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Abstract
Advancements in robotic technology are making it increasingly possible to integrate robots into the human workspace in
order to improve productivity and decrease worker strain resulting from the performance of repetitive, arduous physical
tasks. While new computational methods have significantly enhanced the ability of people and robots to work flexibly
together, there has been little study into the ways in which human factors influence the design of these computational
techniques. In particular, collaboration with robots presents unique challenges related to preserving human situational
awareness and optimizing workload allocation for human teammates while respecting their workflow preferences.
We conducted a series of three human subject experiments to investigate these human factors, and provide design
guidelines for the development of intelligent collaborative robots based on our results.
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Introduction

Human-robot teaming has the potential to increase the
productivity of human labor and improve the ergonomics of
manual tasks. Based on recent industry interest in fielding
human-robot teams, researchers have been investigating how
best to include a human into the decision-making loop as
a member of a human-robot team (Adams 2009; Ardissono
et al. 2012; Barnes et al. 2011; Clare et al. 2012; Dragan
& Srinivasa 2012; Goodrich et al. 2009; Herlant et al.
2016; Hooten et al. 2011; Pierce & Kuchenbecker 2012;
Sanderson 1989; Zhang et al. 2012). However, the intricate
choreography required to safely and efficiently coordinate
human-robot teams represents a challenging computational
problem. Task allocation and sequencing with upper- and
lowerbound temporal constraints is known to be NP-Hard
(Bertsimas & Weismantel 2005).

Fully autonomous solutions to this problem have been
recently proposed by both academic researchers (Bertsimas
& Weismantel 2005; Gombolay et al. 2013; Parker et al.
2015) and industry practitioners (Alsever 2011). While these
new computational methods have significantly enhanced the
ability of people and robots to work flexibly together, there
has been little study into the ways in which human factors
must influence the design of these computational techniques.
Specifically, we must consider how situational awareness
changes as a function of the level of robot initiative during
the decision making process, the consequences of varying
the workload assigned by the robot to human agents,
and how to include the workflow preferences of human
team members into decision making. Improvements assessed
through simple measures of efficiency, such as task time, do

not guarantee the long-term productivity and viability of the
human-robot team.

Researchers have shown that providing a machine or
robotic agent with autonomous capabilities yields important
benefits for human-robot team fluency (Dragan & Srinivasa
2012; Dragan et al. 2013; Dragan & Srinivasa 2013; Hooten
et al. 2011; Gombolay et al. 2015; Pierce & Kuchenbecker
2012; Tellex et al. 2014). For example, Hooten et al. have
shown how autonomous mode control for input devices with
a low degree of freedom can improve control of robotic
agents with a high degree of freedom, such as manipulator
arms (Hooten et al. 2011). Tellex, Knepper, et al. imbued
robots with the ability to generate queries for a human
team member when necessary to resolve planning conflicts,
and validated the benefits of such a capability through
human subject experiments (Tellex et al. 2014). However,
these works typically either relegate the human role to
that of a supervisor rather than a team member who must
cooperate with the robot to plan and execute a schedule (as
in works by Dragan & Srinivasa (2012); Dragan et al. (2013);
Dragan & Srinivasa (2013); Hooten et al. (2011); Pierce &
Kuchenbecker (2012); Tellex et al. (2014)), or focus on a
human-robot dyad (Lasota & Shah 2015; Nikolaidis & Shah
2013), which does not require consideration of challenging
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scheduling constraints due to the relatively small size of the
team.

Recent work, including studies we have conducted,
has begun to explore the problem of human-robot team
coordination (Bauer et al. 2008; Gombolay et al. 2014,
2015; Talamadupula et al. 2010, 2014). Similar to research
in teleoperation and supervisory control, these works have
indicated that allowing the robotic agent a greater degree
of autonomy yields immediate performance gains in mixed-
initiative scheduling (Gombolay et al. 2014, 2015). In prior
work, we showed that human participants preferred to cede
control over scheduling decisions to a robotic teammate
in such a setting (Gombolay et al. 2014). However, our
preliminary work did not investigate key human factors
concerns, such as how increased robot autonomy might
reduce human situational awareness, the size of the workload
that should be assigned to human teammates, or how to
incorporate the scheduling preferences of human teammates
in the event that they lead to suboptimal performance.

Human factors such as situational awareness, workload
influence and workflow preferences have long been studied,
and failing to consider these parameters of the human-
machine interface problem has been shown to have serious
consequences (Endsley 1988, 1995; Endsley & Kaber 1999;
Kaber & Endsley 2004; Riley et al. 2004). Kaber and
Endsley succinctly enumerate the following potential issues
following from increased automation: 1) a human operator
failing to identify a problem and appropriately intervene,
2) over-trust in the automation (complacency), 3) a loss of
situational awareness and 4) degradation in the direct or
manual control of the system (Kaber & Endsley 1997).

Situational awareness has been defined as the ability
to perceive, comprehend and project the state of an
environment (Endsley 1995). Loss of situational awareness
while operating highly autonomous systems has accounted
for hundreds of deaths in commercial and general aviation
(e.g., National Transportation Safety Board (1973, 1979,
1981, 1988, 1990)). Humans must maintain their situational
awareness in order to effectively take control of a job
typically performed by an autonomous machine in the event
that that machine fails.

Workload assignment is another key issue in human
factors (Parasuraman et al. 2008; Stanton & Young 2011;
Tsang & Vidulich 2006; Wickens 2008). It has been shown in
prior work that human performance is highly dependent upon
workload (Stanton & Young 2011; Tsang & Vidulich 2006;
Parasuraman et al. 2008; Wickens 2008; Proctor & Zandt
2008): A workload that is too heavy or too light can degrade
performance and contribute to a loss of situational awareness
(Tsang & Vidulich 2006; Proctor & Zandt 2008).

Understanding and incorporating workflow preferences is
also essential for safe, effective human-machine teaming
(Alami et al. 2006; Hoffman & Breazeal 2007; Kwon &
Suh 2012; Lasota & Shah 2015; Nikolaidis & Shah 2013).
In manufacturing, human teams can develop individualized
workflow preferences that are not shared by other teams in
the same environment; consequently, a member of one team
may be unable to effectively replace a worker on another
team without a period of adjustment.

In this paper, we report the results from a series of three
human subject experiments in the context of human-robot

team coordination. First, we investigated how situational
awareness varies as a function of the degree of autonomy
a robotic agent has during scheduling, and found that human
participants’ awareness of their team’s actions decreased as
the degree of robot autonomy increased. Given prior work
indicating that humans typically prefer the robot to have
greater autonomy (Baraglia et al. 2016; Gombolay et al.
2015; Hoffman & Breazeal 2007; Huang & Mutlu 2016; Liu
et al. 2016), roboticists must balance the desire for increased
automation and the performance improvements it yields with
the risk for – and cost resulting from – reduced situational
awareness.

Second, we studied how team fluency varies as a function
of the workload (tasks not related to decision making about
scheduling) given to a human team member by a robotic
agent, and the manner in which a robot should include the
workflow preferences of its human teammates in the decision
making process.

A roboticist or practitioner of multi-agent coordination
might take the most straightforward approach by including
the preferences of each human team member and balancing
work assignments according to a given fairness metric.
However, we found that when the goal of including
human team members preferences is orthogonal to the
goal of assigning each agent tasks in the way that most
benefits the team’s overall performance, people are usually
amenable to relinquishing their preferred assignments for
the sake of improved team fluency. We also observed a
relationship between humans preferences, their utilization
during task execution and their perception of team efficiency.
Participants felt more strongly that their teams performed
the assigned tasks using the least possible amount of time,
even though the schedule duration (makespan) was constant
across all trials within participants.

Background
As the complexity of human-operated machines has
increased, so has the need for increased machine autonomy
in order to aid human operators. As such, researchers in the
fields of human factors and artificial intelligence, including
robotics, have sought to improve the fluency of the human-
machine system. Here, we review related works and identify
key gaps in the literature that demonstrate the need for the
experimental investigation we present in this paper.

Aiding Humans via Autonomy
There has been a flourish of recent work focused on
the development of an improved human-machine interface
(Barnes et al. 2011; Cummings et al. 2007; Dragan &
Srinivasa 2012; Dragan et al. 2013; Goodrich et al. 2009;
Jones et al. 2002; Hooten et al. 2011; Barnes et al. 2011).
For example, Dragan et al. developed and explored an
intelligent, customizable interface for teleoperation. This
interface mediates the consequences of a human not being
in close physical proximity to the action performed in
order to make teleoperation more seamless, and leverages
the autonomous capabilities of the robot to assist in
accomplishing a given task (Dragan et al. 2013). In such
work, researchers often view the human operator as a vital
component of the decision making loop, particularly when
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this operator has knowledge of factors that are difficult to
capture within a manually-encoded, autonomous framework
(Clare et al. 2012; Cummings et al. 2007; Durfee et al.
2013). Complementary to approaches that include the human
in the loop, other work has focused on development of
computational methods able to generate scheduling solutions
using information collected a priori from human experts
(Ardissono et al. 2012; Hamasaki et al. 2004; Haynes et al.
1997; Macho et al. 2000; Zhang et al. 2012).

Researchers have proposed various mechanisms for
distributed decision making in the form of agents that can
independently reason about their activities (Gombolay et al.
2013; Brunet et al. 2008; Jones et al. 2011; Korsah et al.
2013; Parker et al. 2015; Nunes & Gini 2015; Tellex et al.
2014). For example, Tellex, Knepper, et al. developed a
system enabling a team of robots to autonomously perform
assembly manufacturing tasks, asking a human worker for
help only when needed. This system enables robots to
make requests intelligently and in a way that allows a
human to easily comply with these requests (Tellex et al.
2014). Nikolaidis & Shah (2013) developed a robotic system
able to learn a mental model for how people perform
various assembly manufacturing tasks and adapt workflow
to improve fluency for a human-robot dyad.

While some researchers have focused on human-
in-the-loop decision makers, others have investigated
the complementary areas of teleoperation and blended
autonomy, in which human and machine agents work jointly
toward accomplishing a physical action (Dragan & Srinivasa
2013; Herlant et al. 2016; Muelling et al. 2015; Pierce
& Kuchenbecker 2012) as opposed to cognitive tasks. For
example, Pierce et al. developed a data-driven method for
learning a mapping of the arm motions necessary to reach
a specific physical state (target pose) from a humans mental
model and translating those motions to corresponding robot
motions in a physical environment (Pierce & Kuchenbecker
2012). The robot is then able to use this learned mapping to
aid the operator in achieving the desired robot pose (Pierce
& Kuchenbecker 2012).

Herlant et al. investigated the challenges of controlling
a robotic arm using a low-dimensional input device, such
as a joystick (Herlant et al. 2016). They showed that mode
switching accounts for a significant time burden for the user,
and developed an automatic mode selection algorithm that
reduces this burden (Herlant et al. 2016).

Muelling et al. (2015) developed an improved brain-
computer interface to alleviate the challenges of latency, low-
dimensional user commands and asymmetric control inputs,
all of which are common to robotic teleoperation. Their
system relies upon combining computer vision, user intent
inference and arbitration between the human and robotic
systems. In their work, Muelling et al. (2015) validated their
system via experiments where participants used input from
two intra-cortical implants to control a robotic manipulator
with seven degrees of freedom. The researchers found that
their brain-computer interface enabled completion of tasks
that were previously infeasible without arbitration (Muelling
et al. 2015).

There is also evidence that the manner in which people
receive and interact with machine autonomy is infuenced
by a number of additional factors, including individual

differences among operators and system embodiment
(Hoffman & Ju 2014; Ju & Sirkin 2010; Klemmer et al.
2006; Lee et al. 2006a,b; Riek & Robinson 2011; Takayama
& Pantofaru 2009). For example, Takayama & Pantofaru
(2009) investigated proxemics in human-robot interaction
and found differences based on participants’ gender and prior
experiences interacting with robots and animals. Ju & Sirkin
(2010) studied the effect of embodiment to capture attention
and engender a desire to interact with the system; Lee
et al. (2006a) found embodiment with restrictions on tactile
interaction to result in a null or negative effect (Lee et al.
2006a). However, there has been little study into the ways
in which human factors considerations, including situational
awareness, workload assignment, and workflow preferences
must influence the design of computational techniques for
mixed initiative human-robot teaming.

Situational Awareness
Within the field of human factors (Endsley 1988, 1995;
Endsley & Kaber 1999; Kaber & Endsley 2004; Riley et al.
2004) and, more recently, in human-robot interaction (Chen
et al. 2007; Drury et al. 2006; Fong & Thorpe 2001;
Steinfeld et al. 2006) the study of situational awareness
has been of utmost importance, particularly in the context
of aviation (National Transportation Safety Board 1973,
1979, 1981, 1988, 1990). In her seminal paper (Endsley
1995), Endsley defined a three-level model for situational
awareness: perception (Level 1 SA), comprehension (Level
2 SA) and projection (Level 3 SA). These levels require
the operator of a complex system to perceive the state of
the environment, understand the meaning of this state and
project the state into the future in order to understand how
that state must change (Endsley 1995).

In subsequent work (Endsley & Kaber 1999), Kaber and
Endsley explored varying levels of automation in order to
test situational awareness. They found higher automation
resulted in improved performance if the implementation of
that automation did not fail; however, if implementation did
fail, automation resulted in much poorer performance by the
human operator. Also, they wrote, collaboration on a task
(as opposed to a human or robotic agent performing a task
alone) can result in poorer performance and less situational
awareness (Endsley & Kaber 1999).

Kaber and Endsley attempted to address two design
variables affecting situational awareness that had previously
not been studied in conjunction: the level of automation and
adaptive automation (Kaber & Endsley 2004). In adaptive
automation, the allocation of tasks to a human and a machine
changes as a function of the state of the environment
(Kaber & Endsley 2004). Kaber and Endsley found that
participants had higher situational awareness at lower levels
of automation, and lower situational awareness at higher
levels of automation. When adaptive automation changed
such that participants experienced different automation
levels at varied time spans, participants did not perceive the
periods of higher automation as involving a smaller task load,
as they were also monitoring the automated task execution
(Kaber & Endsley 2004).

While many researchers have focused on modeling situ-
ational awareness, understanding how situational awareness
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decreases and evaluating the consequences of degraded situ-
ational awareness, few have developed interfaces specifically
to augment situational awareness (Fong & Thorpe 2001).

One major gap in prior robotics and human factors liter-
ature is the study of situational awareness wherein humans
plan and execute a sequence of actions collaboratively within
a human-robot team. Much work has focused on the human
in a supervisory control role (e.g., Endsley & Kaber (1999);
Tellex et al. (2014)) or as part of a dyad, for which the
coordination of actions is relatively simple (Nikolaidis &
Shah 2013).

Mental and Physical Workload

Workload is a key issue identified in human subject literature,
which has indicated that human performance is highly
dependent upon workload (Stanton & Young 2011; Tsang
& Vidulich 2006; Parasuraman et al. 2008; Wickens 2008;
Proctor & Zandt 2008). A combination of results from
prior work has led to a model for the relationship between
workload and performance: Workload that is too heavy
or too light can degrade both performance and situational
awareness (Tsang & Vidulich 2006; Proctor & Zandt 2008).
One of the consequences of a high workload is increased
reliance upon and compliance with automation (Parasuraman
& Riley 1997).

Researchers have previously sought effective means to
reduce workload through the use of semi-autonomous
decision support tools (Shah et al. 2015) particularly in the
field of air traffic control, due to the notoriously challenging
nature of aircraft coordination (Loft et al. 2007; Lokhande
& Reynolds 2012; Niederée et al. 2012). In the work by
Lokhande & Reynolds (2012), even with the aid of a decision
support tool, air traffic controllers spent 81.9% of their time
in a head-down position looking at information displays,
rather than visually monitoring traffic on the ground.

Loft et al. (2007) developed a model for predicting the
level of workload for air traffic controllers, and confirmed
results from prior work indicating that mental workload
increases with task difficulty. However, they also observed
an unexpectedly stronger effect on mental workload as a
function of the ability of air traffic controllers to prioritize
tasks and manage resources.

To help evaluate mental workload, researchers have
proposed various subjective and psycho-physiological
metrics (Brookings et al. 1996; Hart & Staveland 1988;
Kramer 1991; Steinfeld et al. 2006). The most well-known
metric is the NASA Task Load Index (TLX): a subjective,
multivariate means of evaluating perceived mental workload
(Hart & Staveland 1988).

While the relationship between workload and task
performance has been studied extensively with regard to
human factors, it remains uncharacterized in the context
of human-robot teams in which a robotic agent plays a
substantial role in coordinating physical work. Prior studies
have shown that people prefer to delegate decision making
about scheduling to a robotic agent (Gombolay et al. 2015),
yet there is a gap in the literature regarding the effects
of varying physical workload on team fluency in such a
scenario.

Scheduling Preferences
Researchers in the fields of AI and robotics have explored
computational methods for incorporating preference-based
constraints when coordinating human-robot teams (Alami
et al. 2006; Berry et al. 2006; Hawkins et al. 2014; Kwon
& Suh 2012; Nikolaidis & Shah 2013; Wilcox et al. 2012).
Wilcox et al. (2012) developed an adaptive preferences
algorithm to dynamically schedule human-robot teams in
real time according to the unique preferences of human
workers, as human teams in a factory setting can vary
greatly with regard to how they accomplish assembly tasks
(Wilcox et al. 2012). Alami et al. (2006) encoded task-
specific constraints and workflow preferences that allow for
prediction of likely human actions. Berry et al. developed
an AI assistant, known as PTIME, to learn the preferences
and schedule the activities of human operators via a
mathematical programming technique (Berry et al. 2006).
Bayesian networks (Kwon & Suh 2012), first-order Markov
logic networks and AND-OR graphs (Hawkins et al. 2014)
have also been used to predict human actions during human-
robot collaboration.

Preferences for task scheduling have been the subject of
much prior study (Grano et al. 2009; Haynes et al. 1997;
Lottaz 1996; Soomer & Franx 2008), but the human factors
of scheduling activities have not been as well assessed.
Generally, research has focused on the implementation of
fairness metrics (such as in the work of Zhang & Shah
(2015)) and other mathematical formulations for optimally
scheduling according to human team members preferences
(Grano et al. 2009; Haynes et al. 1997; Lottaz 1996; Soomer
& Franx 2008). However, roboticists must also ask the
fundamental question of whether these preferences should
be included in robot decision making and, if so, how best to
do so.

Motivating the Need for Further Investigation
Although there are substantial bodies of work that have
made important contributions to the advancement of human-
robot interaction, we have identified three key gaps in prior
literature: First, human situational awareness as a function
of robot initiative over decision-making in human-robot
teaming has not yet been investigated, but the potential
for degradation to situational awareness with increased
robotic autonomy must be assessed. Second, this effect
must also be studied in the context of collaboration during
performance of physical tasks. Finally, while mechanisms
for preference scheduling have been developed, the human
factors implications of an intelligent collaborative robot
including (or not including) human workflow preferences
into the scheduling process has not been addressed.

It is essential that we address these gaps in the literature.
Human-robot teaming is in the process of transitioning from
modes in which humans supervise automated systems to
peer-to-peer and more collaborative modes of automation
(Fong et al. 2003; Hoffman & Breazeal 2004; Matthias et al.
2011; Reed & Peshkin 2008; Unhelkar et al. 2014). We can
observe this trend in the growing number of new applications
within robotics that require the co-location of human and
robotic work, such as Boeing’s Fully Automated Upright
Build (The Boeing Company 2014), BMW’s collaborative
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manufacturing robots (Knight 2013) and Amazon Robotics
(formerly known as KIVA Systems) warehouse robots
(Alsever 2011).

To our knowledge, there have been no studies investigating
changes to situational awareness in a mixed-initiative
scheduling setting, varying mental workload during robotic
scheduling of human teammates, or the way in which
robotic agents should incorporate the workflow preferences
of human team members. We have also not encountered
any prior investigations assessing situational awareness in
a mixed-initiative scheduling setting in which human and
robotic agents are members of the same physical team.

Our work has significant new implications for the design
of intelligent collaborative robots. Briefly, robotic agents
must balance human participants’ task type preferences with
the workloads assigned to those participants. Scheduling
participants to perform more highly preferred tasks at
the cost of increased idle time can degrade team
fluency. Also, providing a robotic agent with increased
autonomy over scheduling decisions while preferable
from the human teammates’ points of view can degrade
situational awareness. This degradation could have negative
consequences in domains where the robotic agent is not
highly reliable, such as new manufacturing applications or
field robotics.

Aims of the Experiment

Prior literature (Chen et al. 2007; Dragan & Srinivasa 2012;
Fong & Thorpe 2001; Gombolay et al. 2015; Herlant et al.
2016) has shown the potential advantages of providing a
robotic teammate with greater autonomy, and recent work
in the realm of mixed-initiative scheduling has extended
these findings. Such works have indicated that a robot
generates a schedule more quickly and a team is able to
complete assigned tasks more efficiently when the schedule
is generated by the robotic agent alone as opposed to when
a human team member assists in the scheduling process
(Gombolay et al. 2013). Furthermore, participants in prior
experiments have readily stated they would prefer working
with a robotic teammate with a greater degree of autonomy
(Gombolay et al. 2015).

However, this recent work provides an incomplete picture.
For example, we do not yet know the ramifications of
conceding autonomy to a robotic agent in environments
where human team members might have to reallocate work
manually due to an environmental disturbance that the robot
is unable to consider. Also, we do not understand whether or
how the way in which a robot schedules a team (e.g., whether
the robot happens to assign tasks to participants who prefer
them) affects the participants’ experiences. Finally, we do
not know whether the amount of work assigned by the robot
results in a suitable workload for human teammates.

We conducted a series of three experiments to better
understand the following: 1) whether situational awareness
degrades when the robotic agent has a greater degree of
control over scheduling decisions, 2) how a robotic agent
should schedule tasks for a human-robot team given the
humans’ workflow preferences, and 3) whether there is a
trade-off between the degree to which human team members’

scheduling preferences are included in the scheduling
process and the effective utilization of those workers.

Experiment: Situational Awareness in
Mixed-Initiative Human-Robot Teaming
Prior work in human factors has also indicated that there
are significant consequences associated with ceding decision
making initiative to an autonomous agent (Kaber et al.
2000; Endsley 1995, 1988; Kaber & Endsley 2004; Riley
et al. 2004): Chiefly, the human counterpart can experience
a decline in situational awareness. This phenomenon has
been observed in a variety of domains, including telerobotics
(Kaber et al. 2000). We proposed an experiment to serve
as the first such investigation in the setting of human-robot
teaming using mixed-initiative scheduling, with the human
and robot sharing scheduling responsibilities.

Independent Variable To determine the potential conse-
quences of providing a robotic teammate with greater auton-
omy over scheduling decisions, we conducted a novel human
subject experiment consisting of three team members: a
robot, a human subject and a human assistant (i.e., a confed-
erate) who were required to complete a series of fetching and
building tasks. In this experiment, the independent variable
was the allocation of authority over scheduling decisions;
this independent variable had three levels, or conditions:

• Manual control: The human subject decides who will
perform each of the tasks.

• Semi-autonomous control: The human subject decides
which tasks he or she will perform, and the robot
assigns the remaining tasks to itself and the human
assistant.

• Autonomous control: The robot decides who will
perform each of the tasks.

Hypothesis We established the following hypothesis:
Hypothesis 1: Participants’ situational awareness will be
poorer when the robotic teammate has greater autonomy over
scheduling decisions.

Dependent Variables To test Hypothesis 1, we conducted
an experiment using the Situation Awareness Global
Assessment Technique, or SAGAT (Endsley 1988). SAGAT
was designed to measure the situational awareness of a pilot
in an aircraft cockpit. During an experiment in which a pilot
operated a simulated aircraft, the experimenter blanked out
the information displays and the pilot was required to recall
vital information about the state of the aircraft.

This protocol has disadvantages: For example, halting the
experiment to question the subject is highly intrusive and
could lead to a decline in performance when the subject
must resume flying the aircraft. Also, the responses are
highly dependent upon the subject’s ability to remember
information, which decays as a function of time – over
the course of a long test, the subject may begin to forget
important pieces of information about the system’s state. In
our experimental design, we applied the same test, in the
same manner, to all participants; therefore, any such negative
effect would be balanced across experimental conditions.
Furthermore, we did not repeat the SAGAT test; it was only
administered once during the experiment, which concluded
after this administration.
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Table 1. This table depicts the post-trial questionnaire
administered to participants for the experiment measuring
situational awareness as a function of the level of autonomy
over scheduling decisions given to the robotic teammate.
Participants responded to Questions 1, 5, 9, 13, and 17 using
the response form shown in Table 2. Participants responded to
Questions 2-4, 6-8, 10-12, 14-16, and 18-20 using a Likert
response format consisting of ”Strongly Disagree,” ”Weakly
Disagree,” ”Neutral, Weakly Agree” and ”Strongly Agree.”

Current Actions
1. What is each team member currently doing?
(Circle nothing if the team member is idle).
2. I am aware of what the robot co-leader is doing.
3. I am aware of what the human assistant is doing.
4. I am aware of what I am doing.
Preceding Action
5. Which task did each team member last complete
prior to the current task? (Circle nothing if the team
member has not yet completed a task.).
6. I am aware of which task the robot co-leader just
did.
7. I am aware of which task the human assistant just
did.
8. I am aware of what I just did.
Past Schedule
9. Please list tasks each team member has
completed. List the tasks in the order in which they
were completed by writing 1 for the first task, 2 for
the second task, and so forth.
10. I am aware of which tasks the human/robot co-
leader has completed.
11. I am aware of which tasks the human assistant
has completed.
12. I am aware of which tasks I have completed.
Future Schedule
13. Which tasks will each team member complete
in the future? (Circle one task in each row to show
which team member will complete which task in the
future.)
14. I am aware of which tasks the human/robot co-
leader will do in the future.
15. I am aware of which tasks the human assistant
will do in the future.
16. I am aware of which tasks I will do in the future.
Dynamic Re-Scheduling
17. Given the work that has already been completed,
who do you anticipate will complete the remaining
tasks if the human/robot co-leader was no longer
available?
18. I am aware of the team’s schedule.
19. If I had to come up with a new schedule for the
team, I would know enough.
20. If I had to come up with a new schedule for the
team, I would do a good job.

For our SAGAT test, we employed a set of objective and
subjective measures, as shown in Table 1. The objective
measures evaluated the accuracy of the participants’
perceptions of the state of the human-robot team; the
subjective measures were paired with the objective measures

Team Leader
(You)

Human
Assistant

Robot
Co-Leader

Fetch B Fetch B Fetch B
Fetch C1 Fetch C1 Fetch C1
Fetch C2 Fetch C2 Fetch C2
Build A Build A Build A
Build B Build B Build B

Build C1 Build C1 Build C1
Build C2 Build C2 Build C2
Fetch E Fetch E Fetch E
Fetch F Fetch F Fetch F
Fetch G Fetch G Fetch G
Build D Build D Build D
Build E Build E Build E
Build F Build F Build F
Build G Build G Build G

Table 2. This table depicts the response format for the post-test
questionnaire shown in Table 1.

to evaluate the participants’ confidence in their answers to
the objective questions.

Participants responded to the objective questions (i.e.,
Questions 1, 5, 9, 13, and 17) using the template-based
response format shown in Table 2, and responded to
subjective questions (i.e., questions 2-4, 6-8, 10-12, 14-16,
and 18-20) according to a 5-point Likert response format
consisting of strongly disagree, weakly disagree, neutral,
weakly agree and strongly agree. We included the later
questions to gain insight into the participants’ subjective
perception of their situational awareness.

Table 2 depicts each individual subtask that could be
assigned to each team member. (We describe the nature
of these subtasks in the subsequent description of the
experiment design.) However, we note for clarity that the
task set consisted of fetching and building tasks A, B, C1,
C2, D, E, F, and G, where the fetch and build subtasks for
C1 were required to be completed before the fetch and build
subtasks for C2 could begin. The table does not include fetch
operations for A and D because the experiment began with
kits A and D already fetched. This condition increased the
number of possible actions the human agents could take at
the start of the experiment.

To test our hypothesis via objective measures, we defined
a metric, called the “SA Score,” that assesses how well
participants are able to provide the desired information for
each question in Table 1. We computed the SA Score for each
team member according to Equation 1, and we computed the
overall SA Score for the whole team according to Equation
2. In these equations Saresponse is the set of tasks the subject
reported for agent a for a given question, and Sacorrect is the
correct set of tasks for agent a for that same question. In this
manner, we have sets Saresponse and Sacorrect for each agent
and for each of the objective Questions 1, 5, 9, 13, and 17.

SA Score for Agent a
:= |Saresponse\Sacorrect|+ |Sacorrect\Saresponse| (1)

SA Score for Team :=
n∑
a=1

(SA Score for Agent a) (2)
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In essence, Equation 1 counts the number of mistakes,
false positives (incorrect tasks identified in the response) and
false negatives (correct tasks not identified in the response).
The team’s SA score is an average of the individual SA
scores. We assumed that the subject’s situational awareness
of each team member is equally important. A perfect score
is equal to zero, and the worst possible score is equal to the
total number of fetch and build tasks (14).

Let us consider an example in which the correct
answers are as follows: Subject - Sparticipantcorrect =
{Fetch B, Build C1}, Human Assistant - Sasst.correct =
{Fetch C1, Build A}, and Robotic Agent - Srobotcorrect = {∅}.
Let us say the subject provided the following answer:
Subject - Ssubjectresponse = {Fetch B, Build A}, Human Assistant
- Sasst.correct = {Fetch C1, Build D, Build G}, and Robotic
Agent - Srobotcorrect = {Fetch E}. The SA score would then be
calculated as follows:

SA Score for subject

= |Sparticipantresponse \Sparticipantcorrect |

+ |Sparticipantcorrect \Sparticipantresponse |
= |{Build A}|+ |{Build C1}|
= 2

SA Score for asst.

= |Sasst.response\Sasst.correct|+ |Sasst.correct\Sasst.response|
= |{Build D, Build G}|+ {Build A}|
= 3

SA Score for robot

= |Srobotresponse\Srobotcorrect|+ |Srobotcorrect\Srobotresponse|
= |{Build A}|+ |{∅}|
= 1

SA Score for Team

=

n∑
a=1

(SA Score for Agent a)

= 2 + 3 + 1

= 6

Experiment: Workflow Preferences
We sought to understand how the robot’s inclusion of human
team members’ preferences for completing particular tasks
affects the relationship between the human and robotic
agents.

Independent Variable Our independent variable was the
degree to which participants’ preferences were respected by
the robotic teammate when scheduling. We established three
experimental conditions for this variable using a within-
participants experiment design:

• Positive: The robot generates a schedule incorporating
the preferences of the subject.
• Neutral: The robot ignores the preferences of the

subject.
• Negative: The robot schedules according to the

opposite of the preferences stated by the subject.

Hypothesis We established the following hypothesis:
Hypothesis 2: Participants would prefer to work with
a robotic teammate that incorporates their scheduling
preferences than with one that is unaware of their
preferences, and participants would prefer to work with a
robotic teammate that is ignorant to their preferences than
with one that actively schedules against their preferences.

Dependent Variables To test our hypothesis, we conducted
a within-participants experiment in which all participants
experienced each of the three conditions once, and received
a post-trial questionnaire after experiencing each condition.
This questionnaire consisted of 21 Likert statements, as
shown in Table 3. Hoffman (2013) previously developed and
validated the questions drawn from the ”Robot Teammate
Traits” and ”Working Alliance for Human-Robot Teams”
surveys. The later survey is a derivative of the ”Working
Alliance Inventory,” originally developed and validated by
Horvath & Greenberg (1989).

Participants also responded to a questionnaire upon
completing the tasks under each condition, as shown in Table
4. This questionnaire gathered demographic information and
included three additional Likert statements summarizing the
experience of the participants, along with two open-ended
questions.

We note that this questionnaire is not balanced, in that
the number of positive prompts (e.g. “I believe the robot
likes me.”) outweighed the number of negative prompts (e.g.
“I feel uncomfortable with the robot.”). However, potential
bias arising from an unbalanced survey is mitigated since the
same questionnaire is administered in each condition.

Experiment: Workload vis-à-vis Workflow
Preferences
In this experiment, we studied how team fluency varies as a
function of the size of the workload assigned to a human by
a robotic teammate. We focused exclusively on modulating
the degree to which scheduling preferences were included,
and did not control for workload – rather, we controlled
for overall team efficiency (makespan). We discuss how
including participants’ preferences in the scheduling process
can decrease their workload – and, in turn, lead to decreased
team fluency – in the Results section.

To isolate the effects of variation in a subject’s
workload, we separated the inclusion of scheduling
preferences and increasing of the subject’s workload into two
independent variables. We posit that decoupling workload
from preferences results in a clearer understanding of the
effects of varying workload and, in turn, the inclusion of
workflow preferences.

Independent Variables We considered two independent
variables: 1) the degree to which the robot respected
participants’ preferences during scheduling, and 2) the
participants’ utilization, defined as the total amount of time
the subject was occupied during execution of a particular
schedule. We identified a subject as having high utilization
if the majority of their time was spent working as opposed to
being idle, and vice versa for low utilization. We employed
a 2x2 within-participants design with the following four
conditions, as shown in Table 5.
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Table 3. Subjective Measures Post-Trial Questionnaire

Robot Teammate Traits
1. The robot was intelligent.
2. The robot was trustworthy.
3. The robot was committed to the task.
Working Alliance for Human-Robot Teams
4. I feel uncomfortable with the robot. (reverse
scale)
5. The robot and I understand each other.
6. I believe the robot likes me.
7. The robot and I respect each other.
8. I feel that the robot worker appreciates me.
9. The robot worker and I trust each other.
10. The robot worker perceives accurately what my
goals are.
11. The robot worker does not understand what I am
trying to accomplish. (reverse scale)
12. The robot worker and I are working toward
mutually agreed-upon goals.
13. I find what I am doing with the robot worker
confusing. (reverse scale)
Additional Measures of Team Fluency
14. I was satisfied by the team’s performance.
15. I would work with the robot the next time the
tasks were to be completed.
16. The robot increased the productivity of the team.
17. The team collaborated well together.
18. The team performed the tasks in the least time
possible.
19. The robot worker was necessary to the successful
completion of the tasks.
20. The human worker was necessary to the
successful completion of the tasks.
21. I was necessary to the successful completion of
the tasks.

Table 4. Subjective Measures Post-Test Questionnaire

Overall Preference
22. If the robot scheduled me to do the tasks I
preferred, I would want to work with the robot again.
23. If the robot did not know my preferences when
scheduling, I would want to work with the robot
again.
24. If the robot scheduled me to do different tasks
than what I preferred, I would want to work with the
robot again.
Open-Response Questions
25. Which of the three scenarios did you prefer, and
why?
26. If you were going to add a robotic assistant to
a manufacturing team, to whom would you give the
job of rescheduling the work, and why?

• High Preference - High Utilization: The robot
generates a schedule incorporating the preferences of
the participant and highly utilizes the participant.
• High Preference - Low Utilization: The robot

generates a schedule incorporating the preferences of
the participant and minimally utilizes the participant.

2x2 Design High Utilization Low Utilization
High Preference High Preference -

High Utilization
High Preference -
Low Utilization

Low Preference Low Preference -
High Utilization

Low Preference -
Low Utilization

Table 5. This table depicts the four experimental conditions
varying the two independent variables (the degree to which the
scheduling preferences are included and the participants’
utilization), each of which have two levels: high and low.

• Low Preference - High Utilization: The robot
generates a schedule according to the opposite of the
preferences of the participant and highly utilizes the
participant.

• Low Preference - Low Utilization: The robot
generates a schedule according to the opposite of the
preferences of the participant and minimally utilizes
the participant.

Hypotheses We established the following hypotheses:
Hypothesis 3A: A participant’s subjective assessment of
their robotic teammate is favorably influenced by working
with a robot that makes allocation decisions that incorporate
their scheduling preferences, as opposed to decisions
that contradict their preferences. (In contrast to H2, this
hypothesis was assessed while controlling for the workload
utilization of the participant.)
Hypothesis 3B: A participant’s subjective assessment of
their robotic teammate is favorably influenced by working
with a robot that makes work allocation decisions that result
in high utilization of the participant’s time, as opposed to low
utilization.

Dependent Variables To test our hypotheses, we conducted
a within-participants experiment in which each participant
experienced each condition once. As in the previous
experiment, we administered a post-trial questionnaire
after each of the conditions, as well as a post-test
questionnaire after each participant completed all conditions.
The investigating agent workload included four conditions
instead of three; as such, participants responded to a total of
four post-trial questionnaires. We employed the same design
for the post-trial (Table 3) and post-test questionnaires (Table
4).

Formal Problem Definition
The problem of scheduling a team of heterogeneous agents to
complete a set of tasks with upper- and lowerbound temporal
constraints and shared resources (e.g., spatial locations) falls
within the XD [ST-SR-TA] class of scheduling problems,
according to the comprehensive taxonomy defined by Korsah
et al. (2013). This class is one of the most computationally
challenging in the field of scheduling. The XD [ST-SR-TA]
class of problems is composed of tasks requiring one robot
or agent at a time (single-robot tasks [ST]), robots/agents
that perform one task at a time (single-task robots [SR])
and a time-extended schedule of tasks that must be built for
each robot/agent (time-extended allocation [TA]). This time-
extended schedule includes cross-schedule dependencies
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(XD) amongst the individual schedules of the agents; such
dependencies arise, for example, when agents must share
limited-access resources (e.g., physical locations).

We formulated an instance of this problem in order
to develop an experiment task as a mixed-integer linear
program, as depicted in Equations 3-13. This formulation
serves as a common basis to model each of the three
experiments. We subsequently discuss experiment-specific
extensions.

min z, z = g
(
{Aa

τj
i

|τ ji ∈ τ , a ∈ A},

{J〈τj
i ,τ

y
x 〉|τ

j
i , τ

y
x ∈ τ}, {sτj

i
, fτj

i
|τ ji ∈ τ}

)
(3)

subject to∑
a∈A

Aa
τj
i

= 1,∀τ ji ∈ τ (4)

ubτj
i
≥ fτj

i
− sτj

i
≥ lbτj

i
,∀τ ji ∈ τ (5)

fτj
i
− sτj

i
≥ lba

τj
i

−M
(

1−Aa
τj
i

)
,∀τ ji ∈ τ , a ∈ A (6)

sτy
x
− fτj

i
≥W〈τj

i ,τ
y
x 〉,∀τ

j
i , τ

y
x ∈ τ |,∀W〈τj

i ,τ
y
x 〉 ∈ TC

(7)

fτy
x
− sτj

i
≤ Drel

〈τi,τj〉,∀τ
j
i , τ

y
x ∈ τ |∃Drel

〈τj
i ,τ

y
x 〉 ∈ TC (8)

fτj
i
≤ Dabs

τj
i

,∀τi ∈ τ |∃Dabs
τj
i

∈ TC (9)

sτy
x
− fτj

i
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(
Aa
τj
i

+Aaτy
x
− 2
)

+M
(
J〈τj
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y
x 〉 − 1

)
,∀τ ji , τ

y
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sτj
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(
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τj
i

+Aaτy
x
− 2
)

−M
(
J〈τj
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y
x 〉
)
,∀τ ji , τ

y
x ∈ τ ,∀a ∈ A (11)

sτy
x
− fτj

i
≥M

(
J〈τj

i ,τ
y
x 〉 − 1

)
,

∀τ ji , τ
y
x ∈ τ |Rτj

i
= Rτy
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(12)

sτj
i
− fτy

x
≥ −M

(
J〈τj

i ,τ
y
x 〉
)
∀τi, τj ∈ τ |Rτj

i
= Rτy

x
(13)

In this formulation, Aa
τj
i

∈ {0, 1} is a binary decision

variable for the assignment of agent a to subtask τ ji (i.e.,
the jth subtask of the ith task); Aa

τj
i

equals 1 when agent

a is assigned to subtask τ ji and 0 otherwise. J〈τj
i ,τ

y
x 〉 ∈

{0, 1} is a binary decision variable specifying whether τ ji
comes before or after τyx , and sτj

i
, fτj

i
∈ [0,∞) are the

start and finish times of τ ji , respectively. TC is the set
of simple temporal constraints relating task events. M is a
large, positive constant used encode conditional statements
as linear constraints.

Equation 3 is a general objective that is a function of the
decision variables {Aa

τj
i

|τ ji ∈ τ , a ∈ A}, {J〈τj
i ,τ

y
x 〉|τ

j
i , τ

y
x ∈

τ} and {sτj
i
, fτj

i
|τ ji ∈ τ}. Equation 4 ensures that each τ ji

is assigned to a single agent. Equation 5 ensures that the
duration of each τ ji ∈ τ does not exceed its upper- and
lowerbound durations. Equation 6 requires that the duration

of τ ji , fτj
i
− sτj

i
is no less than the time required for agent

a to complete τ ji . Equation 7 requires that τyx occurs at
least W〈τj

i ,τ
y
x 〉 units of time after τ ji (i.e., W〈τj

i ,τ
y
x 〉 is a

lowerbound on the amount of time between the start of τyx
and the finish of τ ji ).

Equation 8 encodes requires that the duration between the
start of τ ji and the finish of τyx is less than Drel

〈τj
i ,τ

y
x 〉 (i.e.,

Drel

〈τj
i ,τ

y
x 〉 is an upperbound on the finish time of τyx relative

to the start of τ ji ). Equation 9 requires that τ ji finishes before
Dabs
τj
i

units of time have expired since the start of the schedule

(i.e., Dabs
τj
i

is an upperbound on the latest absolute time τ ji
can be finished). Equations 10-11 enforce that agents can
only execute one subtask at a time. Equations 12-13 enforce
that each resource Ri can only be accessed by one agent at a
time.

The worst-case time complexity of a complete solution
technique for this problem is dominated by the binary
decision variables for allocating tasks to agents (Aa

τj
i

) and
sequencing (J〈τj

i ,τ
y
x 〉), and the complexity is given by

O
(

2|A||τ |
3
)

, where |A| is the number of agents and |τ | is the

number of tasks. Agent allocation contributes O
(
2|A||τ |

)
,

and sequencing contributes O
(

2|τ |
2
)

.

Scheduling Mechanism
For all three experiments, we adapted a dynamic scheduling
algorithm, called Tercio, to schedule the human-robot teams
(Gombolay et al. 2013). Tercio is an empirically fast,
high-performance dynamic scheduling algorithm designed
for coordinating human-robot teams with upper- and
lowerbound temporo-spatial constraints. The algorithm
is designed to operate on a simple temporal network
(Muscettola et al. 1998) with set-bounded uncertainty. If
the schedule’s execution exceeds its set bounds, Tercio re-
schedules the team (Gombolay et al. 2013).

As shown in Figure 1, the algorithm takes as input a
temporal constraint problem, a list of agent capabilities (i.e.,
the lowerbound, upperbound and expected duration for each
agent performing each task) and the physical location of each
task. Tercio first solves for an optimal task allocation by
ensuring that the minimum amount of work assigned to any
agent is as large as possible, as depicted in Equation 14. In
this equation, Agents is the set of agents, Aa

τj
i

is a task
allocation variable that equals 1 when agent a is assigned to
subtask τ ji and 0 otherwise, A is the set of task allocation
variables, A∗ is the optimal task allocation and Ca

τj
i

is the

expected time it will take agent a to complete subtask τ ji .

A∗ = min
{A}

max
Agents

∑
τj
i

Aa
τj
i

× Ca
τj
i

,∀a ∈ Agents (14)

After determining the optimal task allocation, A∗, Tercio
uses a fast sequencing subroutine to complete the schedule.
The sequencer orders the tasks through simulation over time.
Before each commitment is made, the sequencer conducts
an analytical schedulability test to determine whether task
τi can be scheduled at time t given prior scheduling
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commitments. If the test returns that this commitment can
be made, the sequencer then orders τi and continues. If
the schedulability test cannot guarantee commitment, the
sequencer evaluates the next available task.

If the schedule, consisting of a task allocation and a
sequence of tasks, does not satisfy a specified makespan,
a second iteration is performed by finding the second-most
optimal task allocation and the corresponding sequence.
The process terminates when the user is satisfied with the
schedule quality or when no better schedule can be found. In
this experiment, we specified that Tercio run for 25 iterations
and return the best schedule.

We employed Tercio because it allows for easy altering of
task allocation within its task allocation subroutine. Here, we
describe the specific Tercio alterations incorporated into each
experiment. Note that only the task allocation subroutine
within Tercio was modified for our three experiments; the
sequencing subroutine remained unaltered.

Algorithm Modifications for Mixed-Initiative
Scheduling
In the situational awareness experiment, we sought
to determine whether situational awareness degrades
as a robotic agent is allowed greater autonomy over
scheduling decisions. We considered three conditions:
autonomous, semi-autonomous and manual control. Under
the autonomous condition, the robotic teammate performed
scheduling for the entire team; as such, the robot could use
Tercio without modifications.

Under the semi-autonomous condition, in which the
human participant decides which tasks he/she will perform
and the robotic agent decides how to allocate the remaining
tasks between itself and a human assistant, Tercio was
required to consider the tasks allocated by the participant.
After the participant specified which tasks he/she would
perform, the experimenter provided these assignments to the
robot, which encoded the allocation as an assignment to
the decision variables. Specifically, Tercio setAparticipant

τj
i

=

1, Aasst.
τj
i

= 0, Arobot
τj
i

= 0 for subtasks τ ji assigned to the

participant, and Aparticipant
τy
x

= 0 for subtasks τyx the
participant did not assign to him/herself. Thus, the robot (via

Figure 1. Tercio takes as input a temporal constraint problem
and finds a satisficing, flexible schedule by utilizing an analytical
schedulability test to ensure a feasible solution.

Tercio) only needed to solve for the allocation variables not
already allocated by the participant.

Under the autonomous condition, the participant specified
all task allocation assignments. As such, the robotic agent set
Aa
τj
i

= 1 for all subtasks τ ji assigned to agent a, andAa
τy
x

= 0

for all subtasks τyx not assigned to agent a, for all agents a.

Algorithm Modifications for Scheduling with
Preferences
We focused on the effect of incorporating the preferences of
human team members when generating a team’s schedule.
Preferences can exist in a variety of forms: For example,
humans may have preferences about the duration of events
(how long it takes to complete a given task) or the duration
between events (the lowerbound or upperbound on the time
between two tasks) (Wilcox et al. 2012). In our investigation,
we considered preferences related to task types for example,
a worker may prefer to complete a drilling task rather than
a painting task. Such preferences can be included in the
mathematical formulation in Equations 3-13 as an objective
function term where one seeks to maximize the number
of preferred tasks assigned to the participant, as shown
in Equation 15). In this equation, the objective function
term for maximizing preferences is balanced with the
established criteria (i.e., function g

(
{Aa

τj
i

|τ ji ∈ τ , a ∈ A},

{J〈τj
i ,τ

y
x 〉|τ

j
i , τ

y
x ∈ τ}, {sτj

i
, fτj

i
|τ ji ∈ τ}

)
from Equation

3) via a weighting parameter α.

min z, z = α× g
(
{Aa

τj
i

|τ ji ∈ τ , a ∈ A},

{J〈τj
i ,τ

y
x 〉|τ

j
i , τ

y
x ∈ τ}, {sτj

i
, fτj

i
|τ ji ∈ τ}

)
− (1− α)×

 ∑
τj
i ∈τpreferred

Aparticipant
τj
i

 (15)

Alternatively, one could incorporate preferences as a set
of constraints on enforcement of a minimum or maximum
level of preferred work assigned to the participant, as shown
in Equations 16-17. In these equations, kprefub and kpreflb

are upper- and lowerbounds on the number of preferred
tasks allocated to the participant, and kpref

c

ub and kpref
c

lb are
upper- and lowerbounds on the number of non-preferred
tasks allocated to the participant.

kpreflb ≤
∑

τj
i ∈τpref

Aparticipant
τj
i

≤ kprefub (16)

kpref
c

lb ≤
∑

τj
i ∈τpref

c

Aparticipant
τj
i

≤ kpref
c

ub (17)

We chose to model the inclusion of preferences as
a set of constraints, which we added to Tercio’s task
allocation subroutine. For the purpose of human participant
experimentation, where one must control for confounders,
this approach offers greater control over schedule content, as
opposed to including a preference term within the objective
function. The challenge of using an objective function model
is in the need to tune one or more coefficients (e.g., α
in Equation 15) in the objective function to balance the
contribution of the schedule efficiency (i.e., makespan) with
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the importance of adhering to preferences. We found this
tuning to be difficult across a variety of participants.

For all three conditions, we set kpreflb = kpref
c

lb = 0.
Under the positive condition, participants could be assigned
only one task that did not align with their preferences
(i.e., kprefub =∞ and kpref

c

ub = 1) participants preferring
to build could be assigned one fetching task at most, and
vice versa. Under the negative condition, participants could
be assigned a maximum of one task that aligned with
their preferences (i.e., kprefub = 1 and kpref

c

ub =∞) for
example, participants preferring to build could be assigned
one build task at most. Under the neutral condition, Tercio’s
task allocation subroutine would run without alteration (i.e.,
kprefub = kpref

c

ub = 1, τpreferred = ∅).
Based on results from previous studies indicating the

importance of team efficiency (Gombolay et al. 2015,
2014), we sought to control for the influence of schedule
duration on team dynamics. For the experiment studying
scheduling preferences, we ran 50 iterations of Tercio for
each participant under the positive, neutral and negative
parameter settings, generating a total of 150 schedules. We
then identified a set of three schedules, one from each
condition, for which the makespans were approximately
equal. (We did not control for the workload of the individual
agents.) The robot then used these schedules to schedule the
team under the respective conditions.

Algorithm Modifications for Workload- and
Scheduling Preference-based Constraints
In this experiment, we needed to control for makespan across
all four conditions while varying the participants’ workloads
and the types of tasks they were assigned.

To control for the degree to which preferences were
included in the schedule, we again added Equations 16-
17 to Tercio’s task allocation subroutine. Under conditions
with high preference, all tasks assigned to the participant
were preferred tasks (i.e., kprefub =∞ and kpref

c

ub = 0); under
conditions with low preference, all tasks assigned to the
participant were non-preferred tasks (i.e., kprefub = 0 and
kpref

c

ub =∞). Under all conditions, we set kpreflb = kpref
c

lb =
0.

To control for the utilization of the participant,
we added an objective function term to Tercio’s task
allocation subroutine that minimized the absolute value
of the difference between the desired utilization of the
participant U target and the actual utilization of the
participant

∑
τj
i ∈τ

Aparticipant
τj
i

× lbτj
i

. Since the absolute
value function is nonlinear and cannot be handled by a
linear program solver, we linearized the term as follows in
Equations 18-19:

zutility ≥ U target −
∑
τj
i ∈τ

Aparticipant
τj
i

× lbτj
i

(18)

zutility ≥ −U target +
∑
τj
i ∈τ

Aparticipant
τj
i

× lbτj
i

(19)

We generated schedules for each condition in three steps:
First, we ran Tercio without any alterations to the task
allocation subroutine for 100 iterations. Tercio works by

iteratively generating task allocations and then sequencing
the task set given the corresponding task allocation. Each
iteration takes approximately one-third of a second. By
running Tercio for several iterations, we allowed it to explore
the search space so that it could then identify a candidate
schedule with given characteristics (e.g., a specific degree of
utilization of a particular agent). From these iterations, we
recorded the median utilization Umedian of the participant.

Next, we ran four additional sets of 100 iterations of Tercio
one set for each of the four conditions listed above. As
before, we used Equations 16-17 to control for the degree to
which the robot included the participant’s preferences while
scheduling. When the preference variable was set to ’high,
we set kprefub =∞ and kpref

c

ub = 0, and we set kprefub = 0

and kpref
c

ub =∞ for the low preference condition. In both
conditions, kpreflb = kpref

c

lb = 0.
In the experiment studying workload, we controlled for

the participant’s utilization via Equations 18-19. When
the utilization variable was set to high, we set U target =
Umedian. When the utilization variable was set to low, we
set U target = Umedian

2 .
We then identified one schedule from each of the four

sets of 100 Tercio iterations to generate a set of schedules
with short, approximately equal makespans and utilizations
close to their respective targets. To generate this set, we
employed Equation 20, which minimizes the difference
between the longest and shortest makespans across the four
conditions (i.e., maxi,j (mi −mj)), the longest makespan
(i.e., maximi) and the maximum difference between each
schedule’s target utilization U targeti and its actual utilization
Ui. In our experimental procedure, we set α1 = α2 =
1, α3 = 2.

ztuning = α1 max
i,j∈schedules

(mi −mj) + α2 max
i∈schedules

mi

+ α3 max
i∈schedules

(
U targeti − Ui

)
(20)

Experimental Design
We conducted a series of three human-participant experi-
ments (n = 17, n = 18, n3 = 20) that required the fetch-
ing and assembly of Lego part kits. The goal of these
experiments was to assess the following: 1) how a robotic
teammate’s inclusion of the preferences of its human team-
mates while scheduling affects team dynamics, 2) how the
benefits of including these scheduling preferences varies as a
function of the degree to which the robot utilizes the human
participant, and 3) how situational awareness degrades as a
function of the level of autonomy afforded to the robot over
scheduling decisions. We used the same basic experimental
setup for all three experiments, which we describe below.

Materials and Setup
Our human-robot manufacturing team consisted of the
human participant, a robotic assistant and a human assistant.
The human participant was capable of both fetching and
building, while the robot assistant was only capable of
fetching. One of the experimenters played the role of a third
teammate (the human assistant) for all participants and was
capable of both fetching and building. This human assistant
was included in order to more realistically represent the
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Figure 2. This figure depicts a diagram of the laboratory room
where the experiment took place. There were two locations
where the human and robot workers could inspect part kits
during a fetching task, and two locations where the human
workers built part kits.

composition of a human-robot team within a manufacturing
setting. We used a Willow Garage PR2 platform, depicted in
Figure 2, as the robotic assistant for our human-robot team.
The robot used adaptive Monte Carlo localization (AMCL)
(Fox 2003) and the standard Gmapping package in the Robot
Operating System (ROS) for navigation.

Procedure
The scenario included two types of tasks: fetching and
assembling part kits. As shown in Figure 2, the experiment
environment included two fetching stations and two build
stations, with four part kits located at each fetching station.

Fetching a part kit required moving to one of two fetching
stations where the kits were located, inspecting the part
kit and carrying it to the build area. The architecture of
our fetching task is analogous to actions required in many
manufacturing domains. In order to adhere to strict quality
assurance standards, fetching a part kit required verification
from one to two people that all of the correct parts were
present in the kit, as well as certification from another
person that the kit had been verified. We also imposed
additional constraints in order to better mimic an assembly
manufacturing environment: A part kit must have been
fetched before it could be built, and no two agents were able
to occupy the same fetching or build station at the same time.

Agents were required to take turns using the fetching
stations, as allowing workers to sort through parts from
multiple kits at the same location risked the participants
mixing the wrong part with the wrong kit. Furthermore,
in manufacturing, if a part or part kit is missing from an
expected location for too long, work in that area of the
factory will temporarily cease until the missing item has been
found. As such, we imposed a 10-minute deadline from the
time that the fetching of a part kit began until that kit had
been built.

Assembly of the Lego model involved eight tasks τ =
{τ1, τ2, . . . , τ8}, each of which consisted of a fetch and

build subtask τi = {τfetchi , τ buildi }. The amount of time each
participant took to complete each subtaskCparticipant−fetchi

and Cparticipant−buildi was measured during a training
round. The timings for the robot Crobot−fetchi and human
assistant Cassist−fetchi and Cassist−buildi (performed by an
experimenter) were collected prior to the experiments.

In all three experiments, the robotic agent employed
Tercio as a dispatcher, communicating to the participant
and human assistant when to initiate their next subtasks.
Tercio would tell each agent when they were able to initiate
or complete each subtask, and each agent would send a
message acknowledging initiation or completion via simple,
text-based messages over a TCP/IP GUI∗.

Modifications for the Experiment Studying Situational
Awareness For the study evaluating the effects of mixed-
initiative scheduling on the situational awareness of the
human team members, we performed a between-participants
experiment, where each participant experienced only one of
three conditions: autonomous, semi-autonomous or manual.

As stated above, under the autonomous condition, the
robot scheduled the three members of the team using Tercio
with the default task allocation subroutine. Under the semi-
autonomous condition, each participant selected which tasks
they would perform and the robot allocated the remaining
tasks to itself and the human assistant. Under the manual
condition, the participant allocated tasks to each of the
team members. The robot sequenced the tasks under all
conditions.

After the human and/or robot completed the task
allocation and sequencing process, the participants were
allowed 3 minutes to review the schedule. We found in prior
work that participants required approximately 3 minutes to
perform task allocation (Gombolay et al. 2015); as such, we
wanted to allow participants at least this much time to review
a robot-generated schedule under the autonomous condition.
Participants were not told they would later respond to
questionnaires about their experiences because we did not
want to unduly bias them to focus on preparing for such a
questionnaire. Instead, we wanted participants to attend fully
to carrying out the task at hand.

After the participants reviewed the schedule, the team
executed their tasks according to that schedule. At approx-
imately 200 seconds into execution, the experimenter halted
the process and administered the post-trial questionnaire (as
shown in Table 1) according to the SAGAT technique. The
timing of the intervention was tuned to allow each team
member to have been assigned at least one task on average.
The team did not complete the schedule after the SAGAT
test; the experiment concluded following administration of
the questionnaire

Extensions for the Experiment Studying Scheduling Pref-
erences For the experiment studying scheduling prefer-
ences, we employed a within-participants design. As such,
participants experienced all three experimental conditions:

∗SocketTest v3.0.0 c©2003-2008 Akshathnkumar Shetty (http://
sockettest.sourceforge.net/)
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positive, neutral and negative. The order in which partic-
ipants experienced these conditions was randomized. Par-
ticipants were randomly assigned to these conditions. At
the beginning of each condition, participants were told their
robot teammate wanted to know whether they preferred to
complete fetch tasks or build tasks, and the participants
responded accordingly.

Deference to the participants with regard to their preferred
tasks is in keeping with a pseudo-experiment. We did not
attempt to balance participants according to the number in
our sample who preferred fetching vs. building, as fourteen
of eighteen participants (78%) preferred building tasks.
Participants were not informed a priori of the different
conditions; as such, subjective evaluations of team dynamics
under each condition would not be influenced by the
expectation that the robot would or would not cater to the
participants’ preferences.

The preferences, along with task completion times for
each of the three team members, were provided to the
robot, which scheduled the team. The team then performed
the tasks to completion. After the schedule was completed,
participants received the post-trial questionnaire depicted in
Table 3. This process was repeated once for each condition,
as indicated previously. After completing the tasks under
all three conditions, the participant received the post-test
questionnaire shown in Table 4. The experiment concluded
after completion of this questionnaire.

Extensions for the Experiment Studying Workload For
the experiment studying workload influence, we employed
an experimental design that mirrored the procedure for the
experiment studying workflow preferences, with one primary
difference: We varied workload and the degree to which
human preferences were considered during scheduling,
rather than preferences alone. Participants were not informed
about whether the robot was varying their utilization, and
the schedule itself was not reported to the participant;
participants had to infer changes to their degree of utilization
based only on their subjective experience.

Results

In this section, we report the results from statistical analysis
of our experiments. Statistical significance is measured at the
α = 0.05 level.

Participants
We recruited participants for all three experiments from a
local university. The cohort for the situational awareness
study consisted of 20 participants (six men and 14 women)
with an average age of 19.5± 1.95 years (range, 18 to 25
years). The cohort for the study of scheduling preferences
included 18 participants (10 men and eight women) with an
average age of 27± 7 years (range, 19 to 45 years). The
cohort for the workload study consisted of 18 participants (10
men and eight women) with an average age of 21± 3 years
(range, 18 to 30 years). In all experiments, participants were
assigned to the various experimental conditions via random
sampling without replacement, so as to balance participants
across the conditions.

Figure 3. This figure depicts participants’ average SA scores
for Questions 1, 5, 9, and 13 in the post-trial questionnaire
shown in Table 1, as a function of the degree of automation over
scheduling decisions. The standard error of the mean is shown
as whisker bars. Note that a lower score indicates a better
situational awareness.

Results for Situational Awareness
Recall that the associated hypothesis H1 states that human
participants’ situational awareness would decline as the
robot’s autonomy over scheduling decisions increased.

We administered a SAGAT-based test in which partici-
pants received a questionnaire consisting of both objective
and subjective measures. We observed statistically signif-
icant decreases in situational awareness and participants’
confidence in their situational awareness while under the
autonomous condition, when the robot had full control over
scheduling decisions.

Figure 3 depicts the team situational awareness score for
Questions 1, 5, 9, and 13 from the post-trial questionnaire
(shown in Table 1). For visual clarity when comparing the
results from each question, we have normalized the values
for each question in Figure 3 such that the maximum team
score for each question is equal to 1.

We conducted a mixed-factor analysis of variance
(ANOVA) for Question 1, and observed a statistically
significant difference for participants’ responses to Question
1 (F (2, 17) = 3.894, p < 0.041) across the three conditions.
Results from a pair-wise comparison with a Student’s t-
test indicated that participants were statistically significantly
more accurate when recalling which action team members
performed under the semi-autonomous condition (M =
0.67,SD = 0.48) than the autonomous condition (M =
2.13,SD = 1.36), (t(12), p < 0.014). The manual condition
(M = 1.00,SD = 0.89) was not statistically significantly
different from the other two conditions.

We also applied a set of pair-wise t-tests with a Bonferonni
correction α′ = α

3 = 0.05
3 = 0.016̄ for responses to Question

9, and found that participants were less accurate when
recalling all previous actions of each agent under the
autonomous condition (M = 7.88,SD = 2.75) compared
with the manual condition (M = 3.38,SD = 3.49) (p <
0.0158). There was no statistically significant difference
with regard to the semi-autonomous (M = 6.67,SD = 5.71)
condition.
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Figure 4. This figure depicts the average of the medians of
participants’ responses to Likert-response Questions 2-4, 6-8,
10-12, and 14-16 under the autonomous, semi-autonomous
and manual conditions. The standard error of the mean is
shown as whisker bars.

Next, we considered participants’ responses to the set of
participant questions from Table 1: Questions 2-4, 6-8, 10-
12, and 14-16 . Choosing the correct test was challenging for
our design: We wanted a composite measure for confidence,
which combines the responses to Questions 2-4, and likewise
for Questions 6-8, 10-12, and 14-16, as a repeated measure.
However, we could not immediately apply an ANOVA
because the data were on an ordinal rather than an interval
scale.

We performed two types of analysis for these data. First,
we used a non-parametric analysis, which assumes ordinal,
non-normally distributed data. To measure the confidence
of an individual participant under a given condition for
the current actions of agents (referring to Questions 2-
4), we used the median of the answers the relevant
questions as our single data point. We then compared the
set of medians, which is notionally more robust to within-
participant variance, for participants under each condition
to the medians for other participants. For a qualitative
description, a histogram of the medians is depicted in Figure
4.

Results from an omnibus Kruskal-Wallis test indicated
significant differences across the conditions with regard to
participants’ confidence in their situational awareness for the
current activities (Question 2-4; χ2(2) = 6.09, p = 0.0476),
and past activities of their team members (Questions 10-
12; χ2(2) = 7.98, p = 0.018). A pair-wise Kruskal-Wallis
test indicated that participants were statistically significantly
more confident in their situational awareness for the current
activities of team members (Question 2-4) when under
the manual condition than the semi-autonomous (χ2(1) =
5.61, p < 0.018) or autonomous (χ2(1) = 4.04, p < 0.044)
conditions. Likewise, we found that participants were
statistically significantly more confident in their situational
awareness for the current activities of team members
(Question 10-12) under the manual condition than the
semi-autonomous (χ2(1) = 7.93, p < 0.005) or autonomous
(χ2(1) = 4.15, p = 0.0416) conditions.

In our second analysis, we treated the data as interval
data. Prior work has included extensive analyses suggesting
that one can reasonably approximate a symmetric Likert-
response format as interval data (Carifio 1976a,b), and
that the F-test is quite robust with respect to breaking the
assumptions of normality with regard to interval data (Glass
et al. 1972). We applied a mixed-factor ANOVA and used
this test to measure the composite confidence for the sets of
questions corresponding to the current, preceding, past and
future actions of team members.

After applying a mixed-factor ANOVA, we found that the
level of robotic autonomy over scheduling decisions affected
participants’ confidence in their knowledge of the current
actions of their team (Questions 2-4, F (2, 18) = 4.228, p <
0.031), as well as their confidence in their knowledge
of the team’s previous actions (Questions 6-8, F (2, 18) =
6.293, p < 0.008). These findings support the results from
the Kruskal-Wallis test.

Upon performing pair-wise comparisons of the
autonomous, semi-autonomous and manual conditions
using the mixed-factor ANOVA, we again observed
statistically significantly greater confidence in situational
awareness among participants with regard to the current
activities of team members (Questions 2-4) under the
manual condition than in the autonomous condition
(F (1, 13) = 11.377, p = 0.005). Likewise, we found
that participants were statistically significantly more
confident in their situational awareness about the current
activities of team members (Questions 10-12) when
under the manual condition than the semi-autonomous
(F (1, 11) = 18.615, p = 0.001) or autonomous conditions
(F (1, 11) = 8.960, p = 0.010). These findings corroborate
those from non-parametric testing and strongly suggest
that participants have less confidence in their situational
awareness when under the autonomous condition.

Results for Scheduling Preferences
Recall that hypothesis H2 states that human participants
would prefer to work with a robot when it included their
workflow preferences in scheduling decisions. Based on
responses to Questions 22-24 in Table 4, we observed
statistically significant evidence that human participants
preferred working with a robot that included their
preferences when scheduling (p < 0.001). Participants
reported that they would rather work with a robotic teammate
that included their preferences than one that was unaware
of their preferences (p < 0.001). Furthermore, participants
reported that they would prefer to work with a robot
that was unaware of their preferences than a robot that
scheduled according to the opposite of their preferences
(p < 0.001). We also found that participants felt the robot
liked them more (Question 6 in Table 4) under the neutral
condition, when the robot was unaware of the participants’
preferences, than under the negative condition (p < 0.05).
These results support our hypothesis that the preferences
of human workers are important for a robotic teammate to
include when making scheduling decisions.

Surprisingly, we also found that the amount of work
allocated to participants had a strong impact on their
subjective perceptions of their teams’ interactions. In post-
hoc analysis, we computed the Pearson product-moment
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Table 6. Correlation between utilization and participants’
perception of the team (N = 17).

Q. Correlation Coefficient t-value p-value

7 r = 0.285 t = 2.084 p = 0.021

10 r = 0.311 t = 2.287 p = 0.013

14 r = 0.286 t = 2.086 p = 0.021

15 r = 0.269 t = 1.957 p = 0.028

correlation coefficient for the rank of participants’ Likert-
scale responses to questions from the post-trial questionnaire
(Table 3) for each condition as a function of the amount
of work assigned to each participant; we found that a
statistically significant proportion of responses (Likert-Scale
responses on 16 of the 21 questions† were positively
correlated with the amount of time assigned to participants
(χ2 = 5.762,p = 0.016). Furthermore, four of the 16 with
a positive correlation (Questions 7, 10, 14, and 15 from
Table 3) were statistically significantly correlated, as shown
in Table 6 (p < 0.05). We did not observe a statistically
significant negative correlation with the amount of time
assigned to participants.

To further investigate this finding, we conducted a
variance analysis and found that the robot allocated
a statistically significantly different amount of work
to the participant as a function of how the robot
included the participant’s preferences when scheduling, as
shown in Figure 5 (ANOVA F (2, 48) = 5.16, p = 0.009).
Interestingly, we also found that participants were allocated
statistically significantly more work, as measured in seconds,
when under the negative condition (M= 448, SD= 113)
compared with the positive (M= 373, SD= 92) (t(16) =
1.86, p = 0.04) or neutral conditions (M= 345, SD= 82)
(t(17) = 2.14, p = 0.03).

In collecting participants’ preferences for the types of
tasks they would rather complete, we found that fourteen
of eighteen participants (78%) reported they preferred to
build the part kits rather than fetch them. Under the
positive condition, participants received a maximum of one
fetching task; under the negative condition, they received
a maximum of one building task. The third teammate (the
human assistant) was typically more proficient at building
than the average participant; consequently, the optimal work
allocation would typically assign the majority of building
tasks to the assistant, with the participant providing support
by performing more fetching tasks. (The robot teammate was
only able to fetch part kits.) As such, the negative condition
afforded participants the opportunity to complete a larger
share of the work. Based on this result, we propose that
participants’ preferences for task types must be balanced
with an innate desire on the part of a human worker to be
an important contributor to his or her team.

Results of Varying Workload

Recall that H3.A states that participants would prefer to
work with a robotic agent that included their workflow
preferences, and H3.B states that participants would prefer
working with a robotic agent that provided them with
a relatively high workload. To test our hypotheses, we
designed and conducted an experiment controlling for both
the degree to which preferences were included and the degree

Figure 5. This figure depicts the mean and standard error of
the amount of work, in seconds, assigned to the participant by
the robotic teammate. Horizontal bars with an asterisk denote
statistical significance (p < 0.01).

to which participants were utilized, and report the results
here.

Across 12 measures of the participants’ perceptions about
the human-robot team, we observed statistically significant
evidence that participants preferred working with a robot that
included their preferences when scheduling and, across 10
measures, that participants preferred working with a robot it
utilized them more frequently. Results are depicted in Table
7. For the findings reported here, we first used an omnibus
Friedman test to determine that a statistically significant
difference existed across all conditions, and then applied a
pair-wise Friedman test to examine the differences between
the conditions.

Our experiment in which a robotic agent included the
preferences of a human team member when scheduling
provided initial evidence that human participants would
prefer to work with a robotic agent when it considered
their workflow preferences and more frequently utilized their
time. We can state that these data statistically significantly
support our hypotheses: When a robot schedules for a
human-robot team, the human team members’ perception of
the robot and the team as a whole are significantly improved
when the robot considers the preferences of the human
worker and utilizes more of the workers’ time.

In addition to these findings, we discovered a surprising
trend between preferences, utilization and the participants’
perception of team efficiency in post-hoc analysis. Under
the high preference - high utilization condition, participants
felt more strongly that the team performed tasks using the
least possible amount of time, even though the schedule
duration (i.e., makespan) was constant across all trials
within participants (p < 0.004). In the interests of further
investigation, we propose a follow-on study examining how
human team members’ perceptions of the passage of time
and team efficiency is affected by the way in which a robot
schedules the team.

†Questions 1-7, 9-10, 12-16, 18, and 20 from Table 3 showed participants’
responses were positively correlated with their utilization.

Prepared using sagej.cls

Pre-print Version | To Appear in IJRR Special Issue on HRI in 2017



16 Journal Title XX(X)

Table 7. P-values for statistically significant post-trial questions
(N = 18). Statistically significant values are bolded.

Q. Omnibus High Util. vs. Low Util. High Pref. vs. Low Pref.

2 p = 0.013 p = 0.002 p = 0.096

5 p = 0.010 p = 0.003 p = 0.020

7 p = 0.026 p = 0.035 p = 0.016

9 p < 0.001 p < 0.001 p = 0.170

10 p < 0.001 p = 0.007 p = 0.061

11 p = 0.026 p = 0.027 p = 0.029

13 p < 0.001 p = 0.001 p = 0.001

14 p < 0.001 p < 0.001 p = 0.004

15 p < 0.001 p = 0.005 p = 0.001

16 p = 0.010 p = 0.011 p = 0.003

17 p < 0.001 p = 0.011 p < 0.001

18 p = 0.004 p = 0.012 p = 0.012

20 p = 0.026 p = 0.052 p = 0.013

Discussion

Design Guidance for Roboticists

We investigated key gaps in prior literature by assessing how
situational awareness is affected by the level of autonomy
in mixed-initiative scheduling for human robot teams, the
effects of increased or decreased workload in human-robot
team fluency and the role of workflow preferences in robotic
scheduling. Based on our findings, we can provide design
guidance for roboticists developing intelligent collaborative
robots that engage in mixed-initiative decision-making with
humans.

Human situational awareness is poorer when the robotic
agent has full autonomy over scheduling decisions, as
assessed by both objective and subjective measures.
However, prior work has indicated that decreasing robotic
autonomy over scheduling decisions reduces efficiency
and decreases the desire of the human to work with a
robotic agent. Therefore, the positive and negative effects
of increasing the robot’s role in decision making must
be carefully weighed. If there is a high probability the
human agent will have to intervene in order to adjust
work allocations, or the potential cost of poorer human
performance due to reduced situational awareness is high,
then we recommend that the human retain primary decision
making authority. If human intervention is unlikely, or the
cost of poorer human performance is low, then the benefits of
improved team efficiency can be safely achieved by allowing
the robot to retain primary decision making authority. In
many applications, a mixed-initiative approach in which the
participant and robot collaborate to make decisions offers
a suitable middle ground between the two ends of this
spectrum.

Also, a human’s perception of a robotic teammate
scheduling a team’s activities may improve when the human
is scheduled to complete tasks that he or she prefers.
However, human team members’ perception of the robot
may be negatively impacted when they are scheduled to be
idle for much of the time. Providing human team members
with more highly preferred tasks at the cost of decreasing
the total amount of work assigned to them may, in fact,
have more of a negative impact than assigning human team
members less-preferred tasks. Although the degree to which
these variables interact is likely to be application-specific, it
cannot be assumed that increasing one criterion at the cost of
the other will improve team fluency.

Collaborations with robots that participate in decision
making related to the planning and scheduling of work
present unique challenges with regard to preserving human
situational awareness and optimizing workload allocation
to human teammates while also respective their workflow
preferences. Careful consideration is necessary in order
to design intelligent collaborative robots that effectively
balance the benefits and detriments of maintaining an
increased role in the decision making process.

Limitations and Future Work
There are limitations to our findings. Our sample population
consisted of young adults enrolled from a local university
campus, whereas the target population consists of older,
working adults in the fields of manufacturing and search-
and-rescue, among other domains. Impressions of robotic
teammates, in general, may differ significantly between these
populations.

Workers may also use different criteria to evaluate a
human-robot team. For example, if chronic fatigue is an
issue in a given setting, workers may prefer a greater
amount of idle time. Also, we limited the expression
of preferences to a binary choice between two types of
tasks; however, the preferences of real workers may be
more nuanced and difficult to encode computationally. For
these reasons, we recommend a follow-on study, conducted
in multiple factories across a variety of industries and
work environments, in order to confirm the results of our
experiments.

We studied one robot form factor (i.e., a PR2) in our
investigation. It is possible that other form factors could
elicit a different response from participants. Further, we
used an specific scheduling technique, Tercio, well-suited for
human-robot teaming. It is possible that alternate scheduling
algorithms could alter the participants’ experience.

When manipulating the degree to which participants are
utilized and the amount of preferred work assigned to those
participants, we used “high” and “low” settings. We found
that increasing the setting of these independent variables
from low to high positively affected the participants’
experience working with the robot. It is possible, however,
that the relationship between utilization and participants’
subjective experience is not linear. For example, an
“extremely high” utilization could be less desirable than even
low utilization. Future work should investigate utilization
and workflow preferences across the entire spectrum.

Conclusions
While new computational methods have significantly
enhanced the ability of people and robots to work flexibly
together, there has been little study into the ways in
which human factors must influence the design of these
computational techniques. In this work, we investigated how
situational awareness varies as a function of the degree
of autonomy a robotic agent has during scheduling, and
found that human participants’ awareness of their team’s
actions decreased as the degree of robot autonomy increased.
This indicates that the desire for increased autonomy and
accompanying performance improvements must balanced
with the risk for – and cost resulting from – reduced
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situational awareness. We also studied how team fluency
varies as a function of the workload given to a human team
member by a robotic agent, and the manner in which a
robot should include the workflow preferences of its human
teammates in the decision making process. Results indicate
a complex relationship between preferences, utilization
and the participants’ perception of team efficiency. The
three study results provide guidelines for the development
of intelligent collaborative robots, and a framework for
weighing the positive and negative effects of increasing the
robot’s role in decision making.
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