tutor interface was graphically identical
to Clair with one exception: users could prescribe raids
with up to only one missile. As we mentioned pre-
viously, enumerating a rule-set for n missiles was too
time-consuming; even codifying rules for 2 missiles with
5 missile types and 8 possible bearings would require
considering 780 scenarios. While this difference intro-
duces a possible experimental confound, we argue that
the difference is inherent to comparing the efficacy of
human and Al tutoring systems. Thus, this pilot study
is a helpful first step in understanding the benefits of
AT tutors for serious gaming.

Empirical Validation

We conducted a human-subject experiment, where
users would have access to our computer and human
tutors to augment their gameplay experience. Players
were divided into two groups: one group would have ac-
cess to the computer tutor (i.e., Claire), and one would
have access to the human tutor. We asked players to
explore their respective tutors for at least five minutes.
Further, players were required to play SGD for at least
30 minutes. We hypothesize that our apprenticeship-
scheduler-based computer tutor would provide players
with more helpful instruction.

We report the result of statistical testing of our hy-
pothesis. For the Daily Performance Evaluation (Figure
4), the level used as the basis for training our computer
tutor, players using the computer tutor performed bet-
ter (n = 14, M = 56,204, SD = + 29, 408) than players
in human-tutor condition (n = 17, M = 41,639, SD =
+ 22,870), p = 0.132. We perform the same analy-
sis on the players overall tournament score (Figure 5),
and found that players with the computer tutor per-
formed better (n = 10, M = 231,280, SD = + 99, 729)
than players in human-tutor condition (n = 11, M =
228,811, SD = + 81,938), p = 0.95.

While the p-value is not statistically significant at the
a = 0.05 level, there is a strong indication for the Daily
Performance Evaluation (p = 0.132) that our computer
tutor offers players more benefit than the human tutor.

Score
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Human Tutor Virtual Tutor (Claire)

Figure 4: This figure depicts a histogram of scores play-
ers assigned to the human tutor and computer tutor
conditions achieved the first time they played the Daily
Performance Evaluation level.
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T
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Figure 5: This figure depicts a histogram of tourna-
ment score for players assigned to the human tutor and
computer tutor conditions. The tournament score is
the sum of the average Daily Performance Evaluation
score, the maximum Operation Neptune score, and the
Final Countdown score.

As such, we propose conducting a second data collec-
tion phase to ascertain definitive results. Further, we
hypothesize that training on a further variety of lev-
els could yield improved benefit for results other than
the Daily Performance Evaluation. Conducting a power
analysis for two independent samples where we estimate
the common standard deviation to be 26, 609 by pooling
the variance, the mean performance for the computer
tutor is 56,204, and the mean performance for the hu-
man tutor is 41, 639, we find we need 42 people per con-
dition to have an 80% power for finding a statistically
significant difference at the o = 0.05 confidence level
for the Daily Performance Evaluation. In future work,
we propose collecting more data to establish statistical
significance.

Conclusion and Future Work

We propose a computer-based tutoring system that
learns a model for teaching pupils based on data of
expert demonstrators. Our system, Clair, employs a
state-of-the-art technique in apprenticeship scheduling
that learns how to solve resource allocation problems
from expert demonstration. Clair then uses this knowl-
edge to serve as an autonomous tutor who can help solve
a student’s problem when that student becomes stuck.



We conduct an initial pilot study examining the effec-
tiveness of our technique. We found that while students
prefer a traditional human tutor, their performance im-
proved more when using Clair. In future work, we will
conduct a more robust study to isolate the causal link
in performance change and better understand the ap-
parent contradiction between students’ perception and
reality of Clair’s benefits.
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