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Abstract

I envision a future where intelligent service robots become integral members of human-
robot teams in the workplace. Today, service robots are being deployed across a wide
range of settings; however, while these robots exhibit basic navigational abilities,
they lack the ability to anticipate and adapt to the needs of their human teammates.
I believe robots must be capable of autonomously learning from humans how to
integrate into a team à la a human apprentice.

Human domain experts and professionals become experts over years of appren-
ticeship, and this knowledge is not easily codified in the form of a policy. In my
thesis, I develop a novel computational technique, Collaborative Optimization Via
Apprenticeship Scheduling (COVAS), that enables robots to learn a policy to capture
an expert’s knowledge by observing the expert solve scheduling problems. COVAS
can then leverage the policy to guide branch-and-bound search to provide globally
optimal solutions faster than state-of-the-art optimization techniques.

Developing an apprenticeship learning technique for scheduling is challenging be-
cause of the complexities of modeling and solving scheduling problems. Previously,
researchers have sought to develop techniques to learn from human demonstration;
however, these approaches have rarely been applied to scheduling because of the large
number of states required to encode the possible permutations of the problem and
relevant problem features (e.g., a job’s deadlines, required resources, etc.).

My thesis gives robots a novel ability to serve as teammates that can learn from
and contribute to coordinating a human-robot team. The key to COVAS’ ability
to efficiently and optimally solve scheduling problems is the use of a novel policy-
learning approach – apprenticeship scheduling – suited for imitating the method an
expert uses to generate the schedule. This policy learning technique uses pairwise
comparisons between the action taken by a human expert (e.g., schedule agent a to
complete task τi at time t) and each action not taken (e.g., unscheduled tasks at time
t), at each moment in time, to learn the relevant model parameters and scheduling
policies demonstrated in training examples provided by the human experts.

I evaluate my technique in two real-world domains. First, I apply apprenticeship
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scheduling to the problem of anti-ship missile defense: protecting a naval vessel from
an enemy attack by deploying decoys and countermeasures at the right place and
time. I show that apprenticeship scheduling can learn to defend the ship, outper-
forming human experts on the majority of naval engagements (p < 0.011). Further,
COVAS is able to produce globally optimal solutions an order of magnitude faster
than traditional, state-of-the-art optimization techniques. Second, I apply appren-
ticeship scheduling to learn how to function as a resource nurse: the nurse in charge
of ensuring the right patient is in the right type of room at the right time and that
the right types of nurses are there to care for the patient. After training an appren-
tice scheduler on demonstrations given by resource nurses, I found that nurses and
physicians agreed with the algorithm’s advice 90% of the time.

Next, I conducted a series of human-subject experiments to understand the hu-
man factors consequences of embedding scheduling algorithms in robotic platforms.
Through these experiments, I found that an embodied platform (i.e., a physical robot)
engenders more appropriate trust and reliance in the system than an un-embodied
one (i.e., computer-based system) when the scheduling algorithm works with human
domain experts. However, I also found that increasing robot autonomy degrades hu-
man situational awareness. Further, there is a complex interplay between workload
and workflow preferences that must be balanced to maximize team fluency. Based
on these findings, I develop design guidelines for integrating service robots with au-
tonomous decision-making capabilities into the human workplace.
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Thesis Committee Member

Prof. Peter Szolovits
Thesis Committee Member
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Chapter 1

Introduction

Robotic systems are on the verge of revolutionizing almost every facet of our jobs. In

manufacturing, robots are being utilized not only to fetch parts but also to directly

contribute to value-added tasks such as drilling and fastening of aerospace structures

(Figure 1-1). In military operations, remotely-piloted aerial systems (RPAS), such

as the MQ-9 Reaper shown in Figure 1-2, are enabling operators to safely, and more

precisely, conduct missions in domains too dangerous for human pilots. In health-

care, service robots are becoming increasingly utilized across a wide range of clinical

settings. The aim of these robots is to reduce the burden on healthcare professionals

by transporting supplies between care centers (Figure 1-3).

One of the most critical challenges for robots in these domains is to improve the

ability of humans to operate more efficiently and safely given a finite set of resources

(e.g., manpower, time, and money). However, resource optimization is one of the

most costly and challenging aspects across almost every sector in the economy – with

or without robots. For example, in healthcare, poor systems design and inefficient

scheduling of resources can have drastic consequences on patient wait times. Patients

with non-urgent needs who experience prolonged wait times have higher rates of non-

compliance and missed appointments [129, 203]. Prolonged wait times and other

inefficiencies in patient care contribute to the dissatisfaction and burnout of health-

care providers [229]. Recently, The United States Office of the Inspector General

investigated allegations of gross mismanagement of resources at hospitals managed
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Figure 1-1: This figure depicts human and robots working together in final assembly
operations of the Boeing 777. Image is credited to The Boeing Company.

by the Veterans Health Administration and released a report finding that “significant

delays in access to care negatively impacted the quality of care.” [28] This issue is so

critical that the Institute of Medicine recently released a report highlighting the need

for better practices in scheduling and resource optimization [28]. However, healthcare

is not the only industry that needs effective scheduling and resource optimization.

In automotive manufacturing, BMW produces approximately 1 car every 60 sec-

onds in its facility in Spartanburg, South Carolina. In this plant, approximately 80%1

of the cars are customized for individual customers. This customization requires the

tight choreography of supply chain management and assembly. When a part shortage

for one car on an assembly line occurs, every car is held until the conflict is resolved.

Every 60 seconds spent re-scheduling work in response to a disturbance costs the

company tens of thousands of dollars2. The Boeing Company similarly offers a high

level of customization to its customers. Building an airplane is a complex process. For

example, construction of a Boeing 747 requires the assembly of 6 million individual

parts, a subset of which are customized for each patron. Every minute re-scheduling in

response to dynamic disruptions in the build process can cost in excess of $100, 0003.

1Statistic available from BMW Group Plant Spartanburg via https://www.bmwusfactory.com/

manufacturing/production-overview/
2BMW’s facility in Spartanburg, SC produced 36, 580 cars in March 2015. The base price of

the cheapest car produced at the facility is ≈ $38, 500. Assuming a 24/7 work week, that results in
≈ $31, 548 of revenue earned/lost every minute. Numbers are courtesy of BMW USA.

3Boeing’s facility in Renton, WA is increasing production of Boeing 737 aircraft to 47 per month
by 2017. RyanAir and Boeing recently agreed to a purchase of 100 Boeing 737-Max aircraft for $11
billion, which is approximately $110 million per plane. Assuming a 24/7 work week, that results in
≈ $108, 603 of revenue earned/lost every minute. Numbers are courtesy of The Boeing Company.
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Figure 1-2: This figure depicts (left) an entire team of human operators required to
operate (right) the MQ-9 Reaper. Images are credited to the United States Air Force.

The military is also highly invested in the effective use of resources. In naval con-

flict, defending one’s ship from enemy anti-ship missiles is a challenging task. This

problem requires the weighing of the relative benefits and detriments of using in-

terceptor missiles to attempt to destroy the incoming anti-ship missile engagement

versus deploying decoys to attempt to divert the attack. Interceptors are relatively

easy to schedule: it is merely a one-to-one matching problem. The downside, however,

is that it costs two orders of magnitude4 more to manufacture an interceptor than

it costs the enemy to build the missile. On the other hand, decoys and countermea-

sures are a substantially cheaper alternative to interceptor missiles. Yet, effectively

deploying these decoys and countermeasures is challenging. A single decoy can affect

multiple incoming missiles and do so in different ways. Further, defeating a single

missile can require multiple decoys. The navy currently does not have a set doctrine

for deploying countermeasures, and these countermeasures (e.g., a swarm of UAVs)

lack their own ability to reason about how to best deploy to protect the ship. Instead,

the navy relies on the expertise of naval tactical action officers to act.

These challenges in effectively utilizing resources are pervasive across many do-

mains and are inherent to the problem of determining which workers should complete

which tasks, when, where, and how. To enhance the productivity and safety of the

4The Israel-US developed Iron Dome system launches interceptors, which cost $50, 000. The
system was developed to defeat Hamas-fired rockets, which cost only $500 − 1, 000 according to
[173].
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Figure 1-3: This figure depicts (left) hospital service robots transporting meals within
a hospital. These robots, deployed at Southmead Hospital (Bristol, England), are
the Transcar LTC 2. They are developed by Swisslog Telelift LTC, a member of
KUKA Group. To the right, a surgeon is depicted working with Penelope, a robotic
surgical assistant developed by Robotic Systems and Technologies, Inc. (New York,
NY). Penelope must be commanded by the surgeon via voice commands. Images are
credited to KUKA and Robotic Systems and Technologies, Inc., respectively.

environments in which humans work, researchers and industry practitioners alike have

sought to use the power of robots to improve productivity and decrease the danger

of tasks humans currently perform. However, the current method of deploying these

systems is fundamentally limited and prevents us from realizing their full potential.

The key problem is that robots are told explicitly what to do, when to do it, and how

to do it. These systems do are being deployed without the ability to autonomously

reason about the coordination their teams.

For example, in healthcare, service robots have been introduced to transport food

and supplies between care centers in hospitals, such as those shown in Figure 1-

3. Rather than the service robots being able to anticipate when and where extra

supplies might be needed, nurses and doctors must take time away from patients to

program the robots’ tasks when the need arises.

Final assembly of automotive and aerospace assemblies has long been the domain

of human workers. These workers must complete arduous tasks that place undue

strain on the human body. Robots, such as those pictured at Boeing in Figure 1-1,

have been introduced to offset this physical burden. However, whenever a part is

late, a manufacturing error occurs, or a customer demands a change, the robots lack
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the ability to automatically adapt to the needs of the environment. Rather, humans

must reprogram and reschedule the robotic work. The time required to manually

reprogram these robots is expensive and erodes the benefits and feasibility of their

deployment.

For naval fleet defense, the U.S. Navy is developing robotic decoys and counter-

measures (e.g., drones), that can be repositioned dynamically to respond to a barrage

of enemy anti-ship missiles. However, these robots lack the understanding of their

environment to automatically adapt to that environment. Instead, naval operators

must reposition their ships and the countermeasures when a threat arises. In operat-

ing even a single unmanned asset (Figure 1-2), an entire team of human operators is

required. Even seconds taken to plan a new configuration and communicate that con-

figuration to the entire team of human operators can leave too little time to execute

the plan before the enemy missiles impact the fleet.

Rather than a paradigm where one or more human professionals are required to

supervise a single robotic system, I see a future where we can flip this ratio on its

head – a future where a single human operator can work among an entire team of

support robots. For this transformation to happen, we need to give robotic systems

the ability to learn to operate as independent contributors to human-robot teams.

Surgical assistants, such as Penelope, should learn by demonstration and experience,

just as human scrub technicians would, which instruments the surgeon needs before

that surgeon requests them. Planetary rovers should be able to learn to identify

scientific objects and how to carry out the logistics of the mission, just as a human

astronaut would. RPAs should infer the needs of their team, identifying targets of

interest, and plotting routes to maximize mission efficiency.

The challenge for robots then must be to learn how to coordinate their activities with

human team members, just as a human apprentice would. However, this learning

process is not a simple task. At its core, scheduling is a computationally complex

problem that involves deciding which members of the team should complete which
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jobs, when, where, and how. Scheduling is an important challenge across problem

domains - even without robotic assets. Further, while there are human domain experts

who solve these logistics problems with amazing efficiency, these experts are not

readily able to document or codify their knowledge into a policy for a robot to execute

[45, 206]. What experts can provide are the important features of a problem – what

they reason about – such as the deadline of a task, where it should happen, and

how far away the necessary resources are [45, 206]. Thus, we need to give robots the

ability to take as input the key features of how human experts reason about task

completion, coupled with demonstrations by those experts, to be able to learn from

demonstration just as a human apprentice does.

The challenge I pose in my thesis is to give a robotic system the ability to learn

the strategies employed by domain experts and scale beyond a “single-expert, single-

apprentice” model. By giving a single robot the ability to learn as an apprentice,

that robot could share its knowledge with teams of robots and accomplish more than

a single human apprentice. Further, these robotic systems could finally act as true,

collaborative teammates rather than drones that must be micromanaged.

There are three key challenges I identified in my thesis that must be considered

to realize my vision for a robotic apprentice. First, robots must be able to learn

the rules-of-thumb and heuristics that human domain experts use to coordinate the

activities of their teams. Second, robots must be able to transcend the power of

the demonstrator. Expert human teams do perform an efficient choreography to

accomplish joint missions, such as in search and rescue. However, humans are not

perfect nor are their demonstrations. Robots should be able to leverage the value

of the demonstrations they do receive, but they should also be able to reason about

the structure of the problem (i.e., the goal and constraints) and use the power of

computation to provide solutions better than the human expert could.

Finally, these systems must be able to contribute to their human counterparts

– not just in theory but in practice. This practice entails considering the human

factors aspects of human-robot teaming. For example, embodied intelligence and

the anthropomorphism of the robotic system has been shown to alter the level to
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Figure 1-4: This figure depicts an outline of my thesis.

which humans trust and rely on the system [215]. Garnering too much trust in a

faulty system would have dangerous consequences [64]. Further, there are important

considerations for operator workload, situational awareness, and workflow preferences,

which all can harm team fluency if the robotic system is designed in isolation of

these effects. As such, I conduct and present in this thesis a set of human subject

experiments studying the effects of embodiment, workload, situational awareness,

and workflow preferences to provide design guidelines for deploying apprentice service

robots.

A graphical depiction of my thesis is shown in Figure 1-4.In my thesis, I develop

a new machine learning-optimization paradigm to enable service robots to learn to

become supportive members of a human-robot team. The aims of my thesis are to

develop an autonomous system that 1) learns the heuristics and implicit rules-of-

thumb developed by human domain experts from years of experience, 2) embeds and

leverages this domain knowledge within a scalable resource optimization framework to

reduce the computational search space, and 3) is designed to provide decision support

in a way that engages users and benefits them in their decision-making process. By

intelligently leveraging the ability of humans to learn heuristics and the speed of

modern computation, we can begin to solve the challenging requirements of real-time

decision-support in healthcare, military operations, and manufacturing.
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This chapter serves as an executive summary of the innovations and findings in

this thesis. The following sections mirror the structure of the thesis. In Section 1.1,

I formulate a novel machine learning technique, apprenticeship scheduling, to learn

the rules-of-thumb and heuristics used by human domain experts to efficiently solve

scheduling problems. I validate this technique on both a synthetic and a real-world

data set by showing the apprenticeship scheduler is able to learn a high-quality model

for scheduling based on demonstration. In Section 1.2, I extend my apprenticeship

scheduling technique to encompass an entire machine learning-optimization frame-

work. This framework, COVAS, is able to leverage the power of good, but imperfect

human demonstration on relatively small problems to more efficiently find optimal

solutions for larger problems. Finally, in Section 1.3, I give life to my apprentice-

ship scheduling algorithm, placing it in an embodied robotic system in a hospital,

where the robot learns from expert nurses how to coordinate patients and their care

staff. Because of the danger of humans potentially over-relying on the system and

not performing their own due diligence to ensure the system is making valid deci-

sions, I conduct a user study assessing the risk. I find that a robotic system garners

more appropriate levels of reliance, reducing errors made by the human-robot team

in comparison to a computer-based system.

1.1 Apprenticeship Scheduling: Learning to Sched-

ule from Human Experts

In this chapter, I propose a new computational technique capable of learning the rules-

of-thumb and heuristics domain experts employ to efficiently solve complex scheduling

problems. To learn these rules-of-thumb and heuristics, I develop an apprenticeship

learning technique, which is specifically suited for scheduling. The key to my ap-

proach is the use of pairwise comparisons between the action taken (e.g., schedule an

agent to complete a task at a given time) and each action not taken (e.g., unsched-

uled tasks during that same time), at each moment of time, to learn the relevant
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model parameters and scheduling policies demonstrated by the training examples. I

validate my approach using both a synthetic data set of solutions for a variety of

scheduling problems and two real-world domains. The first is a real-world dataset

of demonstrations from human experts solving a variant of the weapon-to-target as-

signment problem [150]. The second is a real-world dataset of resource nurses (i.e.,

charge nurses) in a hospital deciding how to assign care staff for patients and where

to move those patients during their time in the hospital. The synthetic and real-

world problem domains I use to empirically validate my approach represent two of

the most challenging classes within the taxonomy of scheduling problems established

by Korsah et al. [139].

Goal:

The problem of optimal task allocation and sequencing with upper- and lowerbound

temporal constraints (i.e., deadlines and wait constraints) is NP-Hard [22], and real-

world scheduling problems quickly become computationally intractable. However, hu-

man domain experts are able to learn from experience to develop strategies, heuristics,

and rules-of-thumb to effectively respond to these problems. The challenge I pose is

to autonomously learn the strategies employed by these domain experts; this knowl-

edge can be applied and disseminated more efficiently with such a model than with

a “single-expert, single-apprentice” model.

In this chapter, I develop a technique, which I call “apprenticeship scheduling,” to

capture this domain knowledge in the form of a scheduling policy. The objective is to

learn scheduling policies through expert demonstration and validate that schedules

produced by these policies are comparable in quality to those generated by human

or synthetic experts. My approach efficiently utilizes domain-expert demonstrations

without the need to train within an environment emulator. Rather than explicitly

modeling a reward function and relying upon dynamic programming or constraint

solvers, which become computationally intractable for large-scale problems of interest,

my objective is to use action-driven learning (i.e., learning a function that maps states

to actions) to extract the strategies of domain experts to efficiently schedule tasks.
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Approach:

My apprenticeship learning algorithm is specifically suited for scheduling. The ap-

proach I use is inspired by work in webpage ranking [120, 194]. The web is often

modeled as a graph, where webpages are nodes, and links between those webpages

are directed arcs. Similarly, scheduling problems are often modeled as graphs with

nodes to represent the start and finish events of individual tasks as well as directed

arcs describing wait and deadline constraints that affect task events. The common-

ality of these models provides a suitable analogy for capturing the complex temporal

dependencies (i.e., precedence, wait, and deadline constraints) relating tasks within

a scheduling problem.

Within webpage ranking, there are two fundamental approaches to ranking: point-

wise and pairwise. Pointwise ranking involves learning to predict the relevance of an

individual webpage given a vector of features describing that individual webpage. In

pairwise ranking, a model is learned to predict whether one webpage is more impor-

tant than another by comparing (e.g., subtracting) the feature vectors describing each

webpage.

The key to my approach is using a hybrid pointwise-pairwise ranking model to

capture the knowledge demonstrated by the expert. For scheduling, I perform pairwise

comparisons between the features of scheduling actions taken (e.g., schedule agent a to

complete task τi at time t) and the set of actions not taken (e.g., unscheduled tasks at

time t) to learn the relevant model parameters and scheduling policies demonstrated

by the training examples.

However, by only using pairwise comparisons, one loses the context, or high level

features that describe the overall task set. For example, information about the pro-

portion of workers who are busy versus idle may affect the decision a human domain

expert makes. Yet, if this proportion is encoded as a feature in a pairwise compari-

son, the result is uninformative (i.e., their difference is zero) because both will have

the same value . Thus, my approach preserves high level, contextual information as

pointwise features.
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With pointwise terms describing the context of the state of the scheduling problem,

and the pairwise comparisons made between the action taken and the corresponding

set of actions not taken (and vice versa), I train a classifier to model how the expert

chooses to take one action but not another. I show that this hybrid pointwise-pairwise

approach is able to capture > 95% of the knowledge provided by a sophisticated

scheduling demonstrator.

Results and Contributions:

I validated my apprentice scheduling approach on three data sets: a synthetic data set

for studying a variant of the multiple-vehicle routing problem, a real-world dataset for

studying a variant of the weapon-to-target assignment problem [150], and a second

real-world dataset for studying the role of a resource nurse in a hospital’s labor and

delivery floor. By showing the ability of the apprenticeship scheduler to function

across multiple data sets, I build support for the wide applicability of my approach.

For the first investigation, I studied a synthetic variant of the multiple-vehicle

routing problem in which the goal was to find the shortest possible route for a set of

vehicles to pick up and deliver packages given a set of temporal ordering constraints

(e.g., one location must be visited before another), time windows (e.g., a location must

be visited after 11:00 am but before 2:00 pm), and physical constraints (e.g., no two

vehicles can be at the same place at the same time). I constructed a mock expert that

applies one of a set of scheduling rules based on individual problem characteristics.

The challenge for the apprenticeship scheduler was then to learn a model for how

the mock heuristic acts based upon a set of schedules created by the mock expert. I

found that the apprenticeship scheduler, using the pairwise approach and a decision

tree classifier, works effectively at learning from the mock expert. Specifically, with

only 15 demonstrations from a noisy expert (i.e., one that makes mistakes 20% of the

time), the apprenticeship scheduler matched the decision-making of the mock expert

60% of the time. As the number of demonstrations increased, and the noisiness of

the demonstrator decreased, this accuracy increased to ∼ 95%.

Second, I studied a real-world data set with actual human domain experts. The
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problem domain was anti-ship missile defense (ASMD), which is a complex variant

of the weapon-to-target assignment problem. In this problem, a human naval officer

is faced with an adversary who launches a set of anti-ship missiles. The officer must

decide how to deploy a set of decoys and countermeasures to defeat the anti-ship mis-

siles thus defending his/her ship. Specifically, the officer must decide which decoy(s)

to deploy, as well as when and where to deploy them, to defeat the intended missiles.

The dynamics of the missiles and decoys are complex, and the inaccurate deployment

of a decoy could cause a missile to impact a ship when it might have missed the

ship had the deployment not been made. I collected a dataset of human operators

performing ASMD in a military training simulation. I trained the apprenticeship

scheduler and it achieved a statistically significant improvement in performance over

the average human demonstration.

Third, I evaluated the efficacy of apprenticeship scheduling with actual human

domain experts in health care. The problem domain was patient care in labor and

delivery in an obstetrics and gynecology ward at Beth Israel Deaconess Medical Center

(BIDMC). Here, a single nurse, the resource nurse, must decide which patients should

go to which rooms at which times, and ensure the right nurses and physicians are

there to care for them at the right time. The resource nurse essentially runs “air traffic

control” operations for patient care. I collected a data set of expert resource nurses

managing patients in a simulation of the labor floor. I trained my apprenticeship

scheduling algorithm on this data set and asked nurses and physicians to evaluate the

quality of advice given by the algorithm. These healthcare professionals affirmed the

advice 90% of the time.

By demonstrating that the apprenticeship scheduler can imitate both sequential

decisions and the quality of the overall schedule, I showed that the apprenticeship

scheduling framework is a viable technique for learning to schedule from human ex-

perts. The technique withstands imperfect demonstrations and can efficiently learn

from relatively small data sets.
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1.2 Learning to Make Super-Human Scheduling

Decisions

Imitation learning for scheduling is critical to solving scheduling problems. Simply

knowing the objective function or reward signal is insufficient given the computational

complexity of solving for the optimal schedule. Rather, one needs a means (i.e., a

policy) of creating a good schedule. While my apprenticeship scheduling algorithm is

quite successful in imitating experts and creating good solutions, it is limited in two

ways. First, if the human experts provide poor demonstrations, the learned policy

will be similarly poor. Second, the policy lacks a feedback mechanism (i.e., a reward

signal or objective function) to guide it toward the intended, optimal schedule.

In this chapter, I build off my initial apprenticeship scheduling work to develop

an optimal scheduling framework, which I call Collaborative Optimization via Ap-

prenticeship Scheduling (COVAS). COVAS bridges the fields of machine learning and

optimization to learn how to efficiently and optimally solve scheduling problems.

My enhanced approach withstands imperfect human demonstrations, and leverages

knowledge of a global objective function to provide globally optimal solutions. I

demonstrate that COVAS both produces globally optimal solutions at a rate 9.5

times as fast as an optimization approach that does not incorporate human expert

demonstration.

Goal:

Recent research has aimed to capture goal-based knowledge obtained through demon-

stration via a process known as reward learning [2, 19, 115, 137, 269, 189, 247, 248,

252, 270]. These techniques are typically comprised of two parts. First, regression

is used to infer a reward or objective function. Second, a solution is generated to

maximize that reward function.

One common technique for reward learning (RL) is inverse reinforcement learn-

ing (IRL). In IRL, the second step involves constructing a policy via reinforcement
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learning, which requires state space enumeration and exploration [2, 115, 137, 269,

189, 247, 248, 252, 270]. However, as noted in prior works [89, 262, 255, 268], the

large amount of data required to regress over the large state spaces associated with

scheduling problems remains daunting, and RL-based scheduling solutions exist only

for simple problems [262, 255, 268].

There is a body of work by Berry et al., that developed a reward learning approach,

called PTIME, for scheduling problems [19]. PTIME solicits the reward function

via questionnaire and generates the optimal solution by solving an integer linear

program. However, the computational complexity of this approach is exponential,

and is, therefore, limited to small problems that can be efficiently solved by an integer

linear program [51].

Solving for an objective function’s optimal solution through search is computa-

tionally complex and limits the algorithm’s scalability. This challenge is particularly

true for combinatorial optimization problems, such as scheduling. This challenge mo-

tivated me to develop apprenticeship scheduling, which learns a mapping from states

to actions. With this mapping, apprenticeship scheduling can construct an empir-

ically good schedule (i.e., one with a high, if suboptimal, objective function score)

quickly, in polynomial time. However, sequentially evaluating the policy can result

in small errors that result in large, cumulative deviations from the optimal sequence.

Thus, policy learning must be combined with a feedback mechanism to correct these

deviations.

In this chapter, I extend my apprenticeship scheduling method to a collaborative

optimization via apprenticeship scheduling (COVAS) technique to provide globally

optimal scheduling solutions. COVAS is comprised of two components: apprentice-

ship scheduling and optimization. COVAS is initialized by a policy learning phase to

learn from human demonstration and then uses the resulting policy to generate an

initial seed solution to a mathematical optimization. This seed provides a tight bound

(validated empirically in Chapter 3) on the value of the optimal solution, which can

be used during the branch-and-bound search to prune large swaths of the search tree.

Second, the seed solution can be improved through local search to find successively
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better solutions. I show this policy can be used in conjunction with a MILP solver

to substantially improve computation time in solving for the optimal schedule.

My work is distinguished from prior works that incorporated policy gradient de-

scent or variants of q-learning in that COVAS is guaranteed to produce a globally

optimal solution to the scheduling problem. Also, COVAS can be employed as an

anytime algorithm that provides a bound on the sub-optimality of the solution. To my

knowledge, my work is the first to develop and demonstrate an approach to learning

through human demonstrations to efficiently produce optimal solutions for complex

real-world scheduling problems.

Approach:

COVAS takes as input a set of domain expert scheduling demonstrations (e.g., Gantt

charts) that contains information describing which agents complete which tasks,

when, and where. These demonstrations are then passed to an apprenticeship schedul-

ing algorithm that learns a classifier, fpriority(τi, τj), to predict whether the demon-

strator(s) would have chosen scheduling action τi over action τj ∈ τ .

Next, COVAS uses fpriority(τi, τj) to construct a schedule for a new problem. CO-

VAS creates an event-based simulation of this new problem and runs the simula-

tion in time until all tasks have been completed. To complete tasks, COVAS uses

fpriority(τi, τj) at each moment in time to select the best scheduling action to take. I

describe this process in detail in the next section.

COVAS provides this output as an initial seed solution to an optimization sub-

routine (i.e., a MILP solver). The initial solution produced by the apprenticeship

scheduler improves the efficiency of a search by providing a bound on the objective

function value of the optimal schedule. This bound is used to inform a branch-and-

bound search over the integer variables [22], enabling the search algorithm to prune

areas of the search tree and focus its search on areas that can yield the optimal so-

lution. After the algorithm has identified an upper- and lowerbound within some

threshold, COVAS returns the solutions that have been proven optimal within that

threshold. Thus, an operator can use COVAS as an anytime algorithm and terminate
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the optimization upon finding a solution that is acceptable within a provable bound.

Results and Contributions

First, I trained COVAS’ apprenticeship scheduling algorithm on demonstrations of

experts’ solutions to unique ASMD scenarios (except for one “hold-out” scenario). I

then tested COVAS on this hold-out scenario. In addition, I applied a pure MILP

benchmark on this scenario and compared the performance of COVAS to the bench-

mark. I generated one data point for each unique demonstrated scenario (i.e., leave-

one-out cross validation) to validate the benefits of COVAS. I show that COVAS

is not only able to improve overall computation time for the optimal solution, but

it also substantially improves computation time for solutions that are superior to

those produced by human experts. The average improvement in computation time

with COVAS is 6.7x and 3.1x, respectively. Second, I evaluated COVAS’ ability to

transfer prior learning to more challenging task sets. I trained COVAS on a level in

the ASMD game in which a total of 10 missiles of varying types came from specific

bearings at given times. I randomly generated a set of scenarios involving 15 and 20

missiles, with bearings and times randomly sampled with replication from the set of

bearings used in the 10-missile scenario. I found that the average improvement in

computation time with COVAS was 4.6x, 7.9x, and 9.5x, respectively. This evalua-

tion demonstrates that COVAS is able to efficiently leverage the solutions of human

domain experts to quickly solve problems twice as large as those the demonstrator

provided for training.

1.3 Robot Embodiment as a Scheduling Appren-

tice

Thus far, I have discussed the need for and benefits of learning from human demon-

stration how to solve complex scheduling problems. I first formulated a novel machine

learning technique to capture the rules-of-thumb and heuristics of human domain
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experts. Next, I extended this technique to encompass an entire machine learning-

optimization framework. This framework, COVAS, can use good, but imperfect,

human demonstrations on smaller scheduling problems to more efficiently, as well as

optimally, solve larger problems. Thus, COVAS is able to scale beyond the power of

the expert by leveraging the knowledge demonstrated by that expert. However, until

this point, I have only solved a problem in simulation – I have yet to demonstrate

apprenticeship scheduling embodied in a physical platform.

In this chapter, I give life to apprenticeship scheduling by fielding and testing

the efficacy of a robot working alongside human experts in a life and death medical

domain: the labor and delivery floor in the obstetrics and gynecology department at

BIDMC. In hospitals, service robots are starting to take hold as key tools in carrying

out patient care, for example, by transporting food and medicine. However, these

systems must be explicitly tasked and supervised. Instead, I envision a hospital

where robots learn to anticipate the needs of their human counterparts and adapt to

their dynamic environment, just as a human nurse would. I believe apprenticeship

scheduling has the potential to give robots the ability to learn to anticipate their

teammates’ needs and seamlessly integrate into the healthcare environment.

I take steps toward answering two important questions in realizing this vision.

First, I ask, “Are robots the right way to improve resource optimization in labor and

delivery?” Using apprenticeship scheduling, I can give a robot the ability to participate

in physical and cognitive labor and delivery tasks; however, is a robot the right form

factor for this assistance? Anthropomorphism of the robotic system has been shown to

alter the level to which humans trust and rely on the system [215]. I conduct a novel

human-subject experiment to investigate embodiment in human-robot interaction

(HRI) in a labor and delivery unit and find that a robotic system, in fact, garners

more appropriate trust and reliance than a non-embodied system. Second, given

this support, I ask, “How can robots improve resource optimization in labor and

delivery?” To answer this question, I discuss the development and deployment of an

entire robotic system that can autonomously infer the state of the labor floor, make

effective decisions, and verbally communicate with nurses and doctors to assist in
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patient care.

Goal:

Service robots are being increasingly utilized across a wide spectrum of clinical set-

tings. They are deployed to improve operational efficiency by delivering and preparing

supplies, materials, and medications [24, 63, 111, 178, 191]. However, these robots

are not yet well-integrated into the healthcare delivery process – they do not operate

with an understanding of patient status and needs and must be explicitly tasked and

scheduled. Instead, I propose embedding these service robots and others like them

with the ability to anticipate the needs of the hospital and act with some autonomy.

In Chapter 3, I demonstrated that an apprenticeship scheduling algorithm could in

fact learn from nurses responsible for managing resources in a hospital. However, there

are two questions that must be answered before such a system can be realized. First, is

a robot the correct form factor for providing assistance in labor and delivery? Second,

how do we design an entire robotic system to embody apprenticeship scheduling in a

robotic assistant?

Approach:

While the overarching goal is to support human professionals in the field, it is impor-

tant to first ensure we know the right way to deliver that support. Given the concerns

of how embodiment can affect the trust and reliance of human operators, I conducted

a user study with one physician and sixteen registered nurses.

In the experiment, two independent variables were manipulated. The first inde-

pendent variable was the embodiment of the apprenticeship scheduler: either a robot

or a computer-based decision support system would use the apprenticeship scheduler

to offer advice. The second variable was the quality of that advice: the decision

support system would sample high or low-quality advice from the apprenticeship

scheduler. These two independent variables, each with two factor levels, result in

a 2x2 experimental design with four total conditions. I employed a within-subjects
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experimental design, meaning that participants experienced all four conditions.

During a given trial, participants would play a simulation of a shift on a labor and

delivery floor playing the role of the resource nurse. During the simulation, patients

would arrive in the waiting room, and the decision support system would offer advice

on where to place the patient and who could care for that patient. The participant

would then either accept or reject the advice. At the end of each simulated shift, the

participants would respond to a questionnaire to measure their subjective experiences

working with the decision support system. The questionnaire was used to measure

trust, while the individual accept/reject decisions were used to measure reliance on

the system in each factor level for each independent variable.

Results and Contributions

This chapter presents two novel contributions to the fields of robotics and healthcare.

First, through human subject experimentation with a physician and registered nurses,

this is the first study to my knowledge to be conducted involving experts working

with a robot on a real-world complex decision-making task comparing trust in and

dependence on robotic versus computer-based decision support. Previous studies

have focused on novice users and/or simple laboratory decision tasks [10, 58, 131,

154]. My findings provide the evidence that experts performing decision-making

tasks may not be as susceptible to the negative effects of support embodiment as

previously thought [10, 58, 131, 154]. Furthermore, embodiment yielded performance

gains compared with computer-based support during periods following a change in

the quality of advice from the decision-support system. This provides encouraging

evidence that intelligent service robots can be safely integrated into the hospital

setting.

Second, the first test demonstration of a robotic system was conducted in which

the robot assisted resource nurses on a labor and delivery floor in a tertiary care

center. The robot utilized machine learning computer vision techniques to read from

a whiteboard the current status of the labor floor and make suggestions about resource

allocation, and it also used speech recognition to receive feedback from the resource
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nurse. To my knowledge, this is the first investigation to field a robotic system that

provided real advice, regarding real patients, in real time, in a hospital to aid in the

coordination of resources required for patient care.

1.4 Situational Awareness, Workload, and Work-

flow Preferences with Service Robots

Thus far, I have shown that apprenticeship scheduling can learn from human ex-

perts how to solve complex scheduling problems, use that knowledge to generate

solutions better than the human expert, and even provide decision-support in an em-

bodied platform. In Chapter 3, I investigated the effects of embodying apprenticeship

scheduling in a service robot. I found that embodiment has a strong positive effect

in improving human-robot team fluency versus a computer-based decision-support

system. However, embodiment is but one of many concerns in human factors.

Introducing any form of automation into a human environment can be hazardous.

For example, automation tends to degrade humans’ situational awareness, impairing

their ability to intervene in the event of a robot’s failure [74, 75, 77, 125, 214]. Many

fatal airplane crashes can be attributed to a pilot’s loss of situational awareness while

interacting with cockpit automation [179, 180, 181, 182, 183].

Workload assignment is another key issue in human factors [198, 233, 249, 257].

It has been shown in prior work that human performance is highly dependent upon

workload [233, 249, 198, 257, 204]; further, workload that is too heavy or too light

can degrade performance and contribute to a loss of situational awareness [249, 204].

Understanding and incorporating workflow preferences is also essential for safe,

effective human-machine teaming [4, 104, 142, 144, 187]. In manufacturing, human

teams can develop individualized workflow preferences that are not shared by other

teams in the same environment; consequently, a member of one team may be unable

to effectively replace a worker on another team without a period of adjustment.

This chapter presents a series of three human-subject experiments to investigate
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situational awareness, workload, and workflow preferences in human-robot teaming.

In these experiments, a human participant works with a second human – a confederate

– and an autonomous robot to complete a set of tasks in a mock manufacturing

environment. While this study was not performed in situ, it was conducted in a highly

controlled setting with high internal validity. Based on the findings of this work, I am

able to develop design guidelines for roboticists deploying autonomous service robots

that employ apprenticeship scheduling or other scheduling technologies.

Goal:

Human-robot teaming has the potential to increase the productivity of human labor

and improve the ergonomics of manual tasks. Based on recent industry interest in

fielding human-robot teams, researchers have been investigating how best to include a

human in the decision-making loop as a member of a human-robot team [3, 8, 13, 52,

68, 92, 101, 109, 202, 221, 267]. However, the intricate choreography required to safely

and efficiently coordinate human-robot teams represents a challenging computational

problem. The choreography of a team in which one must allocate and sequence tasks

with upper- and lowerbound temporal constraints is known to be NP-Hard [22].

Fully autonomous solutions to this problem have been recently proposed by both

academic researchers [22, 91, 200] and industry practitioners [6]. While these new

computational methods have significantly enhanced the ability of people and robots

to work flexibly together, there has been little study into the ways in which human

factors must influence the design of these computational techniques. Specifically,

we must consider how situational awareness changes as a function of the level of

robot initiative during the decision-making process, the consequences of varying the

workload assigned by the robot to human agents, and how to include the workflow

preferences of human team members into decision-making. Improvements assessed

through simple measures of efficiency, such as task time, do not guarantee the long-

term productivity and viability of the human-robot team.

This chapter proposes three novel human-subject experiments to investigate situ-

ational awareness, workload, and workflow preferences in human-robot teaming. The
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three hypotheses posit that increasing the robot team member’s autonomy will de-

grade the participant’s situational awareness. Further, having the robot assign too

much or too little work to the participant, or disregarding the participant’s workflow

preferences, will decrease team fluency.

Approach:

The approach to evaluating these hypotheses consists of conducting three human-

subject experiments to isolate the effects of automation on situational awareness,

workload, and workflow preferences.

To study situational awareness, participants would work on the human-robot team

to complete a set of manufacturing tasks. There were three conditions: manual, au-

tonomous, and semi-autonomous. In the manual condition, the participant would

allocate the tasks to each team member. In the autonomous condition, the robot

would. In the semi-autonomous condition, the participant assigned tasks to himself,

and the robot allocated the remaining tasks to itself and the second human team-

mate (i.e., the confederate). During the experiment, I would administer the SAGAT

(Situation Awareness Global Assessment Technique) test [74]. For this test, all work

by the team would cease, and the experimenter would ask participants to complete a

questionnaire gauging the participant’s situational awareness (e.g., “What task is the

robot currently completing?”). These questions help ascertain whether the partici-

pant would have sufficiently knowledge in working memory to be able to re-schedule

the team’s activities manually should a disruption occur.

For studying workflow preferences, a human-subject experiment was conducted in

which participants would work on the same human-robot team as in the situational

awareness experiment. However, in this experiment, the robot is responsible for

making all scheduling decisions. The experimenter asks participants which tasks they

would prefer to complete from the total set of work assigned to the team. The robot

would then take this information and schedule the team in one of three conditions.

First, the robot would give the participants most of the tasks they prefer. In the

second condition, the robot would give the participants most of the tasks they do not
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prefer. In the third condition, the robot ignores the preferences of the participants.

By using subjective and objective measures of team fluency, one can gauge the effects

of incorporating or ignoring participants’ workflow preferences when working on a

human-robot team.

Finally, to study workload, a third human-subject experiment was conducted as-

suming the same experimental setup as in the experiment studying workflow pref-

erences. However, the robot now operates along two axes. First, the robot alters

the amount of work assigned to the participant. Second, the robot either adheres

to or goes against the workflow preferences of the human subject. These axes result

in a total of four conditions. The effects of workload and workflow preferences on

team fluency can be isolated by utilizing objective and subjective measures in each

condition.

Results and Contributions

In the first study, situational awareness was found to vary as a function of the degree

of autonomy a robotic agent has during scheduling. The human participants’ aware-

ness of their team’s actions decreased as the degree of robot autonomy increased.

This indicates the desire for increased autonomy and accompanying performance im-

provements must be balanced with the risk for – and cost resulting from – reduced

situational awareness.

Team fluency was found to vary as a function of the workload given to a human

team member by a robotic agent, and the manner in which a robot should include the

workflow preferences of its human teammates in the decision-making process. Results

of these studies indicate a complex relationship between preferences, utilization and

the participants’ perception of team efficiency. Participants prefer a robot to include

his or her workflow preferences; however, participants demand that the robot also

properly throttle the participants’ workload.

Based on these findings, I provide a set of design guidelines to assist roboticists

in developing service robots.

41





Chapter 2

Background

2.1 Introduction

My thesis is that we need to develop intelligent robotic assistants that have the abil-

ity to learn from human experts’ demonstrations how to effectively integrate into the

human workplace. This development requires not just a technical advance in learning

from demonstration for team coordination, but also an understanding of the human

factors consequences of integrating intelligent service robots into human-robot teams.

This chapter lays the foundation for developing and translating techniques from artifi-

cial intelligence (AI) and human factors to develop robot apprentice schedulers. From

this foundation, I develop a human-machine collaborative optimization technique that

enables robots to learn from human demonstration strategies and rules-of-thumb for

coordinating team resources (e.g., members of the team to complete a set of jobs). In

later chapters, I translate this work to an embedded robot system to develop design

guidelines for these systems. In addition to studying the effects of embodiment, I

investigate situational awareness, workload, and workflow preferences of the human

team members of these robotic systems.

To begin, I survey the state-of-the-art methods in scheduling of human-robot

teams in Section 2.2. AI Planning and Scheduling is a broad area encompassing

many related problems and techniques. Rather than survey the entire wealth of work

in this field, I focus on techniques that are designed to efficiently coordinate teams
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of workers in time and space where they must negotiate temporal (i.e., deadlines and

wait constraints) and spatial constraints (e.g., no two workers can be at the same

place at the same time). The purpose of this review is to demonstrate a key point:

As problems become more challenging due to the their size or constraint complexity,

the solution techniques for those problems become more reliant on clever heuristics

and problem decompositions.

Yet, manually developing these heuristics is challenging and not scalable. The

ability of the researcher to translate these techniques across domains is fundamentally

limited by the need to develop heuristics applicable to each domain. A core tenet of

my thesis is that we can instead learn from human domain experts – practitioners –

who efficiently solve these domain-specific problems on the fly. While these experts

can provide the relevant features they use to reason about their scheduling problems,

they are less able to codify a set of scheduling rules or a policy to encapsulate their

knowledge [45, 206]. Thus, we need to develop machine learning from demonstration

techniques especially suited for capturing the rules-of-thumb and heuristics of these

domain experts for solving scheduling problems.

Learning from Demonstration (LfD), however, has not typically been applied to

scheduling. In Section 2.3, I discuss the two primary techniques for LfD within the

context of machine learning: goal and policy learning. Goal learning consists of infer-

ring the intended goal of the demonstration (e.g., pour a cup of water), whereas policy

learning entails learning to mimic the demonstration (e.g., how to pour). I discuss

the relative merits of these approaches and initially motivate the need to first develop

a policy learning approach for apprenticeship scheduling. Specifically, scheduling is a

challenging NP-Hard problem, and simply knowing a goal does not allow one to com-

pute a schedule to accomplish that goal. Rather, we need a mechanism to navigate

toward a goal (i.e., a policy).

Policy learning, though, is only the first step in developing an intelligent service

robot. I recommend a policy learning technique that can guide the construction of a

team’s schedule; knowing the goal is insufficient. Yet, at its worst, policy learning is

dead-reckoning. While this need to dead-reckon is crucial to reducing the computa-
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tional search space of scheduling problems, it is fundamentally limited. Specifically,

without knowing the goal, we are unable to improve the solutions generated by the

policy. Because human experts’ demonstrations are good but imperfect, the learned

policy will mirror this imperfection. My thesis seeks to blend machine learning and

optimization to leverage imperfect demonstrations to provide optimal solutions. In

Section 2.4, I present work in blending machine learning and optimization to generate

solutions better than those found in the demonstration.

Once a new algorithmic technique is developed, one must next understand the

consequences of embedding that algorithm in a physical system: a robot. This first

challenge is, of course, to construct the system required to animate the robot – com-

puter vision, natural language process, locomotion, etc. While these are interesting

and important challenges, I investigate a second, more basic question: What are the

human-factors consequences of placing a robot, designed to assist in team coordina-

tion (i.e., scheduling) into a human workspace? Do humans become amused1 and

complacent, no longer participating in the validation of the team’s actions? What

happens if that robot gives the human team members too much or little work to

perform? What are the effects of a robot ignoring the workflow preferences of the hu-

man team members? This thesis is not the first to raise the concerns of embodiment,

situational awareness, and workload: Section 2.5 serves as a review of this related

work. However, this thesis makes two novel contributions within this body of work.

First, embodiment of a robotic assistant has not been well-studied in the context

of working with experts; prior work has typically focused on embodiment with non-

expert populations (e.g., entertainment consumers). Second, situational awareness,

workload, and workflow preferences have not been studied in the context of a robotic

teammate capable of mixed-initiative scheduling. This thesis makes contributions to

both of these areas.

1Literally, without thought.
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2.2 AI: Scheduling

There is a wealth of prior work in task assignment and scheduling within the manu-

facturing field and other applications. Korsah et al. provided a comprehensive taxon-

omy [139] for the multi-robot task allocation and scheduling problem. The taxonomy

describes the “degree of interrelatedness” amongst the robots’ schedules, as shown

below. Each successive category subsumes the complexity of the previous categories.

� No Dependences (ND) - Each robot’s tasks can be performed at any time and

without regard for other robots’ activities.

� In-Schedule Dependencies (ID) - The order in which an individual robot per-

forms its own tasks matters; however, that ordering is independent of the ac-

tivities of other robots. The multiple-vehicle routing problem falls within this

class.

� Cross-Schedule Dependences (XD) - The utility of one robot is directly affected

by the scheduling commitment of another. Such dependencies occur when, for

example, workers cannot be in the same physical location at the same time.

� Complex Dependences (CD) - The way in which a robot completes a task affects

the way in which other robots can complete their own tasks. To illustrate

this scenario, consider a problem in which bulldozers and firetrucks must work

together in disaster response to put out fires in a city. The roads that bulldozers

clear affect which routes firetrucks can take to put out the fires.

The problems I consider in this thesis include both XD and CD, which subsume

the complexity of the ND and ID classes of complexity. What follows here is a review

of current Artificial Intelligence (AI) planning and scheduling techniques designed to

handle these types of problems, including MILP formulations, auction- and market-

based methods and other approaches (e.g., hybrids of MILP and heuristic algorithms),

and I discuss the applicability of these techniques to the problem at hand.

Nota bene: Korsah et al. state that, in many cases, the problem of task allocation

with XD can be readily formulated and solved as a MILP [30, 152]. However, there

46



is no standard formulation for CD problems. As such, solution techniques are almost

exclusively heuristic in nature [139].

2.2.1 MILP/CP Solution Techniques

One of the most promising approaches to solving this class of problems has been the

development of a hybrid algorithm incorporating MILP and constraint programming

(CP) methods along with decomposition. Techniques based on Benders Decomposi-

tion [17, 85] are among the most widely used. Here, we briefly review this method

using treatments by Hooker [107], Martin [168] and Christensen and Pedersen [50],

and discuss its variants and applications.

Consider the linear program depicted in Equation 2.1. The objective of this pro-

gram is to minimize the function z = cx, where x represents the decision variables,

c the cost function coefficients and A, b and a represent the constants or coefficients

of the constraint equations.

min z = cx (2.1)

s.t. Ax ≥ b

x ≥ a

Benders Decomposition bifurcates the decision variables into x and y to reformulate

the problem as shown in Equation 2.2. Here, solutions for x and y are constrained to

their respective domains, Dx and Dy:

min z = cx+ f(y) (2.2)

s.t. Ax+ g(y) ≥ b

x ∈ Dx, y ∈ Dy
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To simplify the problem, a value ȳ of y is chosen from Dy, as shown in Equation 2.3:

min z = cx+ f(ȳ) (2.3)

s.t. Ax ≥ b− g(ȳ)

x ∈ Dx

The dual of Equation 2.3 is then derived in Equation 2.4:

max β (2.4)

s.t. Ax ≥ b− g(ȳ)
x∈Dx,ȳ∈Dy−−−−−−−→ cx+ f(ȳ) ≥ β

The optimal solution of β from Equation 2.4 provides a lowerbound for the value of

the optimal solution in Equation 2.1. By carefully choosing values for ȳ, one can

incrementally tighten the lowerbound on the optimal solution to Equation 2.1 and

quickly cut the search space. Benders Decomposition works by constructing a cutting

function, z ≥ βȳ(y), called the Benders Cut, that takes any value of y ∈ Dy as input

and returns the value for β that lowerbounds the optimal value for z from the primal

problem (Equation 2.1). Different methods are necessary for deriving Benders Cut

depending on whether y is linear [168, 17, 85] or integer-based (a.k.a. Logic-Based

Benders) [107].

Various planning and scheduling applications have incorporated Benders Decom-

position. Logic-Based Benders Decomposition in particular has been applied to solve

job shop scheduling problems where n tasks must be optimally scheduled at m facil-

ities [106, 108], where y represents the assignment of tasks to facilities, and x repre-

sents the sequencing of those tasks. Benders Cuts are generated by separating the

allocation of tasks from the sequencing of those tasks. Reported results demonstrate

optimal solutions for problems involving approximately 10 facilities and 50 tasks.

Cordeau et al. and Mercier et al. employed Benders Decomposition for the problem

of aircraft routing and crew scheduling [54, 171]. These works heuristically decom-

posed aircraft routing from crew assignment and generated Benders Cuts for the
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resulting assignment sub-problem. They empirically demonstrated that this method

produced more cost-efficient schedules than prior art. Rekik et al. similarly employed

Benders Decomposition to schedule personnel shift-work [210]. They applied a hand-

tailored set of forward and backward constraints to cut the search space and proved

the correctness of these constraints. Rekik et al. showed that Benders Decomposi-

tion can be used to solve particularly challenging problems in which the forward and

backward constraints do not sufficiently prune the search space.

While Benders Decomposition has served as the basis for many state-of-the-art

scheduling algorithms, several alternative techniques have also successfully combined

MILP and CP approaches. Jain and Grossmann [118] presented an iterative method

that first solves a relaxed MILP formulation and then searches for the complete

solution using CP. When applied to the scheduling of jobs for machines, the MILP

relaxation solves for the assignment of jobs and the CP solves for the schedule. If

a solution is identified, the algorithm returns the optimal solution; otherwise, the

algorithm infers cuts based on the solution of the MILP relaxation and solves the

new MILP relaxation using these cuts. Results were reported for problems involving

up to 20 tasks and five machines. Li and Womer later improved on this work by

employing a hybrid Benders Decomposition algorithm with MILP and CP solver

subroutines [155], and reported that their method can solve problems involving 30

tasks and eight different agent types up to four times faster than a standard MILP,

which would require hours. Ren and Tang [211] took a similar approach, but employed

heuristic strategies to generate informative cuts in the event that the CP solver was

unable to identify a feasible task sequence. A related method proposed by Harjunkoski

et al. [95] utilized an iterative approach to producing task assignments and schedules.

Ren and Tang, and Harjunkoski and Grossman empirically demonstrated that their

algorithms can solve problems involving up to eight machines and 36 jobs; however,

these works did not address problems with cross-schedule dependencies or task-task

deadlines.
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2.2.2 Auction, Market-Based, and Heuristic Solution Tech-

niques

Auction methods and other market-based approaches to scheduling problems, such

as those developed by Brunet et al., Choi et al. and Liu and Shell, also frequently

rely on decomposition of the problem structure [31, 209, 160]. For example, Choi et

al. developed the Consensus-Based Bundle Algorithm (CBBA), a decentralized task

allocation method that uses a market-based approach where agents (i.e., unmanned

aerial vehicles) bid for tasks [31, 209]. The objective function and constraints are

decomposed with respect to agents, so that each agent can quickly solve for the

value of its bid on each task. A subroutine then resolves inconsistencies that arise in

agents’ bids due to communication restrictions among agents. This technique treats

the construction of each agent’s schedule as independent of other agents’ and precludes

explicit coupling in each agent’s contribution to the MILP objective function.

Many other techniques solve the task allocation problem efficiently [235, 160, 20,

21, 264, 16], but do not address the scheduling problem. For example, Sung et al.

addressed the problem of task allocation within a multi-robot environment where

each agent maintains a queue of tasks and partial information about other agents’

queues [235]. During execution, agents communicate when possible and choose to

exchange tasks using a heuristic approach. Sung et al. empirically demonstrated that

their algorithm can solve problems involving up to six agents and up to 250 tasks but

the problems did not involve cross-schedule dependencies or task deadlines.

Liu and Shell recently proposed a novel distributed method for task allocation

via strategic pricing [160]. Their work builds upon prior approaches to distributed

auction algorithms [20, 21, 264], runs in polynomial time and produces globally op-

timal solutions. However, this technique does not consider coupling constraints – for

example, a problem wherein one agent’s assignment directly affects the domain of

feasible assignments for other agents, as is the case when agents are performing tasks

subject to temporal and resource constraints.

Chien et al. proposed planning methods for a team of robotic rovers to accomplish
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a set of scientific objectives [48]. The rovers had to negotiate shared resources in

order to accomplish their tasks. This approach uses an iterative-repair centralized

planner coupled with an auction algorithm to perform centralized goal allocation and

decentralized route planning and goal sequencing. Chien et al. benchmarked against

a set of randomized problems with three rovers and 12 goals; however, thorough

empirical evaluation with an optimal benchmark is not reported.

Lemaire et al. approached the problem of allocating multiple UAVs to perform

a set of tasks where the task set was represented as a bipartite graph [151]. Here,

one set of tasks (UAV navigation) was required to be completed before the second

set (target sensing). The authors first presented a centralized auction solution and

showed empirical results for a problem involving 50 tasks and four agents. Next, they

described a distributed approach wherein an auctioneer agent assigns the first set of

tasks to the multi-robot team, and then the second set of tasks is auctioned. This

method supports rescheduling in light of dynamic disturbances occurring during task

execution; however, the authors did not report empirical results for their distributed

method.

As reported by Korsah, Stenz, and Dias, there is no well-known, general math-

ematical definition in the combinatorial optimization literature for problems within

the XD [MT-MR-TA] category class. However, there is some work in application-

specific solution techniques. Jones et al. consider a disaster response scenario where a

set of fires must be extinguished by firefighters. Some routes to the fires are blocked

by rubble, which may be cleared by bulldozers. Thus, one must decide which roads

are to be cleared and, then, how to optimally plan a schedule for the firefighters to

extinguish the fires [121]. To solve this problem, Jones et al. present both a multi-

tiered auction approach and a genetic algorithm. This problem is slightly easier in

that each agent can only perform one task, and each task only requires one agent.

Another auction-based approach, called TraderBots, is proposed by Dias [62]. In

this work, agents can bid on task trees, or possible task decompositions, rather than

only on simple, fully decomposed tasks. Agents may also bid on decompositions

suggested by other agents. The agents, or bots, then negotiate, form centralized
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subgroups, and self-organize to select an assignment of agents to tasks and decom-

positions of those tasks to reduce the plan cost. For problems with tasks requiring

multiple agents, Tang and Parker present an approach, ASyMTRe, for coalition for-

mation where only the immediate assignment of agents to tasks is required (i.e., not a

time-extended schedule). ASyMTRe is a centralized approach where each robot uses

network schemas to solve the coordination problem [244]. These schemas consist of

a list of input and output variables and an associated behavior that maps inputs to

outputs. ASyMTRe then greedily connects the input and outputs across the robots

to form coalitions which can act together to complete the task [244].

Finally, Nunes et al. developed the Temporal Sequential Single-Item auction (TeSSI)

algorithm for decentralized task allocation and sequencing [188]. This technique takes

as input a task set in the form of a simple temporal problem. Each task within

the set has an earliest start time and latest finish time (absolute wait and deadline

constraints). Constraints relating tasks are comprised exclusively of travel time con-

straints; resource constraints are not included. Nunes et al. [188] empirically demon-

strated that their approach yields improved performance over CBBA [32]. More

recently, their approach has been extended to handle precedence relations among

tasks [169]: TeSSI and its variants [169, 188] solve a narrower class of problems than

Tercio in that they do not handle cross-schedule dependencies, task-task deadlines, or

resource capacity constraints. However, TeSSI and its variants distinguish themselves

from Tercio [91] in that they solve this narrower class of problems in a decentralized

fashion.

2.2.3 Hybrid Solution Techniques

Other hybrid approaches integrated heuristic schedulers within the MILP solver to

achieve better scalability characteristics. For example, Chen et al. incorporated

depth-first search (DFS) with heuristic scheduling [43]. In this approach, a DFS al-

gorithm sequentially assigns tasks to agents (i.e., resources), and a heuristic schedul-

ing algorithm sequences the tasks according to a minimum slack priority. The al-

gorithm also employs heuristics to guide the order in which tasks are assigned to
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resources during the search. Chen et al. benchmarked their work on problems involv-

ing approximately 50 tasks and 10 resources (or agents) using a standard problem

database [69, 201].

Alternatively, Castro et al. [40] used a heuristic scheduler to seed a feasible sched-

ule for the MILP with regard to patient procedures conducted within a hospital. This

method incorporates a tiered approach to minimize a three-term objective function:

First, a heuristic scheduling algorithm generates an initial feasible solution. Next,

the MILP is solved, with the first term of the objective function using the heuristic

solution as a seed schedule. Then the MILP is solved again to optimize the second

objective function term, using the solution from the first MILP as a constraint. The

fourth step repeats this process, but for the third objective function term. The solu-

tion time is reduced by sequentially optimizing the objective function terms; however,

this approach sacrifices global optimality.

Gombolay et al. developed a human-robot scheduling algorithm, Tercio, which

leverages an analytical schedulability test to improve computational efficiency [91].

Tercio is an iterative algorithm. In each iteration, Tercio performs task allocation

using a MILP. Given this task allocation, Tercio uses a combination of a heuristic

sequencer with a schedulability test to ensure schedule feasibility. Rather than us-

ing search to find a satisficing schedule, Tercio uses the polynomial-time, analytical,

schedulability test before each scheduling assignment is made to determine whether

the assignment will result in infeasibility. Tercio is able to find solutions empirically

within 10% of the optimal solution and scale to solve problems with tens of workers

and hundreds of tasks in minutes [91].

Other approaches perform cooperative scheduling by incorporating Tabu Search

within the MILP solver [242, 243], or by applying heuristics to abstract the prob-

lem to groupings of agents [141]. These hybrid methods are able to solve scheduling

problems involving five agents (or groups of agents) and 50 tasks in minutes or even

seconds, and address problems incorporating multiple resources, task precedence and

temporal constraints relating task start and end times to the plan epoch time. How-

ever, these approaches do not take more general, task-task temporal constraints into
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consideration.

2.2.4 Conclusion

The approaches presented here commonly employ greedy techniques to solve tasks

with complex dependencies. This tendency to rely on heuristic decomposition tech-

niques increases as the problem becomes more computationally complex. Exact math-

ematical formulations can only scale to consider five workers and fifty tasks [107] and

do not scale well to solve problems with complex dependencies [139]. To scale be-

yond these problem sizes within a more simple class of problems (i.e., ND and ID),

or to coordinate workers performing tasks with complex interdependencies or condi-

tional constraints (i.e., XD and CD), one must rely more heavily upon clever heuristic

techniques.

Relying on hand crafted heuristic techniques for specific problems is not a scalable

approach. The researcher must embed him or herself within each problem domain,

attempt to solicit knowledge from the problem’s practitioners, and develop a solution

technique. However, these practitioners and domain experts are not readily able to

provide this knowledge in the form of a codifiable strategy [45, 206]. To be able

to develop a more general scheduling framework, we must be able to learn these

strategies directly from the domain expert’s demonstrations.

2.3 Learning from Human Demonstration

LfD is an active subfield of machine learning [2, 19, 115, 137, 269, 189, 247, 248,

252, 270]. Arguably, the most ubiquitous approach to LfD is Inverse Reinforcement

Learning (IRL). IRL is founded on a Markov Decision Process M = (S,A, T, γ, R)

where:

� S is a set of states.

� A is a set of actions.
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� T : S×A×S → [0, 1] is a transition function where T (s, a, s′) is the probability

of begin in state s′ after executing action a in state s.

� R: S → R (S × A → R) is a reward function that takes the form of R(s) or

R(s, a) depending on whether the reward is assessed for being in a state or for

taking a particular action in a state.

� γ ∈ [0, 1) is the discount factor for future rewards.

In a Markov Decision Process, the goal is to learn a policy π : S → A that dictates

which action to take in each state to maximize the infinite-horizon expected reward

starting in state s. This reward is defined by a value function, V π(s), as shown in

Equation 2.5. This equation states that the the expected reward one receives from

following a trajectory given by π is a sum of all the rewards collected at each state

along that trajectory, discounted by how many steps are required to reach those

states.

V π(s) = Eπ

[
T∑
t=0

γtR(st)|so = s

]
(2.5)

The value function satisfies the Bellman Equation for all s ∈ S, as shown in Equation

2.6. In essence, this equation sates that the total reward of being in state s is equal

to the immediate reward available at s as well as a discounted future reward expected

if one followed the path defined by π upon leaving state s.

V π(s) = R(s) + γ

[∑
s′∈S

T (s, π(s), s′)V π(s′)

]
(2.6)

A policy π is an optimal policy π∗ iff ∀s ∈ S Equation 2.7 holds. In other words,

the optimal policy ensures that each action one takes is guaranteed to maximize the

expected reward at the next state as well as all future states traversed.

π(s) = argmax
a∈A

(∑
s′∈S

T (s, a, s′) (R(s′) + γV π(s′))

)
(2.7)
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The problem of IRL is to take as input 1) a Markov Decision Process (MDP)

without a known Reward Function R, and 2) a set of m expert demonstrations

O = {(so, ao), (s1, a1), . . . , (sm, am)} and then determine a reward function R that

explains the expert demonstrations. The computational bottleneck of IRL and dy-

namic programming, in general, is the size of the state-space. The algorithms that

solve these problems typically work by iteratively updating the estimate of the future

expected reward of each state until convergence. For many problems of interest, the

number of states is too numerous to hold in the memory of modern computers, and

the time required for the expected future reward to converge can be impractical.

Researchers have extended the capability of IRL algorithms to be able to learn

from operators with differing skill levels [207] and identify operator subgoals [172].

IRL is able to leverage the structure of the MDP to bind the rationality of the agent.

Other researchers have investigated how robots can learn from demonstration via

reinforcement learning, where the operator provides real-time feedback for the reward

an agent should receive at each location in the state space [187, 248]. Nikolaidis and

Shah use reinforcement learning and an approach, called cross-training, in which the

human and robot switch roles on a team to improve the rate of learning [187]. Thomaz

and Breazeal have shown how humans teach robots by providing feedback as a reward

signal not just for the current state of the robot but also for anticipated future states;

they extend a reinforcement learning framework to handle the anticipatory feedback

from human instructors [248]. However, resource optimization or scheduling is highly

non-Markovian: the next state of the environment is dependent upon the history of

actions taken to arrive at the current state and the current time. Some researchers

have tried to extend the traditional Markov Decision Process to characterize temporal

phenomena, but these techniques do not scale up efficiently [27, 57, 263].

2.3.1 Recommender/Preference-Learning Systems

While not typically considered as LfD, the study of recommender systems is an impor-

tant area of consideration in the vein of learning goals for the sake of recommending

actions. Recommender systems have become ubiquitous in the Internet age with ser-
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vices such as Netflix [138]. One can think of recommender systems is learning how to

recommend a series of movies, for example, to maximize the viewer’s entertainment.

These systems generally fall into one of two categories: collaborative filtering (CF)

and content-based filtering (CB) [199]. In essence, collaborative filtering is a tech-

nique in which an algorithm learns to predict content to a single user based upon that

user’s history and that of other users who share common interests [199]. However,

CF suffers from sparsity and scalability problems [199]. Content-based filtering works

by comparing the similarity between content that the user has previously viewed and

new content [53, 102, 223]. The challenge of content-based filtering lies in the diffi-

culty in measuring the similarities between two items, and these systems can often

over-fit, only predicting content that is very similar to what the user has previously

used [15, 225]. Researchers have employed association rules [49], clustering [157, 158],

decision trees [134], k-nearest neighbor algorithms [133], neural networks [7, 114], link

analysis [34], regression [167], and general heuristic techniques [199] to recommend

content to users.

Ranking the relevance of web pages is a key focus within systems that recommend

suggested topics to users [36, 97, 100, 120, 193, 194, 156, 251, 253]. The seminal

paper on page ranking, by Page et al., started the computational study of web page

ranking with an algorithm, PageRank, which assesses the relevance of a web page by

determining the number of pages that link to the page in question [193]. Since this

paper, many have focused on developing better models for recommending web pages

to users, which can then be trained using various machine learning algorithms [97,

100, 120, 194]. Within this discipline, there are three primary approaches to modeling

the importance of a web page: point-wise, pair-wise, and list-wise ranking. In point-

wise ranking, the goal is to determine a score, via regression analysis, for a web

page given features describing its contents [156, 193]. Pair-wise ranking is typically a

classification problem where the aim is to predict whether one page is more important

than another [120, 194]. More recent efforts have focused on list-wise ranking, where

researchers develop loss-functions based on entire lists of ranked web pages rather

than individual pages or pair-wise comparisons between pages [36, 251, 253].
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Researchers in scheduling have also tried to create an autonomous scheduling

assistant that can learn the preferences of the user [18, 19]. Berry et al. produced a

number of works spanning a decade [18, 19] which served to develop an automated

scheduling assistant called PTIME. The purpose of PTIME was to help human co-

workers schedule meetings. Berry et al. used extensive questionnaires to solicit the

preferences of human workers for how they like to arrange their calendar. PTIME

would take these preferences as input and map it to a mathematical objective function.

When a new meeting needed to be arranged amongst the workers, PTIME would solve

a mixed-integer mathematical program to determine the optimal time for the meeting

to occur. However, after approximately a decade of work, the ultimate acceptance

rate of PTIME’s suggestions was only 60%. These authors conducted a retrospective

analysis of their work and presented the following two tenets for future researchers

to hold true.

1. “A personal assistant must build trust.” [19]

2. “An assistive agent must aim to support, rather than replace, the user’s natural

process.” [19]

These tenants have served as an inspiration for this thesis, and I believe all future

works should start from these key design principles [18, 19].

Another example is work by De Grano et al., who present a method to optimize

scheduling shifts for nurses by soliciting nurses’ preferences through an auction pro-

cess [93]. Other work in scheduling preferences has focused on developing techniques

to efficiently generate schedules once the preferences have been solicited [232, 260].

One key area of focus is in modeling preferences as a set of ceteris paribus (all other

things being equal) preference statements [25, 26, 192]. In this work, researchers solicit

preferences from users typically in the form of binary comparisons. For example,

consider the problem of determining which food and drink to serve a guest [25]. You

may know the following:

� The guest prefers to drink red over white wine when eating a steak.
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� The guest prefers steak over chicken.

� The guest prefers white wine when eating chicken.

Interestingly, determining the optimal food-drinking pairing can be found in polynomial-

time; however, determining the relative optimality of one pairing over another (known

as dominance testing) is NP-complete [25].

2.3.2 Challenges with Reward/Preference Learning

One limitation with reward learning is that it assumes an efficient mechanism to

learn a policy to maximize the reward function. In the case of IRL, one relies on

reinforcement learning (RL). However, exact RL requires enumerating and exploring

an intractably large state space [262, 255, 268]. Considering just the decision variables

for assigning a agents to n tasks, and ordering those tasks in time, the computational

complexity is O(2ann!), which is computationally intractable for many scheduling

problems. Yet, even if one approximately solves the RL problem [137, 236], RL

is still ill-suited for handling the temporal and spatial task dependencies inherent in

scheduling problems. The little work that has been done in scheduling via RL assumes

models that are too restrictive: tasks must be periodic, occurring with a regular

frequency, and independent, meaning there are no dependencies between tasks.

Methods specific to scheduling still suffer from issues with computational tractabil-

ity. As mentioned previously, Berry et al. used a preference learning algorithm to

codify an objective function, which could then be solved by mathematical optimiza-

tion [18]. Similarly, Wilcox et al., use mathematical programming to maximize users’

scheduling preferences [260]. As detailed in Section 2.2, exact mathematical opti-

mization is not a scalable technique for complex scheduling problems. To solve these

more complex problems, we need efficient heuristic methods to reduce the search

space. What is needed is a mechanism to automatically learn a policy to intelligently

explore the search space, reducing computation time.
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2.3.3 Policy/Imitation Learning

A promising approach, called policy or imitation learning, focuses on directly learning

a mapping from states to actions rather than learning a goal and using state-space enu-

meration and exploration to construct a suitable [46, 112, 220, 208]. This technique

has been applied to learn cognitive decision-making tasks from human experts, such

as determining an airport runway configuration [208]. Similarly, the learning system

AlphaGo incorporates an initial policy-leaning phase [230]. The AlphaGo framework

began by solving a supervised policy learning problem to imitate the decision-making

of human Go players.

Chernova and Veloso developed a policy-learning approach in which a Gaussian

Mixture Model is first used to learn a reasonable policy for a given task (e.g., driving

a car on a highway). Then, the algorithm uses that knowledge to solicit user feedback

by constructing scenarios where there is a high level of uncertainty. Chernova and

Veloso also explore a second policy-learning approach using support vector machines

to learn when an autonomous agent should request more demonstrations [47].

Sauppé and Mutlu study the problem of learning a model for the human behavior

of back-channeling, which is a form of communication by an addressee to facilitate

turn-taking and acknowledge speakership [247]. They demonstrate that a regression-

based approach can predict the exhibition of these behaviors [247]. In more recent

work, Huang and Mutlu study how humans employ multi-modal communication be-

haviors to present information in the form of a story [112]. They note that previous

attempts at modeling typically employ a laborious process of hand-crafting rules and

heuristics that lack generality [112]. Huang and Mutlu develop a robotic platform

that uses a dynamic Bayesian network to learn how people choreograph their speech,

gaze, and gestures for narration [112].

Ramanujam and Balakrishnan investigate the problem of learning a discrete-choice

model for how air traffic controllers decide which set of runways to use for arriving

and departing aircraft based on weather, arrival and departure demand, and other

environmental factors [208]. Ramanujam and Balakrishnan train a discrete-choice
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model on real data from air traffic controllers and show how the model can accurately

predict the correct runway configuration for the airport [208].

Sammut et al. apply a decision tree model for learning an autopilot, which au-

tonomously controls an aircraft, from expert demonstration [220]. Their approach

generates a separate decision tree for each of the following control inputs: elevators,

ailerons, flaps, and thrust. In their investigation, they note that each pilot demonstra-

tor could execute a planned flight path differently. These demonstrations could be in

disagreement, thus making the learning problem significantly more difficult. To cope

with the variance between pilot executions, a separate model was learned for each pi-

lot. Inamura et al. use a Bayesian Network to learn which behavior to use and when

to use that behavior via demonstration and interaction with that demonstrator [116].

Saunders et al. use a k-Nearest Neighbors approach with feature selection to learn

which features to use in each scenario to predict the appropriate action [224]. In [218],

Rybski et al. employ a Hidden Markov Model to learn which of a pre-learned set of

actions must be applied and in what order to complete a demonstrated box-sorting

task.

While these techniques have not typically been applied to scheduling, I believe

policy learning is the right first step in learning from human demonstration how to

schedule.

2.3.4 Conclusion

Policy learning is a promising approach for solving scheduling problems by learn-

ing policies through expert demonstration. Goal or reward learning approaches are

able to capture high-level goals to produce quality schedules [2, 18]. However, these

approaches are limited by their reliance on computational methods of exploring the

search space to find a quality schedule. In the case of IRL, one relies on dynamic

programming, which requires state-space enumeration. In the case of approaches such

as PTIME [18], one relies on pure mathematical programming. One needs a method

of intelligently isolating the important subspace where high-quality solutions exist to

reduce the associated computation time.
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Policy learning, on the other hand, is specifically designed to explore a state space.

With a function mapping states to actions, one can theoretically construct a schedule

through taking sequential scheduling actions (e.g., assigning a worker to a task at the

present time). The challenge, however, is that I am unaware of any prior attempts to

apply policy learning to the scheduling domain. Thus, a core aim of my thesis is to

develop such a method: apprenticeship scheduling.

2.4 Blending Machine Learning and Optimization

Typically, reward and policy learning are limited by the quality of the demonstrations.

Yet, even if the demonstrations are high quality, one cannot assume demonstrators

nor their demonstrations will be optimal or even uniformly sub-optimal [5, 220]. As

such, some have sought to directly model the sub-optimality of the demonstrations.

For example, Zheng et al. make a clever extension to the work of Ramachandran and

Amir to model the trustworthiness of the demonstrator within a softmax formulation

transition function for reinforcement learning [269], as shown in Equation 2.8. In this

equation, Qπ∗(R)(s, a) is the expected reward of taking action a in state s assuming

reward function R with the associated optimal policy π∗.

Pr((s, a)|α;R) =
eαQ

π∗(R)(s,a)∑
a′ e

αQπ
∗(R)(s,a′)

(2.8)

Through such a mechanism, it is possible to learn a policy that outperforms the human

demonstrators by inferring the intended goal rather than the demonstrated goal.

Zheng et al. showed that their approach was better able to capture the ground-truth

objective function from imperfect training data than regular IRL [207], which does

not include a trustworthiness parameter for demonstrations. Zheng et al. validated

their approach using a synthetic data set in an experiment with the goal of identifying

the best route through an urban domain. However, a limiting assumption is that one

is able to accurately measure the trustworthiness of the demonstrations.

AlphaGo is a strong, recent advance in AI for its ability to play a turn-based
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strategy game, Go, at a super-human level [230]. AlphaGo is a multi-tier machine

learning-optimization framework. Yet, at its core, AlphaGo is based on policy learn-

ing. Alpha Go uses Monte-Carlo Tree Search (MCTS) that is guided by a neural

network policy trained on a data set of thirty million examples of human Go expert

demonstrations [230].

While policy π chooses how to initially explore the search tree, AlphaGo employs

two additional components to evaluate the quality of each branching point in the tree.

The first component is a second policy, π′, which is identical to the first except that

the neural network is composed of fewer nodes. This smaller size enables the second

policy to rapidly play the Go game to completion to predict a winner [230].

The second component is a value function trained via q-learning. The developers

of AlphaGo rewired and duplicated the initial policy π to enable improvement through

self-play. These duplicated, rewired policies πSelf−Play would play Go against each

other ad nauseum and, at each iteration, employ policy gradient to improve their poli-

cies [236]. The AlphaGo developers then captured a data set of thirty million moves

taken by these policies. This data set was then used to train a q-learning algorithm

to predict the expected value of taking a given action in a given state. Importantly,

the AlphaGo authors note that these self-play policies actually performed worse than

the original π trained on actual human demonstrations. Yet, they have not developed

a cohesive theory for why π performs better [236]. Nonetheless, AlphaGo serves as

a key example for how policy learning, coupled with optimization techniques (e.g.,

q-learning and policy gradient) can yield super-human solution quality.

Relevant to the problem of bridging machine learning and optimization, Banerjee

et al. consider a scheduling problem for aircraft carrier flight deck operations. In this

domain, the crew must repeatedly solve a scheduling problem wherein the variables

remained the same (i.e., variables describing which workers perform which tasks and

when), but the constraints (i.e., temporal constraints relating those tasks) for those

variables changed [11]. Using a MILP formulation, they proposed a machine learning-

optimization pipeline in which the system performed a branch-and-bound search over

the integer variables, and used the prediction of a regression algorithm trained on
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examples of previously solved problems to provide a provable lowerbound on the

optimality of the current integer variable assignments. A shortcoming of this approach

is its reliance upon the ability to generate a large database of solutions to train the

regression algorithm. This generation requires the costly exercise of repeatedly solving

a large set of MILPs, which can be intractable for large-scale scheduling problems.

2.4.1 Conclusion

In Section 2.3, I presented the capabilities of reward/preference learning. Techniques,

such as IRL, can take as input a human demonstration, learn a high-level goal based

on those demonstrations, and generate a policy to maximize that goal. However,

generating that policy is computationally challenging. Specifically, one needs clever

heuristics to narrow the search space to find the goal.

On the other hand, learning the heuristics directly via policy learning can make

it possible to compute high-quality solutions. Yet, the approaches discussed above

(i.e., policy and imitation learning) suffer from the problem of dead reckoning. As

a schedule is sequentially computed, even small deviations can add up to result in a

large, cumulative deviation from the goal: an optimal schedule. Thus, we need the

ability to both learn a policy and reason about the goal to generate optimal solutions.

There has been some initial work in the field of learning a policy from demon-

stration and using that policy to create solutions better than those demonstrations.

In the case of Zheng et al., the authors attempt to infer the intended demonstration

from an imperfect one [269]. In the case of AlphaGo, the authors use policy gradient

and q-learning to construct a MCTS algorithm based on an initial, policy learning

approach [230]. However, these approaches are not well-suited to scheduling for the

reasons outlined in Section 2.3.

In the case of Banerjee et al., the authors use an approach more amenable to

scheduling, mathematical programming, to provide optimal scheduling demonstra-

tions. The authors then use machine learning to predict the optimality of a partial

solution to reduce the computation time of solving future problems. However, their

approach relies on being able to enumerate an initial training data set of optimal
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solutions.

In this thesis, I develop a technique specifically suited for scheduling that is able

to take imperfect scheduling demonstrations and generate optimal solutions.

2.5 Human Factors of Human-Robot Interaction

As the complexity of human-operated machines has increased, so has the need for

increased machine autonomy in order to aid human operators. As such, researchers

in the fields of human factors have sought to improve the fluency of the human-

machine system. Here, I review related works and identify key gaps in the literature

that demonstrate the need for the experimental investigation into embodiment, situ-

ational awareness, workload, and workflow preferences with an autonomous, robotic

scheduling assistant.

2.5.1 Human-In-The-Loop Decision Making

The field of human factors has pursued efforts complementary to algorithm develop-

ment, which focus on developing interfaces between human supervisors and the agents

they are tasking [23, 79, 165, 219, 254]. The human-robot interface has long been

identified as a major bottleneck for the utilization of these robotic systems to their

full potential [39]. As a result, significant research efforts have been aimed at easing

the use of these systems in the field, including the careful design and validation of

supervisory and control interfaces [13, 55, 92, 109, 122].

Many researchers have focused on the inclusion of a human in the decision-making

loop to improve the quality of task plans and schedules for robots or semi-autonomous

systems [52, 55, 72]. This is particularly important if the human operators have

knowledge of factors not explicitly captured by the system model or if scheduling

decisions have life or death consequences. In a study of aircraft carrier flight deck

operations, veteran operators used heuristics to quickly generate an efficient plan

and outperformed optimization algorithms [217]. Other works aimed to leverage the

strengths of both humans and machines in scheduling by soliciting user input in the
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form of quantitative, qualitative, hard, or soft constraints over various scheduling

options. Recommended schedules were then autonomously compiled and provided

to users [8, 94, 99, 164, 267]. Researchers also develop models for how people weigh

exploit-versus-explore actions when seeking reward in an uncertain environment [212].

Within the medical domain, Szolovits et al. describe work in developing algorithms

that mimic the reasoning of human domain experts [238] rather than explicitly codify-

ing rules [239]. These attempts to model reasoning are better able to isolate a key set

of possible diagnoses, utilize pathophysiologic reasoning, and model the complexities

of the illnesses of specific patients [238].

Supervisory systems have also been developed to assist human operators in the

coordination of the activities of either four-robot or eight-robot teams [42]. Experi-

ments demonstrated that operators were less able to detect key surveillance targets

when controlling a larger number of robots. Similarly, other studies have investi-

gated the perceived workload and performance of subjects operating multiple ground

mobile-based robots [3]. Findings indicated that a number of robots greater than

two greatly increased the perceived workload and decreased the performance of the

human subjects.

2.5.2 Aiding Humans via Autonomy

There has been a flourish of recent work focused on the development of an improved

human-machine interface [13, 55, 66, 68, 92, 109, 122]. In such work, researchers often

view the human operator as a vital component of the decision making loop, particu-

larly when this operator has knowledge of factors that are difficult to capture within

a manually-encoded, autonomous framework [52, 55, 72]. Complementary to ap-

proaches that include the human in-the-loop, other work has focused on development

of computational methods able to generate scheduling solutions using information

collected a priori from human experts [8, 94, 99, 164, 267].

Researchers have proposed various mechanisms for distributed decision making

in the form of agents that can independently reason about their activities [31, 91,

121, 139, 188, 200, 246]. For example, Tellex, Knepper, et al. developed a system
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enabling a team of robots to autonomously perform assembly manufacturing tasks,

asking a human worker for help only when needed. This system enables robots to

make requests in a way that allows a human to easily comply with these requests [246].

Although, their work does not consider the challenges with the humans’ cost of con-

text switching and state of situational awareness. Nikolaidis et al. [187] developed a

robotic system able to learn a mental model for how people perform various assembly

manufacturing tasks and adapt workflow to improve fluency for a human-robot dyad.

Teleoperation and blended autonomy are another key area of investigation. Here,

human and machine agents work jointly toward accomplishing physical actions as

opposed to cognitive tasks [67, 101, 174, 202]. For example, Dragan et al. developed

and explored an intelligent, customizable interface for teleoperation. This interface

mediates the consequences of a human not being in close physical proximity to the

action performed in order to make teleoperation more seamless, and leverages the

autonomous capabilities of the robot to assist in accomplishing a given task [66].

Pierce et al. developed a data-driven method for learning a mapping of the arm

motions necessary to reach a specific physical state (target pose) from a human’s

mental model and translating those motions to corresponding robot motions in a

physical environment [202]. The robot is then able to use this learned mapping to

aid the operator in achieving the desired robot pose [202].

Herlant et al. investigated the challenges of controlling a robotic arm using a low-

dimensional input device, such as a joystick [101]. They showed that mode switching

accounts for a significant time burden for the user, and developed an automatic

mode selection algorithm that reduces this burden [101]. Muelling et al. [174] de-

veloped an improved brain-computer interface to alleviate the challenges of latency,

low-dimensional user commands and asymmetric control inputs, all of which are com-

mon to robotic teleoperation. Their system relies upon combining computer vision,

user intent inference and arbitration between the human and robotic systems. In their

work,Muelling et al. [174] validated their system via experiments where participants

used input from two intra-cortical implants to control a robotic manipulator with

seven degrees of freedom. The researchers found that their brain-computer interface
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enabled completion of tasks that were previously infeasible without arbitration [174].

There is also evidence that the manner in which people receive and interact with

machine autonomy is influenced by a number of additional factors, including indi-

vidual differences among operators and system embodiment [105, 123, 135, 148, 149,

213, 240]. For example, Takayama and Pantofaru investigated proxemics – how a

person maintains physical or psychological distance between himself and others –

in human-robot interaction and found differences based on participants’ gender and

prior experiences interacting with robots and animals [240]. Takayama and Pantofaru

found that a person’s prior experience interacting with robots and animals, as well as

that person’s gender, affects how they want to physically interact with a robot [240].

Ju et al. studied the effect of embodiment to capture attention and engender a desire

to interact with the system [123]. Lee et al. investigated the role of embodiment and

tactile interaction in HRI [123]. Lee et al., found that embodiment positively affects

a person’s view of the agent; however, if the experimenter imposed a restriction on

tactile interaction, embodiment would cause a null or negative effect [148]. Drury et

al. develop a human-UAV awareness decomposition that enables a designer of human-

UAV interaction to understand the situational awareness needs of human UAV oper-

ators. Working with a cohort of UAV operators, Drury et al. were able to associate

specific components of their framework (e.g., poor design features limiting situational

awareness) with incidents in which UAV operator trainees had difficultly completing

their missions [70]. Nonetheless, there has been little study into the ways in which

human factors considerations, including situational awareness, workload assignment,

and workflow preferences must influence the design of computational techniques for

mixed initiative human-robot teaming.

2.5.3 Situational Awareness

Within the field of human factors [74, 75, 77, 125, 214] – and, more recently, of human-

robot interaction [44, 70, 81, 234] – the study of situational awareness has been of

utmost importance, particularly in the context of aviation [179, 180, 181, 182, 183]. In

her seminal paper [75], Endsley defined a three-level model for situational awareness:
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perception (Level 1 SA), comprehension (Level 2 SA), and projection (Level 3 SA).

These levels require the operator of a complex system to perceive the state of the

environment, understand the meaning of this state, and project the state into the

future to understand how that state must change [75].

In subsequent work, Kaber and Endsley explored varying levels of automation

to test situational awareness. They found higher automation resulted in improved

performance if the implementation of that automation did not fail; however, if imple-

mentation did fail, automation resulted in much poorer performance by the human

operator. Also, they wrote, collaboration on a task (as opposed to a human or robotic

agent performing a task alone) can result in poorer performance and less situational

awareness [77].

Chen et al. outline the drawbacks to certain elements of teleoperation. The irony

from their point of view is that humans typically need to teleoperate autonomous

systems when the environment becomes most difficult;ideally, however, teleoperative

systems should be designed to reduce workload as the environment becomes more

difficult to navigate, not the other way around. As it stands now, the operator

must gain a high situational awareness via a user interface viewed from a remote

location [44]. Riley et al. focused on the value of telepresence. In this work, they

found that situational awareness as well as subject attention are related to mode of

presence (i.e., telepresence or in person) [214].

Kaber and Endsley attempted to address two design variables affecting situational

awareness that previously had not been studied in conjunction: the level of automa-

tion and adaptive automation [125]. In adaptive automation, the allocation of tasks

to a human and a machine changes as a function of the state of the environment [125].

Kaber and Endsley found that participants had higher situational awareness at lower

levels of automation, and lower situational awareness at higher levels of automation.

When adaptive automation changed such that participants experienced different au-

tomation levels at varied time spans, participants did not perceive the periods of

higher automation as involving a smaller task load, as they were also monitoring the

automated task execution [125]. Many researchers have focused on modeling situa-
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tional awareness, yet few researchers have developed interfaces specifically designed

to augment situational awareness [81].

One major gap in prior robotics and human factors literature is the study of

situational awareness wherein humans plan and execute a sequence of actions collab-

oratively within a human-robot team. Much work has focused on the human in a

supervisory control role (e.g., [77, 246]) or as part of a dyad, for which the coordina-

tion of actions is relatively simple [187].

2.5.4 Mental and Physical Workload

Workload is a key issue identified in human-subject literature, which has indicated

that human performance is highly dependent upon workload [198, 204, 233, 249,

257]. To help evaluate mental workload, researchers have proposed various subjective

and psycho-physiological metrics [29, 96, 140, 234]. The most well-known metric is

the NASA Task Load Index (TLX): a subjective, multivariate means of evaluating

perceived mental workload [96]. A combination of results from prior work has led to a

model for the relationship between workload and performance: Workload that is too

heavy or too light can degrade both performance and situational awareness [204, 249].

One of the consequences of a high workload is increased reliance upon and compliance

with automation [197].

Researchers have previously sought effective means to reduce workload through

the use of semi-autonomous decision support tools [227], particularly in the field of air

traffic control, due to the notoriously challenging nature of aircraft coordination [161,

162, 185]. In work by Lokhande et al., air traffic controllers spent 81.9% of their time

in a head-down position looking at information displays rather than performing the

vital task of visually monitoring traffic on the ground, even with the aid of a decision

support tool [162].

Loft et al. developed a model for predicting the level of workload for air traffic

controllers, and confirmed results from prior work indicating that mental workload

increases with task difficulty. However, they also observed an unexpectedly stronger

effect on mental workload as a function of the ability of air traffic controllers to
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prioritize tasks and manage resources; controller’s with superior abilities experienced

a decrease in their mental workload [161].

While the relationship between workload and task performance has been studied

extensively with regard to human factors, it remains uncharacterized in the context

of human-robot teams in which a robotic agent plays a substantial role in coordinat-

ing physical work. Prior studies have shown that people prefer to delegate decision

making about scheduling to a robotic agent [87], yet there is a gap in the literature

regarding the effects of varying physical workload on team fluency in such a scenario.

2.5.5 Workflow/Scheduling Preferences

Researchers in the fields of AI and robotics have explored computational meth-

ods for incorporating preference-based constraints when coordinating human-robot

teams [4, 18, 98, 142, 187, 259]. Wilcox et al. developed an adaptive preferences

algorithm to dynamically schedule human-robot teams in real time according to the

unique preferences of human workers, as human teams in a factory setting can vary

greatly on how they accomplish assembly tasks [259]. Alami et al. encoded task-

specific constraints and workflow preferences that allow for prediction of likely hu-

man actions [4]. Berry et al. developed an AI assistant, known as PTIME, to learn

the preferences and schedule the activities of human operators via a mathematical

programming technique [18]. Bayesian networks [142], first-order Markov logic net-

works, and AND-OR graphs [98] have also been used to predict human actions during

human-robot collaboration.

Preferences for task scheduling have been the subject of prior study [93, 99, 163,

232], but the human factors of scheduling activities have not been as well assessed.

Generally, research has focused on the implementation of fairness metrics (such as in

the work of Zhang et al. [265]) and other mathematical formulations for optimally

scheduling according to human team members’ preferences [93, 99, 163, 232]. How-

ever, roboticists must also ask the fundamental question of whether these preferences

should be included in robot decision making and, if so, how best to do so.
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2.5.6 Embodiment

While the effects of embodiment on engagement in social judgment tasks are exten-

sively studied and well-documented [130, 131, 240, 245], the relationship between

embodiment and humans levels of trust and dependence is a relatively new area of

research [10, 131, 154]. This topic is crucial if robots are to become more than com-

panions, but advisors to people.

Trust is defined as “the attitude that an agent will help achieve an individual’s

goals in a situation characterized by uncertainty and vulnerability [145],” and depen-

dence is a behavioral measure indicating the extent to which users accept the rec-

ommendation of robots or virtual agents. Measures of dependence are distinguished

according to whether the user makes Type I or Type II errors [65]. “Type I” refers to

reliance, or the degree to which users accept advice from an artificial agent when it

offers low-quality recommendations. “Type II” refers to the extent to which human

users reject advice from an artificial agent when the advice is of high quality. The

degrees to which a user accepts high-quality advice and rejects low-quality advice are

called “appropriate compliance” and “appropriate reliance,” respectively.

Studies examining the effects of embodiment on trust and dependence necessarily

include objective assessments of dependence and task performance in addition to sub-

jective assessment of the user’s trust in the system [10, 58, 131, 154, 195]. Scassellati

et al. [10, 154] conducted a series of experiments to compare compliance rates when

interacting with a physically embodied robot, a video of a robot, and a disembodied

voice. The tasks involved users receiving instructions to move objects to different

locations, along with strategy advice for solving Sudoku-like puzzles. The authors

found that embodiment was associated with a higher rate of compliance with advice

provided by the robot, and suggested this indicated a greater level of human trust

for an embodied robot. Similarly, Kiesler et al. [131] found that participants con-

sumed fewer calories after receiving health advice from a physically embodied robot,

as compared with advice from a video of a robot or an on-screen animated virtual

agent.
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Studies in human factors and decision support indicate that increased anthropo-

morphism also affects user interactions. Pak et al. [195] evaluated how the anthropo-

morphic characteristics of decision support aids assisting subjects answering questions

about diabetes influenced subjective trust and task performance. The results indi-

cated that younger adults trusted the anthropomorphic decision aid more, whereas

older adults were insensitive to the effects of anthropomorphism. Moreover, shorter

question response time (after controlling for accuracy) was observed in both age

groups, suggesting a performance gain when receiving advice from a more anthropo-

morphic aid. In another study, de Visser [58] varied the degree of anthropomorphism

of a decision support system while participants performed a pattern recognition task.

The results indicated that the perceived knowledgeableness of the system increased

with increasing anthropomorphism; however, their findings on dependence were in-

conclusive.

The results from studies with embodied robots must be interpreted with caution

since they were primarily focused on situations in which robots produced reliable

and high-quality recommendations. There is a growing body of research indicating

that the quality of decision support cannot be relied upon, especially during complex

tasks [256]. Negative consequences of humans blindly depending upon imperfect

embodied artificial intelligence have been previously reported [215]. For example,

Robinette et al., conducted experiments in which a robot guided human participants

during a mock emergency rescue scenario involving a building fire. All participants

followed the robot, even when the robot led them down unsafe routes and/or displayed

simulated malfunctions and other suspicious behavior [215]. In work by Bainbridge

et al., users were more likely to pick up and throw away books, which one would

not normally think to throw away, at a physical robots request rather than a request

given by an virtual avatar [9].

Such dependence upon imperfect automation presents serious problems for robotic

assistance during safety-critical tasks. This concern is heightened by results from

studies indicating increased trust in and reliance upon embodied systems as com-

pared with virtual or computer-based decision support, suggesting a higher possibility
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of committing Type I errors. However, we also note that prior studies on embodi-

ment, trust, and dependence were conducted with novices rather than domain experts

performing complex real-world tasks. This leaves us with founded concerns, but gaps

in our understanding of how human-robot interaction impacts the decision making of

expert resource nurses.

2.5.7 Conclusion

There has been a wealth of work in human factors showing the profound effect intro-

ducing automation into the human workspace can have on the human workers in that

space. Research has shown that shifting decision-making authority from humans to

robotic agents decreases situational awareness. Further, inappropriate levels of work-

load can decrease human task performance. However, these phenomena have not

been studied in the context of mixed-initiative scheduling for human-robot teaming.

Further, workflow and scheduling preferences have been identified as an important

area of research. Yet, the effect of including or ignoring those scheduling prefer-

ences has similarly not been studied in the context of mixed-initiative scheduling for

human-robot teaming.

Algorithmic embodiment and anthropomorphism has also been studied by human

factors researchers. The common understanding is that embodiment and increasing

anthropomorphism results in human team members over-trusting and over-relying on

these robotic systems. However, these studies have primarily focused on situations in

which the robot is assumed to produce high-quality solutions, and the human counter-

parts have typically been amateurs. The results of the limited work done thus far with

experts shows that experts may not over-rely on an embodied or anthropomorphic

system. Thus, we need to understand what the consequences of algorithmic embod-

iment are if we are to realize the vision of intelligent service robots in professional

domains.
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Chapter 3

Apprenticeship Scheduling:

Learning to Schedule from Human

Experts1

3.1 Introduction

For service robots to be able to integrate into the human workplace, these robots

must be able to understand when, where, and how they should help, just as human

apprentices are able to learn from masters the ability to adapt to their dynamic

environment. These robots must have an understanding of how to choreograph the

team’s activities. However, scheduling is a challenging problem that affects almost

every aspect of our lives. The problem of optimal task allocation and sequencing with

upper- and lowerbound temporal constraints (i.e., deadlines and wait constraints)

is NP-Hard (Bertsimas and Weismantel 2005), and real-world scheduling problems

quickly become computationally intractable.

1This chapter is based upon work published at the International Joint Conference on Artificial
Intelligence as well as Robotics: Science and Systems. The citations are as follows:
Gombolay, M., Jensen, R., Stigile, J., & Shah, J. (2016, July). Apprenticeship scheduling: Learning
to schedule from human experts. In Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI), New York City, NY, USA.
Matthew C. Gombolay, Xi Jessie Yang, Brad Hayes, Nicole Seo, Zixi Liu, Samir Wadhwania, Tania
Yu, Neel Shah, Toni Golen, and Julie A. Shah (2016, June). Robotic Assistance in Coordination of
Patient Care. In Proc. Robotics: Science and Systems (RSS), Ann Arbor, Michigan, USA.
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Yet, there is hope. Human domain experts are able to learn from experience

to develop strategies, heuristics and rules-of-thumb to effectively respond to these

problems. The challenge I pose is to autonomously learn the strategies employed by

these domain experts; this knowledge can be applied and disseminated more efficiently

with this type of model than with a “single-expert, single-apprentice” model.

In this chapter, I propose a technique, which I call “apprenticeship scheduling,”

to capture this domain knowledge in the form of a scheduling policy. My objective is

to learn scheduling policies through expert demonstration and validate that schedules

produced by these policies are of comparable quality to those generated by human

or synthetic experts. My approach efficiently utilizes domain-expert demonstrations

without the need to train within an environment emulator. Rather than explicitly

modeling a reward function and relying upon dynamic programming or constraint

solvers, which become computationally intractable for large-scale problems of interest,

my objective is to use action-driven learning to extract the strategies of domain

experts in order to efficiently schedule tasks.

The key to my approach is the use of pairwise comparisons between the action

taken (e.g., schedule agent a to complete task τi at time t) and the set of actions

not taken (e.g., unscheduled tasks at time t), at each moment in time, to learn

the relevant model parameters and scheduling policies demonstrated by the training

examples. I validate my approach using a synthetic data set of solutions for a variety

of scheduling problems, a real-world data sets of demonstrations from human military

experts solving a variant of the weapon-to-target assignment problem [150], and a

real-world data set of human nursing professionals coordinating the care of obstetrics

patients in a labor and delivery unit in a hospital. The synthetic and real-world

problem domains I use to empirically validate my approach represent two of the most

challenging classes within the multi-agent task allocation taxonomy established by

Korsah et al. [139].
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3.2 Problem Domains

I aimed to empirically demonstrate the generalizability of my learning approach

through application to a variety of problem types. Korsah et al. provided a com-

prehensive taxonomy for classes of scheduling problems, which vary according to

formulation of constraints, variables. and objective or utility function [139]. Within

this taxonomy, there are four classes addressing interrelated utilities and constraints:

No Dependencies (ND) [160], In-Schedule Dependencies (ID) [31, 90, 188], Cross-

Schedule Dependencies (XD) [91], and Complex Dependencies (CD) [121].

The Korsah et al. taxonomy also delineates between tasks requiring one agent,

i.e., “single-agent tasks” (ST); and tasks requiring multiple agents, i.e. “multi-agent

tasks” (MT). Similarly, agents that perform one task at a time are “single-task agents”

(SA), and agents capable of performing multiple tasks at the same time are “multi-

task agents” (MA). Lastly, the taxonomy distinguishes between “instantaneous as-

signment” (IA), in which all task and schedule commitments are made at the same

time, and “time-extended assignment” (TA), in which current and future commit-

ments are planned.

In this work, I demonstrate my approach for two of the most difficult classes of

scheduling problems defined within this taxonomy: XD [ST-SA-TA] and CD [MT-

MA-TA]. The first problem I consider is the vehicle routing problem with time win-

dows, temporal dependencies and resource constraints (VRPTW-TDR), which is an

XD [ST-SA-TA]-class problem. Depending upon parameter selection, this family

of problems encompasses the traveling salesman, job-shop scheduling, multi-vehicle

routing and multi-robot task allocation problems, among others. I next consider two

problems within the more difficult CD [MT-MA-TA] class. The first is a complex

variant of the weapon-to-target assignment problem (WTA) [150], known as ASMD.

The second is that of operating as a resource nurse, the one nurse who is responsible

for ensuring that the right patient is in the right type of room at the right time and

that the right types of nurses are there to care for those patients.
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3.2.1 Synthetic Data Set

In this section, I define the VRPTW-TDR problem used in the synthetic evaluation

of my apprenticeship scheduling technique. The multi-agent coordination problem

(with temporospatial constraints) can be readily formulated as a mixed-integer lin-

ear program (MILP). A solution to the VRPTW-TDR problem then consists of the

assignment of tasks to agents and a schedule for each agent’s tasks such that all

constraints are satisfied and the objective function is near-minimized. Determining

the optimal schedule subject to hard upper- and lowerbound temporal constraints is

NP-hard [22].

In this formulation, τ is the set of all tasks to be performed, and A is the set

of agents a given to complete those tasks. TC is the set of Interval Temporal Con-

straints [59] relating tasks start and finish times. Upperbound temporal constraints

are referred to as “deadlines”, and lowerbound temporal constraints are referred to

as “wait constraints.” “Relative” wait constraints are denoted as W rel
〈τi,τj〉 and specify

that τj starts at least W rel
〈τi,τj〉 ≥ 0 time units after τi ends. “Absolute” wait constraints

W abs
τi

requires the start time of τi to occur at least W abs
τi

time units of the epoch start

time. Relative deadline constraints are denoted as Drel
〈τi,τj〉 and specify that τj must

finish within Drel ≥ 0 time units of the start of τi. Absolute deadline constraints Dabs
τi

limit the finish time of τj to within Dabs ≥ 0 time units of the epoch start time. τR

is the set of all task pairs 〈τi, τj〉 that are separated by less than the allowable spatial

proximity. li ∈ R2 is the location of τi, and speed is the rate at which an agent can

traverse R2. Finally, M is an artificial variable set to a large positive number and is

used to encode conditional constraints.

Equation 3.1 minimizes the makespan (i.e., the time between the start of the first

task and finish of the final task). Equation 3.2 ensures that each task is assigned

to a single agent. Equation 3.3 encodes the explicit ordering of tasks according to

the lowerbound, relative temporal constraints W rel
〈τi,τj〉. Equations 3.4 and 3.6 encode

the minimum wait times and upperbound deadline constraints, respectively, between

pairs of tasks. Likewise, Equations 3.5 and 3.7 encode the minimum wait times and
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upperbound deadline constraints, respectively, relative to the start of the schedule.

Equations 3.9 and 3.10 ensure that each agent only performs one task at a time as

well as encoding the time required to travel between tasks. Equations 3.8 encode the

agent-specific duration of each task, Ca
i . Equations 3.11 and 3.12 sequence actions to

ensure that agents maintain safe buffer distances from one another while performing

tasks. Note that Equations 3.11 and 3.12 couple the variables relevant to sequencing

and spatial proximity constraints and to task start and end times, tight dependencies

amongst agents’ schedules.

Objective: min z = max
τi,τj

(fi − sj) (3.1)

subject to∑
a∈A

Aaτi = 1,∀τi ∈ τ (3.2)

x〈τi,τj〉 = 1,∀W rel
〈τi,τj〉 ∈ TC (3.3)

W rel
〈τi,τj〉 ≤ si − fj,∀W rel

〈τi,τj〉 ∈ TC (3.4)

W abs
τi
≤ si,∀W abs

τi
∈ TC (3.5)

Drel
〈τi,τj〉 ≥ fj − si,∀Drel

〈τi,τj〉 ∈ TC (3.6)

Dabs
τi
≥ fj,∀Dabs

τi
∈ TC (3.7)

fi − si ≥ Ca
i −M

(
1− Aaτi

)
, ∀τi ∈ τ , a ∈ A (3.8)

sj − fi ≥M
(
x〈τi,τj〉 − 1

)
+M

(
2− Aaτi − A

a
τj

)
+
‖li − lj‖
speed

,∀τi, τj ∈ τ , a ∈ A (3.9)

si − fj ≥ −Mx〈τi,τj〉 +M
(

2− Aaτi − A
a
τj

)
+
‖lj − li‖
speed

,∀τi, τj ∈ τ , a ∈ A (3.10)

sj − fi ≥M
(
x〈τi,τj〉 − 1

)
,∀ 〈τi, τj〉 ∈ τR (3.11)

si − fj ≥ −Mx〈τi,τj〉,∀ 〈τi, τj〉 ∈ τR (3.12)

The worst-case time complexity of a complete solution technique for this problem
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is dominated by the binary decision variables for task allocation (Aaτi) and sequencing

(x〈τi,τj〉) and is given by O
(

2an
3
)

, where a is the number of agents and n is the

number of tasks. Agent allocation contributes O (2an), and sequencing contributes

O
(

2n
2
)

. In the manufacturing settings of interest, the number of tasks and tasks

is typically much larger than the number of agents, so the computational bottleneck

when solving for a schedule occurs within the sequencing sub-problem.

3.2.2 Anti-Ship Missile Defense

In ASMD, the goal is to protect one’s naval vessel against attacks by anti-ship missiles

using “soft-kill weapons” (i.e., decoys) that mimic the qualities of a target in order

to direct the missile away from its intended destination.

Developing tactics for soft-kill weapon coordination is highly difficult due to the

relationship between missile behavior and the characteristics of soft-kill weapons.

The control laws governing anti-ship missiles are varied, and the captain must select

the correct decoy types in order to counteract the associated anti-ship missiles. For

example, a ship’s captain may deploy a decoy that emits a large amount of heat to

make an enemy heat-seeking missile fly toward the decoy rather than the ship. Also,

an enemy missile may consider the spatial layout of all targets to select the nearest

or furthest targets; the magnitude of the radar reflectivity, radar emissions, and heat

emissions; or combinations there within.

Further, decoys have different financial costs and timing characteristics. Some

decoys, such as unmanned aerial vehicles (UAVs), are able to function during the

entire engagement, while others, such as infrared (IR) flares, evaporate after a certain

time. In turn, a captain may be required to use multiple decoys in tandem in order

to divert a single anti-ship missile. At the same time, a captain might be able to use

a single decoy to defeat multiple missiles.

Moreover, there is a complex interplay between the types and locations of decoys

relative to the control laws governing anti-ship missiles. For example, deployment of

a particular decoy, while effective against one airborne enemy missile, may actually

cause a second enemy missile that was previously homing in on a second decoy to
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now impact the ship when it would have missed otherwise.

The ASMD problem is characterized as the most complex class of scheduling prob-

lem according to the Korsah et al. taxonomy [139]: CD [MA-MT-TA]. The problem

considers multi-task agents (MA) in the form of decoys, each of which can work to

divert multiple missiles at the same time. The problem also considers multi-agent

tasks (MT): a feasible solution may require the simultaneous use of multiple agents

in order to complete an individual task. Further, time-extended agent assignment

(TA) must be taken into consideration, given the potential future consequences of

scheduling actions taken at the current moment. Finally, the ASMD problem falls

within the CD class, because each task may be decomposed in a variety of ways – each

with their own cost – to accomplish the same goal, and each decomposition affects

the value and feasibility of the decompositions of other tasks.

ASMD Problem Formulation

In anti-ship missile defense, one must determine how to deploy a set of soft-kill

weapons, or decoys, to prevent enemy anti-ship missiles from impacting one’s own

ship (Figure 3-1). These decoys represent the agents, and the neutralization of each

missile represents a task. The effectiveness Ea
i of deploying a decoy a against target

τi at a given location ~xa = [x, y, θ] and time t is dependent upon the time history

of all other decoy deployments h. Decoys are able to distract many missiles (MT),

and many decoys can be used to distract the same missile at various points of its

trajectory. Task allocation and scheduling commitments are made over time (TA).

The key challenge of this problem is that the time history of how decoys have been

deployed thus far affects the future effectiveness of decoys, as well as where and when

they should be deployed. Agents and tasks have defined starting locations. Each

task (missile) is modeled as a dynamical system with a homing function Fτ (h, t) that

guides the missile toward its target and is a function of the current time and the time

history of previous decoy deployments. Decoys travel at a constant speed to their

target locations xg from the ship that deploys them.

I formulate the ASMD as a mixed-integer linear program in Equations 3.13 through
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Figure 3-1: The tactical action officer aboard a naval vessel must coordinate a hetero-
geneous set of soft- and hard-kill weapons to defeat various enemy, anti-ship missiles.

3.34. This formulation incorporates a set of binary decision variables: Ad,m,t ∈ {0, 1}

is set to 1 to indicate that decoy d is assigned to missile m at time t, and is 0 other-

wise. Ad,t ∈ {0, 1} is set to 1 to indicate that decoy d is assigned to some missile at

time t, and is 0 otherwise. Ud,m ∈ {0, 1} is set to 1 to indicate that decoy d is used

against missile m, and is 0 otherwise. Ud ∈ {0, 1} is set to 1 to indicate that decoy d

is used in the solution, and is 0 otherwise. Xd,l ∈ {0, 1} is set to 1 to indicate that

decoy d is deployed at location l, and is 0 otherwise. Vm ∈ {0, 1} is set to 1 to indicate

that missile m has been effectively diverted, and is 0 otherwise. Gg,m,t ∈ {0, 1} is set

to 1 to indicate that missile m is tracking the ship at time t. A single missile might

have multiple, separate epochs during which it tracks the ship (e.g., it first tracks the

ship, then tracks a decoy, then tracks the ship again after that decoy evaporates);

thus, the program can choose which index g to represent the various epochs in Gg,m,t.

Jd,m ∈ {0, 1} is set to 1 to indicate that decoy d is deployed after missile m’s flight

(i.e., after it either hits the ship or is guided astray by a decoy).

The program contains the following continuous variables: Sdecoyd,m represents the

start time of the assignment of decoy d to missile m, and Sdecoyd is the time at which

decoy d is deployed from the ship. Likewise, F decoy
d,m represents the finish time of the
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assignment of decoy d to missile m, and F decoy
d is either the time at which the decoy

evaporates or the end of the engagement. Sshipg,m indicates the start time of missile

m tracking the ship during epoch g, and F ship
g,m indicates the finish time of missile m

tracking the ship during epoch g.

The program also includes the following set of constants: dtre−targetm is the duration

for which a missile will track a single target (i.e., decoy or ship) before re-assessing

which target is best to track. Thus, if the missile begins tracking the ship at time

t, no decoy can break its lock during the interval [t, t + dtre−targetm ). ETAm is the

time at which missile m will reach the ship’s immediate vicinity. tappearm is the time at

which missile m is first close enough to track the ship. cd represents the financial cost

of deploying decoy d. α, α′, and α′′ are predefined weighting terms for the objective

function. The computational complexity of this formulation is dominated by the

integer variables, which yields O(2dmt+dm+dt+dl+d+gmt+m).

Equation 3.13 is a multi-criteria objective function that minimizes a weighted,

linear combination of the cost of all decoy deployments, less the total time during

which missiles are tracking decoys and the number of missiles successfully guided

away from the ship.

Equations 3.14 and 3.21 ensure internal consistency between the variables. Equa-

tion 3.22 ensures that a decoy, if deployed, is active for dtevapd units of time given its

timing characteristics. Equation 3.23 ensures that a decoy is deployed to no more

than one location. Equation 3.24 ensures that, if a decoy is deployed against a missile,

its deployment location will be a more attractive target for that missile than the ship.

Equation 3.25 requires that each missile tracks either a ship or decoy while within

range. Equations 3.26 and 3.27 force a decoy, if deployed, to a location that would

cause missile m to impact the ship, to either be deployed after the missile has already

been diverted or reached the ship (Equation 3.26) or to be deployed and evaporate

before the missile enters targeting range (Equation 3.27).

Equation 3.28 ensures that a missile must be tracking a decoy in the final seconds

before it reaches the vicinity of the ship, or else the missile will impact the ship. The

duration of this critical period is dependent upon missile dynamics and the target
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selection process.

min z, z = α
∑
d

cdUd − α′
∑
d,m,t

Ad,m,t − α′′
∑
m

Vm (3.13)

Ad,m,t ≤ Ad,t,∀d,m, t (3.14)

Ad,m,t ≤ Ud,m,∀d,m, t (3.15)

Xd,l ≤ Ud, ∀d, l (3.16)

Sdecoyd ≤ Sdecoyd,m , ∀d,m (3.17)

Sdecoyd,m ≤ t+M(1− Ad,m,t),∀d,m, t (3.18)

F decoy
d,m ≤ F decoy

d ,∀d,m (3.19)

tAd,m,t ≤ F decoy
d,m ,∀d,m, t (3.20)

M(Ud,m − 1) ≤ Sdecoyd,m − F decoy
d,m − 1 +

∑
t

Ad,m,t ≤M(1− Ud,m) (3.21)

M(Ud − 1) ≤ F decoy
d − Sdecoyd − dtevapd ≤M(1− Ud) (3.22)∑

l

Xd,l ≤ 1,∀d (3.23)

Ud,m ≤
∑

l|m seduced by decoy d in location l

Xd,l,∀d,m (3.24)

1 =
∑
d

Ad,m,t +
∑
g

Gg,m,t,∀m, t (3.25)

tappearm − F decoy
d ≥M(Xd,l + Vm − Jd,m − 2),

∀d, l,m s.t. decoy d in location l would cause missile m to impact the ship.
(3.26)

Sdecoyd − ETAm ≥M(Xd,l + Vm + Jd,m − 3),∀d, l,m s.t. decoy d

in location l would cause missile m to impact the ship.
(3.27)

Vm ≤
∑
d

Ad,m,t,∀m, t|t in critical region for missile m. (3.28)

2 ≥ Ad,m,t +Xd,l +Xd′,l′ ,∀d, d′, l, l′,m, t s.t. missile m is more

attracted to decoy d’ at location l’ than decoy d at location l at time t.
(3.29)
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1 ≥ Ad,m,t + Ad′,m,t,∀d, d′,m, t s.t. d 6= d′

and t is in a critical region before impact.
(3.30)

Sshipg,m ≤ t+M(1−Gg,m,t),∀g,m, t (3.31)

t ∗Gg,m,t ≤ F ship
g,m ,∀g,m, t (3.32)

M(Ug,m − 1) ≤ Sshipg,m − F ship
g,m − 1 +

∑
t

Gg,m,t ≤M(1− Ug,m) (3.33)

F ship
g,m − Sshipg,m ≥M(Gg,m,t − 1)

+

dt
re−target
m − 1 if t < ETAm − dtre−targetm ,

ETAm − t− 1 otherwise.

+

−MGg,m,t−1 if t > tappearm ,

0 otherwise.

∀g,m, t|tappearm ≤ t < ETAm (3.34)

Equation 3.29 ensures that a missile will select the most attractive decoy according

to that missile’s selection logic. Equation 3.30 restricts decoy deployments such that

the missile heading does not “sweep” across the ship in the final seconds of the

missile’s flight. If a missile does not have enough time to change its direction toward

a newly deployed decoy, that missile will fly into the ship.

Equations 3.31 through 3.34 ensure that the duration of epoch g of missile m

while tracking the ship lasts exactly as long as the retargeting time for the missile.

Equations 3.31 and 3.32 are akin to Equations 3.18 through 3.20 and relate the start

and finish times of ship-tracking epoch g to the decision variable Gg,m,t. Equation

3.33 is akin to Equation 3.21 and relates the start and finish times of ship-tracking

epoch g to the decision variable Gg,m,t. Equation 3.34 ensures that the tracking time

is dtre−targetm if the missile is airborne for at least dtre−targetm seconds. Otherwise, the

tracking time is equal to the time before impacting the ship (i.e., ETAm − t − 1).

Finally, a term (i.e., −MGg,m,t−1) disables the constraint for all t except for the exact
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moment when t begins tracking the ship.

As ASMD is a time-extended problem, the formulation must discretize time. How-

ever, note that the granularity with which the task of protecting the ship from a given

missile is decomposed as a function of time is a modeling choice with ramifications

for the quality and computation time of a solution. Consider a missile that will hit

a ship if it tracks a missile in some time interval [t, t′) for a duration dt = t − t′.

The captain might, at time t, deploy a decoy d, such as a hovering UAV, that is able

to last the entire duration dt. However, it may be preferable to deploy one or more

decoys d′, each of which remains active for a portion of the specified time interval.

Furthermore, in a situation wherein another missile m′ is launched before m, it may

be best to have a decoy deployed before t that can divert both m and m′ during part

or all of those missiles’ flights.

Because I do not know a priori the best time to deploy a decoy that can be used

for varying portions (i.e., subtasks) of the task of mitigating each missile, I must

decompose the task into sufficiently small time steps. Discretizing time exponentially

increases the search space, and thus the time to compute the solution; therefore, there

is a balance between optimality (and feasibility) and computation time. In order to

generate an exact solution, I chose the least-common multiple of the time constants,

which is trivially 1, as the unit of time in the simulation.

3.2.3 Labor and Delivery

This section provides a formal representation of the resource nurse’s decision making

problem. Section 5.3 describes how I implemented the decision support based on this

formulation.

A resource nurse must solve a problem of task allocation and schedule optimization

with stochasticity in the number and types of patients and the duration of tasks. A

task τi represents the set of steps (i.e., subtasks) required to care for patient i, and each

τ ji is a given stage of labor for that patient. Stages of labor are related by stochastic

lower-bound constraints W rel

〈τ ji ,τyx〉
, requiring the stages to progress sequentially. There
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are stochastic time constraints, Dabs
τ ji

and Drel

〈τ ji ,τyx〉
, relating the stages of labor to

account for the inability of resource nurses to perfectly control when a patient will

move from one stage of labor to the next. Arrivals of τi (i.e., patients) are drawn

from stochastic distributions. The model considers three types of patients: scheduled

cesarean patients, scheduled induction patients, and unscheduled patients. The set

of W rel

〈τ ji ,τyx〉
, Dabs

τ ji
and Drel

〈τi,τj〉 are dependent upon patient type.

Labor nurses are modeled as agents with a finite capacity to process tasks in

parallel, where each subtask requires a variable amount of this capacity. For example,

a labor nurse may generally take care of a maximum of two patients. If the nurse is

caring for a patient who is “fully and pushing” (i.e., the cervix is fully dilated and the

patient is actively trying to push out the baby) or in the operating room, the nurse

may only care for that patient.

Rooms on the labor floor (e.g., a labor room, an operating room, etc.) are modeled

as resources, which process subtasks in series. Agent and resource assignments to

subtasks are pre-emptable, meaning that the agent and resource assigned to care for

any patient during any step in the care process may be changed over the course of

executing that subtask.

In this formulation, At a
τ ji
∈ {0, 1} is a binary decision variable for assigning agent

a to subtask τ ji for time epoch [t, t + 1). Gt a
τ ji

is an integer decision variable for

assigning a certain portion of the effort of agent a to subtask τ ji for time epoch

[t, t+1). Rt r
τ ji
∈ {0, 1} is a binary decision variable for whether subtask τ ji is assigned

resource r for time epoch [t, t + 1). Hτi ∈ {0, 1} is a binary decision variable for

whether task τi and its corresponding subtasks are to be completed. Uτ ji
specifies the

effort required from any agent to work on τ ji . sτ ji
, fτ ji
∈ [0,∞) are the start and finish

times of τ ji .

min fn
(
{ At a

τ ji
}, { Gt a

τ ji
}, { Rt r

τ ji
}, {Hτi}, {sτ ji , fτ ji }

)
(3.35)
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∑
a∈A

At a
τ ji
≥ 1−M (1−Hτi) ,∀τ

j
i ∈ τ ,∀t (3.36)

M
(

2− At a
τ ji
−Hτi

)
≥ −Uτ ji + Gt a

τ ji
≥

M
(
At a
τ ji

+Hτi − 2
)
,∀τ ji ∈ τ ,∀t (3.37)∑

τ ji ∈τ

Gt a
τ ji
≤ Ca, ∀a ∈ A, ∀t (3.38)

∑
r∈R

Rt r
τ ji
≥ 1−M (1−Hτi) ,∀τ

j
i ∈ τ ,∀t (3.39)

∑
τ ji ∈τ

Rt r
τ ji
≤ 1,∀r ∈ R, ∀t (3.40)

ubτ ji
≥ fτ ji

− sτ ji ≥ lbτ ji
,∀τ ji ∈ τ (3.41)

sτyx − fτ ji ≥ W rel
〈τi,τj〉,∀τi, τj ∈ τ |,∀W

rel
〈τi,τj〉 ∈ TC (3.42)

fτyx − sτ ji ≤ Drel
〈τi,τj〉, ∀τi, τj ∈ τ |∃D

rel
〈τi,τj〉 ∈ TC (3.43)

fτ ji
≤ Dabs

τi
, ∀τi ∈ τ |∃Dabs

τi
∈ TC (3.44)

Equation 3.36 enforces that each subtask τ ji during each time epoch [t, t+1) is assigned

one agent. Equation 3.37 ensures that each subtask τ ji receives a sufficient portion of

the effort of its assigned agent a during time epoch [t, t + 1). Equation 3.38 ensures

that agent a is not oversubscribed. Equation 3.39 ensures that each subtask τ ji of each

task τi that is to be completed (i.e., Hτi = 1) is assigned one resource r. Equation

3.40 ensures that each resource r is assigned to only one subtask during each epoch

[t, t + 1). Equation 3.41 requires the duration of subtask τ ji to be less than or equal

to ubτ ji
and at least lbτ ji

units of time. Equation 3.42 requires that τ yx occurs at least

W rel

〈τ ji ,τyx〉
units of time after τ ji . Equation 3.43 requires that the duration between the

start of τ ji and the finish of τ yx is less than Drel

〈τ ji ,τyx〉
. Equation 3.44 requires that τ ji

finishes before Dabs
τ ji

units of time have expired since the start of the schedule.

The functions of a resource nurse are to assign nurses to take care of labor patients

and to assign patients to labor beds, recovery room beds, operating rooms, ante-

partum ward beds or post-partum ward beds. The resource nurse has substantial

flexibility when assigning beds, and their decisions will depend upon the type of
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patient and the current status of the unit in question. They must also assign scrub

technicians to assist with surgeries in operating rooms, and call in additional nurses if

required. The corresponding decision variables for staff assignments and room/ward

assignments in the above formulation are At a
τ ji

and Rt r
τ ji

, respectively.

The resource nurse may accelerate, delay or cancel scheduled inductions or ce-

sarean sections in the event that the floor is too busy. Resource nurses may also

request expedited active management of a patient in labor. The decision variables for

the timing of transitions between the various steps in the care process are described

by sτ ji
and fτ ji

. The commitments to a patient (or that patient’s procedures) are

represented by Hτi .

The resource nurse may also reassign roles among nurses. For example, a resource

nurse may pull a triage nurse or even care for patients herself if the floor is too busy. If

a patient’s condition is particularly acute (e.g., the patient has severe pre-eclampsia),

the resource nurse may assign one-to-one nursing. The level of attentional resources

a patient requires and the level a nurse has available correspond to variables Uτ ji
and

Gt a
τ ji

, respectively. The resource nurse makes his or her decisions while considering

current patient status Λτ ji
, which is manually transcribed on a whiteboard, shown in

Figure 3-2.

The stochasticity of the problem arises from the uncertainty in the upper and

lowerbound of the durations (ubτ ji
, lbτ ji

) of each of the steps in caring for a patient,

the number and types of patients τ , and the temporal constraints TC relating the

start and finish of each step. These variables are a function of the resource and staff

allocation variables Rt a
τ ji
, At a

τ ji
, and patient task state Λτ ji

, which includes information

on patient type (i.e., presenting with scheduled induction, scheduled cesarean section,

or acute unplanned anomaly), gestational age, gravida, parity, membrane status,

anesthesia status, cervix status, time of last exam, and any co-morbidities. Formally,(
{ubτ ji , lbτ ji |τ

j
i ∈ τ}, τ ,TC

)
∼ P ({ Rt a

τ ji
, At a

τ ji
,Λτ ji

,∀t ∈ [0, 1, . . . , T ]}).

The computational complexity of satisfying constraints in Equations 3.36-3.44

is given by O
(

2|A||R|T
2
C
|A|T
a

)
, where |A| is the number of agents, with each agent

possessing an integer processing capacity of Ca; there are n tasks τi, each with mi
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Figure 3-2: A resource nurse must assimilate a large variety and volume of information
to effectively reason about resource management for patient care.

subtasks; |R| resources; and an integer-valued planning horizon of T units of time. In

practice, there are ∼ 10 nurses (agents) who can care for up to two patients at a time

(i.e., Ca = 2,∀a ∈ A), 20 different rooms (resources) of varying types, 20 patients

(tasks) at any one time and a planning horizon of 12 hours or 720 minutes, yield-

ing a worst-case complexity of ∼ 210∗20∗7202210∗720 ≥ 2106 , which is computationally

intractable for exact methods without the assistance of informative search heuristics.

3.3 Model for Apprenticeship Learning

In this section, I present a new computational method for learning, via expert demon-

stration, a scheduling policy that correctly determines which task to schedule as a

function of the state of the scheduling environment. In Section 3.5, I apply this

method to learn from demonstration how to make scheduling decisions in three prac-

tical domains.

Many approaches to learning via demonstration, such as reinforcement learning

or IRL, are based on Markov models [14, 33, 136, 205]. Markov models, however,

do not capture the temporal dependencies between states and are computationally

intractable for large problem sizes. In order to determine which tasks to schedule

at which times, I draw inspiration from the domain of web page ranking [193], or

predicting the most relevant web page in response to a search query. One important

component of page ranking is capturing how pages relate to one another as a graph
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with nodes (representing web pages) and directed arcs (representing links between

those pages) [193]. This connectivity is a suitable analogy for the complex temporal

dependencies (precedence, wait, and deadline constraints) relating tasks within a

scheduling problem.

Within the three general classes of page-ranking models (i.e., pointwise [251], pair-

wise [120, 194], and listwise [36, 251, 253]), the pairwise model has key advantages.

First, classification algorithms (e.g., support vector machines) can be directly ap-

plied [36]. Second, a pairwise approach is non-parametric, in that the cardinality of

the input vector is not dependent upon the number of tasks (or actions) that can

be performed in any instance. Third, training examples of pairwise comparisons in

the data can be readily solicited. From a given observation during which a task was

scheduled, I only know which task was most important – not the relative importance

between all tasks. Thus, I create training examples based on pairwise comparisons

between scheduled and unscheduled tasks. A pairwise approach is more natural be-

cause one lacks the necessary context to determine the relative rank between two

unscheduled tasks.

Consider a set of tasks, τi ∈ τ , in which each task has a set of real-valued features,

γτi . Each scheduling-relevant feature γjτi may represent, for example, the deadline, the

earliest time the task is available, the duration of the task, which resource r is required

by this task, etc. Next, consider a set of m observations, O = {O1, O2, . . . , Om}.

Observation Om consists of a feature vector {γτ1 , γτ2 , . . . , γτn} describing the state of

each task, the task scheduled by the expert demonstrator (including a null task, τ∅,

if no task was scheduled) and the time at which an action was taken. The goal is to

learn a policy that correctly determines which task to schedule as a function of the

task state.

I deconstruct the problem into two steps: 1) For each agent/resource pair, deter-

mine the candidate next task to schedule; and 2) For each task, determine whether to

schedule the task from the current state. Both of these abilities are learned through

either observing a demonstrative scheduling action (e.g., assigning a task to an agent)

or by observing that no scheduling action is taken (i.e., a null action). Being able

91



to execute a null action, or idling, is necessary for solving scheduling problems with

upper- and lowerbound temporal constraints [22]. For example, consider a task that

must be executed at time t + 1 in order to satisfy its deadline; further, it’s wait

constraint will not be satisfied until that same time, t + 1. Yet, there is a second

task that is available at the current time, t, and its deadline can be trivially satisfied

by executing the task at any point during the schedule. An opportunistic scheduler

would naturally schedule the second task because it is currently available; however,

this would result in the first task violating its deadline constraint. Thus, the optimal

decision would have been to idle for one unit of time before executing the first task.

In order to learn to correctly assign the next task to schedule, I transform each

observation Om into a new set of observations by performing pairwise comparisons

between the scheduled task τi and the set of unscheduled tasks (Equations 3.45 and

3.46). Equation 3.45 creates a positive example for each observation in which a task

τi was scheduled. This example consists of the input feature vector, φm〈τi,τx〉, and a

positive label, ym〈τi,τx〉 = 1. Each element of the input feature vector φm〈τi,τx〉 is computed

as the difference between the corresponding values in the feature vectors γτi and γτx ,

describing scheduled task τi and unscheduled task τx. Equation 3.46 creates a set of

negative examples with ym〈τx,τi〉 = 0. For the input vector, I take the difference of the

feature values between unscheduled task τx and scheduled task τi.

rankθm〈τi,τj〉 :=
[
ξτ , γτi − γτj

]
, ym〈τi,τj〉 = 1,

∀τj ∈ τ\τi,∀Om ∈ O|τi scheduled in Om (3.45)

rankθm〈τj ,τi〉 :=
[
ξτ , γτj − γτi

]
, ym〈τj ,τi〉 = 0,

∀τj ∈ τ\τi,∀Om ∈ O|τi scheduled in Om (3.46)

τ̂ ∗i = argmax
τi∈τ

∑
τj∈τ

fpriority (τi, τj) (3.47)
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actφmτi := [ξτ , γτi ] ,

ymτi =

 1 : τi scheduled in Om ∧ τi scheduled in Om+1

0 : τ∅ scheduled in Om

(3.48)

This feature set is then augmented to capture additional contextual information

important for scheduling, which may not be captured in examples consisting solely of

differences between task features. For example, a scheduling policy may change based

on progress toward task completion; i.e., the proportion of tasks completed so far.

To provide this high-level information, I include ξτ , the set of contextual, high-level

features describing the set of tasks for observation Om, in (Equations 3.45-3.46).

My technique relies upon the ability of domain experts to articulate an appropriate

set of features for the problem. I believe this to be a reasonable limitation. Results

from prior work have indicated that domain experts are adept at describing the (high-

level, contextual and task-specific) features used in their decision-making; however, it

is more difficult for experts to describe how they reason about these features [45, 206].

In future work, I aim to extend my approach to include feature learning rather (e.g.,

a convolutional neural network analogy for scheduling) than relying upon experts to

enumerate the important features they reason about in order to construct schedules.

Given these observations Om and their associated features, I can train a classifier

fpriority(τi, τj) ∈ {0, 1} to predict whether it is better to schedule task τi as the next

task rather than τx. With this pairwise classifier, I can determine which single task τi

is the highest-priority task τ ∗i according to Equation 3.47 by determining which task

has the highest cumulative priority in comparison to the other tasks in τ .

In this work, I train a single classifier fpriority(τi, τj) to model the behavior of the

set of all agents rather than train one fpriority(τi, τj) for each agent. fpriority(τi, τj)

is a function of all features associated with the agents; as such, agents need not be

interchangeable, and different sets of features may be associated with each agent.

Next, I must learn to predict whether τ ∗i should be scheduled or the agent should

remain idle. Idling is an important characteristic of scheduling with upper and lower-

bound deadlines. Thus, I train a second classifier, fact(τi) ∈ {0, 1}, that predicts
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whether or not τi should be scheduled. The observations set, O, consists of either

examples in which a task was scheduled or those in which no task was scheduled. To

train this classifier, I construct a new set of examples according to Equation 3.48,

which assigns positive labels to examples from Om in which a task was scheduled and

negative labels to examples in which no task was scheduled.

Finally, I construct a scheduling algorithm to act as an apprentice scheduler (Al-

gorithm 1). This algorithm takes as input the set of tasks τ , agents A, temporal

constraints (i.e., upper- and lowerbound temporal constraints) relating tasks in the

problem TC, and the set of task pairs that require the same resources and can there-

fore not be executed at the same time, τR. Lines 1-2 iterate over each agent at each

time step. In Line 3, the highest-priority task τ ∗i is determined for a particular agent.

In Lines 4-5, τ ∗i is scheduled if fact(τ
∗
i ) predicts that τ ∗i should be scheduled at the

current time. While this approach is greedy, we empirically validate its advantages in

Section 3.5, and, in Chapter 4, extend apprenticeship scheduling to efficiently produce

globally optimal solutions.

Note that iteration over agents (Line 2) can be performed according to a specified

ordering, or one can alternatively learn a more general priority function to select

and schedule the best agent-task-resource tuple using fpriority (〈τi, a, r〉 , 〈τj, a′, r′〉),

fact (〈τi, a, r〉∗). In the latter case, the features γτi are mapped to agent-task-resource

tuples rather than tasks. I further note that τi represents the atomic (i.e., lowest-level)

job. For the synthetic evaluation, I use the original formulation fpriority(τi, τj). For

the ASMD application, I use fpriority
(
〈τ ti , a, r〉 ,

〈
τ tj , a

′, r′
〉)

, where τ ti represents the

objective of mitigating missile i during time step t, a is the decoy to be deployed, and

r is the physical location for that deployment. For the healthcare evaluation, I use

fpriority
(〈
τ ji , a, r

〉
,
〈
τ qp , a

′, r′
〉)

, where τ ji represents the jth stage of labor for patient

i, a is the assigned nurse, and r is the room to which the patient is assigned. For

convenience in notation, I refer to this tuple as a “scheduling action.”

This hybrid point- and pairwise formulation for predicting which action is best

via fpriorityτi, τj, has several key benefits for learning to schedule form expert demon-

stration. First, one can directly apply standard classification techniques, such as a
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decision tree, support vector machine, logistic regression, or neural networks. Sec-

ond, because one only considers two scheduling actions at a time, the model is non-

parametric in the number of possible actions. Thus, one can train fpriority(τi, τj) on

schedules with a agents and n tasks yet apply fpriority(τi, τj) to construct a schedule

for a problem with a′ agents and n′ tasks such that a 6= a′, n 6= n′, and a ∗n 6= a′ ∗n′.

Furthermore, one can even train fpriority(τi, τj) on demonstrations of a heterogeneous

data set of scheduling observations with differing numbers of agents and tasks. Third,

the pairwise portion of the formulation provides structure to the learning problem.

A formulation that simply concatenated the features of two or more scheduling ac-

tions would need to solve the more complex problem of learning the relationships

between features and then how to use those relationships to predict the highest prior-

ity scheduling action. Such a concatenation approach would suffer from the curse of

dimensionality [117]. I note, however, that this strength is also a limitation: I assume

that this hybrid model does not lose any information by considering the differences

between actions’ features. Fourth, the number of positive and negative training ex-

amples is balanced given that I simultaneously create one negative label for every

positive label. Finally, the model bootstraps the data to create 2 ∗ |τ | examples for

each time step, rather than only |τ | for a purely pointwise model, or even simply 1

example in the case of modeling time series data such as through a Hidden Markov

Model.

Note that fact(τi) represents a pointwise formulation for deciding whether or not

to take action τi. However, one could easily eliminate fact(τi) entirely, folding it into

fpriority(τi, τj), where τj is a null action. The intuition for using a separate function

fact(τi) in this work lies in the inherent difference between finding which actions

are better than others (i.e., according to an objective function or heuristic) versus

evaluating whether that action is feasible (i.e., constraint satisfaction).
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Algorithm 1 Pseudocode for an Apprentice Scheduler

ApprenticeScheduler(τ ,A,TC,τR)

1: for t = 0 to T do
2: for all agents a ∈ A do
3: τ ∗i ← argmax

τi∈τ

∑
τj∈τ

fpriority(τi, τj)

4: if fact(τ
∗
i ) == 1 then

5: Schedule τ ∗i
6: end if
7: end for
8: end for

3.4 Data Sets

Next, I validate that schedules produced by the learned policies are of comparable

quality to those generated by human or synthetic experts. I considered a synthetic

data set from the XD [ST-SA-TA] class of problems and a real-world data set from

the CD [MT-MA-TA] class of problems defined by Korsah et al. [139].

3.4.1 Synthetic Data Set

For my first investigation, I generated a synthetic data set of scheduling problems in

which agents were assigned to complete a set of tasks. Tasks were related through

precedence or wait constraints as well as deadline constraints, which could be absolute

(relative to the start of the schedule) or relative to another task’s start or finish time.

Agents were required to access a set of shared resources to execute each task (e.g., the

task’s physical location). Agents and tasks had defined starting locations, and task

locations were static. Each agent traveled at a constant speed between task locations,

and agents were only able to perform tasks when present at the corresponding task

location. Task completion times were potentially non-uniform and agent-specific,

as would be the case for heterogeneous agents. An agent that was incapable of

performing a task was assumed to have an infinite completion time for that task. The

objective was to minimize the makespan or other time-based performance measures.

This problem definition spans a range of scheduling problems, including the trav-

eling salesman, job-shop scheduling, multi-vehicle routing, and multi-robot task al-
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location problems, among others. I describe this range as a vehicle routing prob-

lem with time windows, temporal dependencies, and resource constraints (VRPTW-

TDR), which falls within the XD [ST-SA-TA] class in the taxonomy by [139]: agents

perform tasks sequentially (ST), each task requires one agent (SA), and commitments

are made over time (TA).

To generate my synthetic data set, I developed a mock scheduling expert that

applies one of a set of context-dependent rules based on the composition of the given

scheduling problem. This behavior was based upon rules presented in prior work

addressing these types of problems [90, 91, 231, 241]. My objective was to show that

my apprenticeship scheduling algorithm learns both context-dependent rules as well

as to show how to identify the associated context for their correct application.

The mock scheduling expert functions as follows: First, the algorithm collects all

alive and enabled tasks τi ∈ τAE as defined by [177]. Consider a pair of tasks τi and

τj, with start and finish times si, fi and sj, fj, respectively, such that there is a wait

constraint requiring τi to start at least W rel
〈τj ,τi〉 units of time after τj. A task τi is alive

and enabled if 1) t ≥ fj +W rel
〈τj ,τi〉 for all such τj and W rel

〈τj ,τi〉 in τ and 2) any absolute

wait constraint has been satisfied (i.e., W abs
τi
≤ t).

Next, the heuristic iterates over each agent to identify the highest-priority task, τ ∗i ,

to schedule for that agent. The algorithm determines which scheduling rule is most

appropriate to apply for each agent. If agent speed is sufficiently slow (≤ 1 m/s),

travel time will become the major bottleneck. If agents move quickly but heavily

utilize one or more resources R (
∑

τi

∑
τj

1Rτi=Rτj ≥ c for some constant c), use of

these resources can become the bottleneck. Otherwise, task durations and associated

wait constraints are generally most important.

If the algorithm identifies travel distance as the primary bottleneck, it chooses the

next task by applying a priority rule well-suited for vehicle routing that minimizes a

weighted, linear combination of features [84, 231] comprised of the distance and angle

relative to the origin between agent a and τj. This rule is depicted in Equation 3.49,

where ~lx is the location of τj, ~la is the location of agent a, θxa is the relative angle

between the vector from origin to the agent location and the origin to the location of
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τj, and α1 and α2 are weighting constants.

τ ∗i ← argmin
τj∈τAE

(
‖~lx −~la‖+ α1θxa + α2‖~lx −~la‖θxa

)
(3.49)

If the algorithm identifies resource contention as the most important bottleneck, it

employs a rule to mitigate resource-contention in multi-robot, multi-resource prob-

lems based on prior work in scheduling for multi-robot teams [91]. Specifically, the

algorithm uses Equation 3.50 to select the high-priority task to schedule next, where

dτj is the deadline of τj and α3 is a weighting constant.

τ ∗i ← argmax
τj∈τAE

∑
τi

∑
τj

1Rτi=Rτj

− α3dτj

 (3.50)

If the algorithm decides that temporal requirements are the major bottleneck, it

employs an Earliest Deadline First rule (Equation 3.51), which performs well across

many scheduling domains [43, 90, 91].

τ ∗i ← argmin
τj∈τAE

dτj (3.51)

After selecting the most important task, τ ∗i , the algorithm determines whether the

resource required for τ ∗i , Rτ∗i
, is idle and whether the agent is able to travel to the

task location by time t. If these constraints are satisfied, the heuristic schedules task

τ ∗i at time t. (An agent is able to reach task τ ∗i if t ≥ fj + k (li − lj) /‖li − lj‖ for all

τj ∈ τ that the agent has already completed, where k is the agent’s speed.)

I constructed the synthetic data set for two homogeneous agents and 20 partially

ordered tasks located within a 20 x 20 grid.

Algorithmic Description

For reproducibility, I provide the pseudocode of the mock expert shown in Figure

3-3. In Line 1, the heuristic retrieves all alive and enabled tasks τi ∈ τAE. A

task τi is alive and enabled if all of its wait constraints have been satisfied (i.e.,
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t ≥ fτj +W rel
〈τj ,τi〉,∀W

rel
〈τj ,τi〉). Next, the heuristic iterates over each agent and each task

to find the highest priority task τ ∗i to schedule for each agent a. In Lines 3-12, the

algorithm determines which heuristic is most appropriate to apply.

If the speed of the agents is sufficiently slow, then the travel distance will become

the major bottleneck. If the agents are fast, but there are one or more resources

that are heavily utilized, then these resources can become the bottleneck. Otherwise,

the duration of the task and their associated wait constraints are generally the most

important to consider.

In Line 3, the algorithm decides travel distance as the most important bottleneck.

As such, the algorithm applies a heuristic rule to find the task that maximizes a

weighted, linear combination of hand-crafted features comprised of the distance and

angle relative to the origin between agent a and τi as well as the distance, the angle

relative to the origin between agent τj and agent b, and an indicator term for whether

τi must be executed to satisfy a wait constraint for another task τj. Here, lτi , la, and

lb are the locations in R2 of task τi, agent a, and agent b 6= a.

In Line 5, the algorithm determines that there may be a resource bottleneck and

tries to alleviate this potential bottleneck. As such, the algorithm applies a heuristic

rule that returns the task τ ∗i ∈ τAE that maximizes a weighted, linear combination

of the commonality of the task’s required resource and its deadline. Lastly, if neither

travel distance or resource contention are perceived to be the major bottlenecks, the

algorithm applies an Earliest Deadline First rule.

3.4.2 Real-World Data Set: ASMD

A real-world data set was collected, consisting of human demonstrators of various skill

levels solving the ASMD problem. Data was collected from domain experts playing

a serious game, called Strike Group Defender2 (SGD), for ASMD training. Game

scenarios involved five types of decoys and ten types of threats. The threats were

randomly generated for each played scenario, thereby promoting the development of

strategies that were robust to a varied distribution of threat scenarios. Each decoy

2SGD was developed by Pipeworks Studio in Eugene, Oregon, USA.
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MockHeuristic( τ , A, TC, τR, AC)

1: τAE ← all alive and enabled τi ∈ τ
2: for all agents a ∈ A do
3: if speed ≤ 1 m\s then

4: τ ∗i = argmin
τi∈τAE

(
α1‖lτi−la‖+α2

acos(lτi ·la)

‖lτi‖‖la‖
+α3‖lb − la‖+ α4

acos(lb·lτi )
‖lb‖‖lτi‖

+ 1rel(
∃W〈τi,τj〉

)


5: else if
∑

τi∈τ
∑

τyx∈τ 1Rτi=Rτj ≥ ε then

6: τ ∗i = argmax
τi∈τAE

(
α′1

(∑
τj

1(Rτi=Rτj)

)
+α′′2

(
max

(
dτj
)
− dτi

))
7: else
8: τ ∗i = argmin

τi∈τAE

(dτi)

9: end if
10: if a and r can schedule τ ∗i at time t then
11: schedule τ ∗i
12: end if
13: end for

Figure 3-3: Pseudocode for the Mock Heuristic.

had a specified effectiveness against each threat type. Players attempted to deploy

a set of decoys using the correct types at the correct locations and times in order to

distract incoming missiles. Threats were launched over time; an effective deployment

at time t could become counterproductive in the future as new enemy missiles were

launched.

Games were scored as follows: 10, 000 points were received each time a threat

was neutralized and 2 points were received for each second a threat spent homing

in on a decoy. 5, 000 points were deducted for each threat impact and 1 point was

deducted for each second a threat spent homing in the players ship. 25-1, 000 points

were subtracted for each decoy deployment, with the deducted point value depending

upon the decoy type.

The collected data set consisted of 311 games played by 35 humans across 45

threat configurations, or “levels.” From this set, I also separately analyzed 16 threat

configurations such that each configuration included at least one human demonstra-

tion in which the ship was protected from all enemy missiles. For these 16 threat

configurations, there were 162 total games played by 27 unique human demonstra-
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tors. The sample population consisted of technical fellows and associates, as well

as contractors at a federally funded research and development center (FFDRC), and

their expertise varied from “generally knowledgeable about the ASMD problem” to

“domain experts” with professional experience or training in ASMD.

3.4.3 Real World Dataset: Labor and Delivery

I collected another real-world data set – this time consisting of resource nurses on

the labor and delivery floor at Beth Israel Deaconess Medical Center. To collect data

of decisions from resource nurses, a high-fidelity simulation of a labor and delivery

floor was developed, as shown in Figure 3-4. I spearheaded the development of this

simulation under the auspices of a hospital quality improvement project as a training

tool over a year-long, rigorous design and iteration process that included workshops

with nurses, physicians, and medical students to ensure the tool accurately captured

the role of a resource nurse. Parameters within the simulation (e.g., arrival of pa-

tients, timelines on progression through labor) were drawn from medical textbooks

and papers and modified through alpha and beta testing to ensure that the simulation

closely mirrored the patient population and nurse experience at my partner hospital.

I invited expert resource nurses to play this simulation to collect a dataset for

training the apprenticeship scheduling algorithm. This dataset was generated by

seven resource nurses working with the simulation for a total of 21/2 hours, simulating

60 hours of elapsed time on a real labor floor. This yielded a dataset of more than

3, 013 individual decisions.

3.5 Empirical Evaluation

In this section, I evaluate my prototype for apprenticeship scheduling on the synthetic

and real-world data sets.
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3.5.1 Synthetic Data Set

I trained my model using a decision tree, KNN classifier, logistic regression (logit)

model, support vector machine with a radial basis function kernel (SVM-RBF), and

a neural network to learn fpriority(., .) and fact(.). I randomly sampled 85% of the

data for training and 15% for testing.

I defined the features as follows: The high-level feature vector of the task set, ξτ ,

was comprised of the agents’ speed and the degree of resource contention
∑

τi

∑
τj

1Rτi=Rτj .

The task-specific feature vector γτi was comprised of the task’s deadline, a binary in-

dicator for whether or not the task’s precedence constraints had been satisfied, the

number of other tasks sharing the given task’s resource, a binary indicator for whether

or not the given task’s resource was available, the travel time remaining to reach the

task location, the distance agent a would travel to reach τi, and the angular difference

between the vector describing the location of agent a and the vector describing the

position of τi relative to agent a.

I compared the performance of my hybrid pairwise-pointwise approach with a

purely pointwise approach as well as a näıve approach. In the pointwise approach,

training examples for selecting the highest-priority task were of the form rankφmτi :=

[ξτ , γτi ]. The label γmτi was equal to 1 if task τi was scheduled in observation m, and

was 0 otherwise. In the näıve approach, examples were comprised of an input vector

that concatenated the high-level features of the task set and the task-specific features

of the form rankφm := [ξτ , γτ1 , γτ2 , . . . , γτn ]; labels ym were given by the index of the

task τi scheduled in observation m.

Figures 3-5 and 3-6 depict the sensitivity (true positive rate) and specificity (true

negative rate) of the model, respectively. I found that a pairwise model outper-

formed the pointwise and näıve approaches. Within the pairwise model, a decision

tree yielded the best performance. The trained decision tree was able to identify

the correct task and when to schedule that task 95% of the time, and was able to

accurately predict when no task should be scheduled 96% of the time.

To more fully understand the performance of a decision tree trained with a pairwise
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Figure 3-5: Sensitivity of machine learning techniques using the pairwise, pointwise,
and näıve approaches.

Figure 3-6: Specificity of machine learning techniques using the pairwise, pointwise,
and näıve approaches.
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Figure 3-7: Sensitivity for a pairwise decision tree varying the number and proportion
of correct demonstrations.

Figure 3-8: Specificity for a pairwise decision tree varying the number and proportion
of correct demonstrations.
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model as a function of the number and quality of training examples, I trained decision

trees with my pairwise model using 15, 150, and 1,500 demonstrations. The sensitivity

and specificity depicted in Figures 3-7 and 3-8 for 15 and 150 demonstrations are

the mean sensitivity and specificity of 10 models trained via random sub-sampling

without replacement. I also varied the quality of the training examples, assuming the

demonstrator was operating under an ε-greedy approach with a (1 − ε) probability

of selecting the correct task to schedule and selecting another task from a uniform

distribution otherwise. This assumption is conservative; a demonstrator making an

error would be more likely to pick the second- or third-best task than to select a task

at random.

Training a model based on pairwise comparison between the scheduled task and

unscheduled tasks effectively produced a comparable policy to that of the synthetic

expert. The decision tree model performed well due to the modal nature of the mul-

tifaceted scheduling heuristic. Note that this dataset was composed of scheduling

strategies with mixed discrete-continuous functional components; performance could

potentially be improved upon in future work by combining decision trees with logis-

tic regression. This hybrid learning approach has been successful in prior machine

learning classification tasks [143] and can be readily applied to this apprenticeship

scheduling framework. There is also an opportunity to improve performance through

hyper-parameter tuning (e.g., to select the minimum number of examples in each leaf

of the decision tree). Comprehensive investigation of the relative benefits for a range

of learning techniques is left for future work.

Importantly, I note that the results presented in Figures 3-5-3-8 were achieved

without any hyper-parameter tuning. For example, with the decision tree, I did not

perform an inner cross-validation loop to estimate the minimum number of examples

in each leaf to achieve the best performance. The purpose of this analysis was to

merely show that, with our pair-wise approach, we can in fact accurately learn expert

heuristics from example. In the following section, I investigate how apprenticeship

scheduling using a decision tree classifier can be improved via an inner cross validation

loop to tune the model’s hyper-parameters.
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Additional Evaluation

My initial analysis above was performed to identify which techniques have inherent

advantages that can be realized without extensive hyper-parameter tuning. This ini-

tial analysis showed that the pairwise formulation for apprenticeship scheduling, in

conjunction with a decision tree classifier, has advantages over alternative formula-

tions for learning a high-quality scheduling policy. Given evidence of this advantage,

I now further evaluate the potential of the pairwise formulation with hyper-parameter

tuning.

To improve the performance of the model, I manipulated the “leafiness” of the

decision tree to find the best setting to increase the accuracy of the apprenticeship

scheduler. Specifically, I varied the minimum number of training examples required in

each leaf of the decision tree. As the minimum number of examples required for each

leaf decreases, one increases the chance of over-fitting to the data. Conversely, as the

minimum number increases, one increases the chance of not learning a helpful policy

(i.e., under-fitting). To identify the best number of leaves for generalization, I tested

values for the minimum number of examples required for each leaf of the decision tree

in the set {1, 5, 10, 25, 50, 100, 250, 500, 1000}. If the minimum number of examples

in each leaf exceeded the total number of examples, the setting was trivially set to

the total number of examples available for training.

I performed 5-fold cross-validation for each value of examples as follows. I trained

an apprentice scheduler on four-fifths of the training data and test on one-fifth of the

data. We record the average testing accuracy across each of the five folds. Then, the

setting of the minimum number of examples required for each leaf that yielded the

best accuracy during 5-fold cross validation was used to train a full apprenticeship

scheduling model on all of the training data, which was 85% of the total data. Finally,

the full apprenticeship scheduling model was tested on the 15% of the total data

reserved for testing. Thus, none of the data used for testing the full model was used

to estimate the best setting for the leafiness of the tree. Finally, I repeat this procedure

ten times, randomly subsampling the data and taking the average performance across
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Figure 3-9: Sensitivity for a pairwise decision tree, tuned for leafiness, varying the
number and proportion of correct demonstrations.

Figure 3-10: Specificity for a pairwise decision tree, tuned for leafiness, varying the
number and proportion of correct demonstrations with homogeneous agents.

the ten trials.

The sensitivity and specificity of the fully-trained apprenticeship scheduling algo-

rithm are depicted in Figures 3-11 and 3-12 for 1, 5, 15, and 150 scheduling demon-

strations. As before, I also varied the quality of the training examples, assuming the

demonstrator was operating under an ε-greedy approach with a (1 − ε) probability

of selecting the correct task to schedule and selecting another task from a uniform

distribution otherwise.

Furthermore, to make the problem more complex, I also constructed an entirely

new data set of examples from the mock heuristic in which the agents are now het-

erogeneous, meaning that task completion times are agent specific. Each agent’s task

completion time, Ca
i , was drawn from a Gaussian distribution with a task-specific
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Figure 3-11: Sensitivity for a pairwise decision tree, tuned for leafiness, varying the
number and proportion of correct demonstrations. The corresponding data set was
comprised of schedules with heterogeneous agents.

Figure 3-12: Specificity for a pairwise decision tree, tuned for leafiness, varying the
number and proportion of correct demonstrations. The corresponding data set was
comprised of schedules with heterogeneous agents.

mean µi and common variance σi. Values were limited to the range [1, 10]. The

sensitivity and specificity of the fully-trained apprenticeship scheduling algorithm on

the heterogeneous data set are likewise depicted in Figures 3-9 and 3-10

For both the homogeneous and heterogeneous cases, I find that the apprenticeship

scheduling algorithm was able to average ≥ 90% sensitivity and specificity either with

five perfect schedules or fifteen schedules generated by an operating making mistakes

20% of the time. Hyper-parameter tuning was able to substantially increase the

sensitivity of the model from 59% to 82% for five scheduling examples generated by

an operating making mistakes 20% of the time. Recall that a schedule consists of

allocating twenty tasks to two workers and sequencing those tasks in time.
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3.5.2 Real-World Data Set: ASMD

I trained and tested a decision tree on my pairwise scheduling model via leave-one-out

cross-validation using 16 real demonstrations in which a player successfully protected

the ship from all enemy missiles. Each demonstration originated from a unique threat

scenario. Features for each decoy/missile pair (or null decoy deployment due to

inaction) included indicators for whether a decoy had been placed such that a missile

was successfully distracted by that decoy, whether a missile would be lured into hitting

the ship due to decoy placement, or whether a missile would be unaffected by decoy

placement.

Across all 16 scenarios, the mean player score was 74, 728 ± 26, 824. With only

15 examples of expert human demonstrations, my apprenticeship scheduling model

achieved a mean score of 87, 540 with a standard deviation of 16, 842.

I performed a statistical analysis to evaluate my hypothesis that the scores pro-

duced by the learned policy would be statistically significantly better than the scores

achieved by the human demonstrators. The null hypothesis stated that the number

of scenarios in which the apprenticeship scheduling model achieved superior perfor-

mance would be less than or equal to the number of scenarios in which the mean

score of the human demonstrators was superior to that of the apprenticeship sched-

uler. I set the significance level at α = 0.05, which means that the risk of identifying

a difference between the mean scores earned by the apprenticeship scheduler and the

set of human performers when no such difference exists is less than 5%.

Results from a binomial test rejected the null hypothesis, indicating that the

learned scheduling policy performed better than the human demonstrators in signif-

icantly more scenarios (12 versus 4 scenarios; p < 0.011). In other words, I can say

with 95% certainty that the apprenticeship scheduler is superior to the average human

demonstrator. This promising result was achieved using a relatively small training

set, and suggests that learned policy can form the basis for a training tool to improve

the average player’s score.
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3.5.3 Real-World Data Set: Labor and Delivery

To test the efficacy of the apprenticeship scheduling algorithm for labor and delivery,

I asked a group of physicians and registered nurses (one man and sixteen women)

to validate whether the apprenticeship scheduler generated advice in-keeping with

what a resource nurse would do. This group consisted of seventeen physicians and

registered nurses participated in the experiment. The participants were recruited from

the partner hospital’s obstetrics department via email and word-of-mouth. I found

that the apprenticeship scheduling algorithm, trained on a data set of expert resource

nurses, produced high-quality recommendations accepted by nurses and physicians

at a compliance rate of 90%. This indicates that an apprentice scheduler may be

able to learn context-specific decision strategies and apply them to make reasonable

suggestions for which tasks to perform and when. This initial finding in labor and

delivery is promising, and, in Chapter 5, I build on this finding to investigate the

development of a full robotic system based on apprenticeship scheduling.

3.6 Anomalies and Future Work

The core of my apprenticeship scheduling algorithm is comprised of learning a classi-

fier, fpriority(τi, τj), to predict whether a human expert would take action τi over τj.

The output of fpriority(τi, τj) is a probability in [0, 1]. This pairwise approach has a

number of key advantages. For example, it is nonparametric in the number of tasks,

meaning one can learn from problems with n actions and apply that knowledge to

problems with n′ 6= n actions. However, there are two interesting anomalies inherent

in this approach. First, one could hypothetically evaluate fpriority(τi, τj) and find that

it predicts that the expert has a higher probability of taking action τi than τj; yet,

evaluating argmax
τi∈τ

∑
τj∈τ

fpriority(τi, τj) could predict that τj is the action most likely to

be taken by the expert. The second anomaly entails the lack of a guarantee that the

transitive property will hold for arbitrary fpriority(τi, τj). For example, it could be

that fpriority(τi, τj) > 0.5, fpriority(τj, τk) > 0.5, but fpriority(τk, τi) > 0.5 for some τi,

τj, and τk. It is unclear how this property would affect the macroscopic behavior of
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the algorithm, but it is worth investigating in future work. Through my evaluation, I

have shown that my formulation for apprenticeship scheduling can learn high quality

policies from human domain experts’ demonstrations. However, an interesting area

of future work would be to study these anomalies, quantify their effects – if any –

and develop a formulation to alter their effects. For example, one could consider the

following formulation in Equations 3.52 through 3.57 when learning a decision tree

model, T ∗, for apprenticeship scheduling.

T ∗ = argmin
T

Eθ,y[L(ym〈τi,τj〉, T (rankθm〈τi,τj〉))] (3.52)

subject to

T (rankθm〈τi,τj〉) > 0.5 +M(1− Zi,j),∀τi, τj (3.53)

T (rankθm〈τi,τj〉) < 0.5 +M(Zi,j), ∀τi, τj (3.54)∑
τk∈τ

T (rankθm〈τi,τk〉)−
∑
τk∈τ

T (rankθm〈τj ,τk〉) > M(1− Zi,j), ∀τi, τj (3.55)

∑
τk∈τ

T (rankθm〈τi,τk〉)−
∑
τk∈τ

T (rankθm〈τj ,τk〉) < M(Zi,j),∀τi, τj (3.56)

Zi,j + Zj,k − 1 ≥ Zi,k,∀τi, τj, τk (3.57)

Equation 3.52 states that we want to find the decision tree T ∗ amongst all possible

trees T that minimizes an expected loss function, L. Recall from Section 3.3 that

ym〈τi,τj〉 is the binary label given to an observation to indicate whether the human

demonstrator took action τi or τj. Further, rankθm〈τi,τj〉 is the corresponding feature

vector from that observation. Equations 3.53 through 3.56 force the pairwise com-

parisons to agree with the cumulative ranking. Zi,j is a binary decision variable that

is equal to one when τi is expected to be taken over τj and zero when τj is expected

to be taken over τi. Finally, M is a large, positive number. Finally, Equation 3.57

requires that 3.57 the transitive property holds for T . Specifically, if τi is predicted

to be more likely than τj (i.e, Zi,j = 1), and τj (i.e, Zj,k = 1) is more likely than τk,

then τi should also be predicted to be more likely than τk (i.e, Zi,k = 1).
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3.7 Conclusions

In this chapter, I propose a technique for apprenticeship scheduling that relies on a

pairwise comparison of scheduled and unscheduled tasks to learn a model for task

prioritization. I validated my apprenticeship scheduling algorithm using both a syn-

thetic data set covering a variety of scheduling problems with lower- and upperbound

temporal constraints, resource constraints, and travel distance considerations, as well

as a two real-world data sets in which human demonstrators solved a variant of the

weapon-to-target assignment problem and a resource allocation problem in health-

care. My approach was able to learn high-quality policies for decision-making in labor

and delivery as well as anti-ship missile defense. In the next chapter, I build upon

this work in policy learning to build a machine learning-optimization framework to

learn to produce super-human scheduling solutions.
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Chapter 4

Learning to Make Super-Human

Scheduling Decisions

4.1 Introduction

In Chapter 3, I developed a method, apprenticeship scheduling, to learn to sched-

ule from human expert demonstration. This technique is the first step in a larger

picture. Apprenticeship scheduling is a form of policy learning specifically suited

for scheduling. However, the quality of the solutions is limited by the quantity and

quality of the humans’ demonstrations. Further, employing policy learning to sequen-

tially construct a schedule has drawbacks. Small deviations from the ideal scheduling

action at each step may result in a large, cumulative deviation from the intended,

optimal schedule. The next logical step is then to combine policy learning with a

goal-based feedback mechanism to improve quality of the schedules produced by the

apprenticeship scheduling algorithm.

In this chapter, I propose Collaborative Optimization via Apprenticeship Schedul-

ing (COVAS), an approach that incorporates machine learning from human expert

demonstration (i.e., apprenticeship scheduling), in conjunction with optimization,

to automatically and efficiently produce optimal solutions to challenging real-world

scheduling problems. My method use apprenticeship scheduling to perform policy

learning using a training dataset comprised of schedules demonstrated by humans [89].
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COVAS uses apprenticeship scheduling to generate a favorable (if suboptimal) initial

solution to a new scheduling problem. COVAS uses this initial solution to provide

a tight bound on the value of the optimal solution, substantially improving the effi-

ciency of a branch-and-bound search for an optimal schedule. To ensure compatibility

between the apprentice scheduler’s solution and the MILP formulation, I augment the

apprenticeship scheduler to solve a constraint satisfaction problem, ensuring that the

execution of each scheduling commitment does not directly result in infeasibility.

I demonstrate my approach by solving a real-world anti-ship missile defense prob-

lem, and report that COVAS produces substantially superior solutions to those pro-

duced by human domain experts, at a rate 9.5 times faster than an optimization

approach that does not incorporate human expert demonstration.

4.2 Model for Collaborative Optimization via Ap-

prenticeship Scheduling

Here, I provide an overview of the COVAS architecture, and then present its two

components: the policy learning and optimization routines.

4.2.1 COVAS Architecture

The system (Figure 4-1) takes as input a set of domain expert scheduling demonstra-

tions (e.g., Gantt charts) that contains information describing which agents complete

which tasks, when, and where. These demonstrations are passed to my apprentice-

ship scheduling algorithm that learns a classifier, fpriority(τi, τj), to predict whether

the demonstrator(s) would have chosen scheduling action τi over action τj ∈ τ .

Recall from Section 3.3 that, for modeling the ASMD problem domain, τi rep-

resents a task-agent-resource tuple, 〈τ ti , a, r〉, where τ ti represents the objective (i.e.,

high-level task) of mitigating missile i during time step t, a is the decoy (i.e., agent)

to be deployed, and r is the physical location for that deployment (i.e., where the

task will be performed). For convenience in notation, I simply refer to this tuple as
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Figure 4-1: The COVAS architecture.

“action τi.”

Next, COVAS uses fpriority(τi, τj) to construct a schedule for a new problem. CO-

VAS creates an event-based simulation of this new problem and runs the simulation

in time until all tasks have been completed. In order to complete tasks, COVAS uses

fpriority(τi, τj) at each moment in time to select the best scheduling action to take. I

describe this process in detail in the next section.

Next, COVAS provides this output as an initial seed solution to an optimization

subroutine (i.e., a MILP solver). The initial solution produced by the apprenticeship

scheduler improves the efficiency of a search by providing an empirical lowerbound on

the objective function value of the optimal schedule. An upperbound can be simulta-

neously obtained by solving an LP-relaxation of the MILP formulation. These bounds

are then used to inform a branch-and-bound search over the integer variables [22],

enabling the search algorithm to prune areas of the search tree and focus its search

on areas that can yield the optimal solution. After the algorithm has identified an

upper- and lowerbound within some threshold, COVAS returns the solutions that

have been proven optimal within that threshold. Thus, an operator can use COVAS

as an anytime algorithm and terminate the optimization upon finding a solution that

is acceptable within a provable bound.

117



4.2.2 Apprenticeship Scheduling Subroutine

In Chapter 3, I developed the theory for the apprenticeship scheduling algorithm. The

algorithm is centered around learning a classifier, fpriority(τi, τj), to predict whether

an expert would take scheduling action τi over τj. With this function, we can then

predict which single action, τ ∗i , amongst a set of actions τ , the expert would take by

applying Equation 4.1.

τ ∗i = argmax
τi∈τ

∑
τx∈τ

fpriority(τi, τx) (4.1)

In this chapter, I build upon and integrate this formulation into my collaborative-

optimization via apprenticeship scheduling framework.

As a subroutine within COVAS, fpriority(τi, τj) is applied to obtain the initial so-

lution to a new scheduling problem as follows: First, the user must instantiate a

simulation of the scheduling domain; then, at each time step in the simulation, take

the scheduling action predicted by Equation 4.1 to be the action that the human

demonstrators would take. This equation identifies the task τi with the highest im-

portance marginalized over all other tasks τj ∈ τ . If Equation 4.1 predicts an action

should be taken, that action is taken and the equation is re-evaluated. Actions con-

tinue to be taken until Equation 4.1 predicts that a null action should be executed.

Different from Chapter 3, each selected action is validated using a schedulability

test (i.e., solving a constraint satisfaction problem) to ensure that direct application

of that action does not violate the constraints of the new problem. For example, in

anti-ship missile defense, one would check to ensure that action does not result in a

suicidal deployment (i.e., the decoy directly causes a missile to impact the ship). The

test must be designed to be fast so as to make the benefit to feasibility and optimality

in the resulting schedule worth the additional complexity. If, at a given time step, τ ∗i

does not pass the schedulability test, COVAS uses Equation 4.1 for all τi ∈ τ\τ ∗i to

consider the second-best action. If no action passes the schedulability test, no action

is taken during that time step.

While the schedulability test forces the apprenticeship scheduling algorithm to
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follow a subset of the full constraints in the MILP formulation, it is possible that the

algorithm may not successfully complete all tasks. Here, I model tasks as optional

and use the objective function to maximize the total number of tasks completed.

In turn, constraints for a task that the apprenticeship scheduling algorithm did not

satisfactorily complete can be turned off, with a corresponding penalty in the objective

function score. Thus, an initial seed solution that has not completed all tasks (i.e.,

satisfied all constraints to complete the task) can still be helpful for seeding the MILP.

4.2.3 Optimization Subroutine

For optimization, I employ mathematical programming techniques to solve mixed-

integer linear programs via branch-and-bound search. COVAS incorporates the solu-

tion produced by the apprenticeship scheduler to seed a mathematical programming

solver with an initial solution. This is a built-in capability provided by many off-

the-shelf, state-of-the-art MILP solvers, including CPLEX1 and Gurobi2. This seed

provides a tight bound on the value of the optimal solution, which serves to dramat-

ically cut the search space, allowing the system to more quickly hone in on the area

containing the optimal solution and, in turn, more quickly solve the optimization

problem. Furthermore, this approach allows COVAS to quickly achieve a bound on

the optimality of the solution provided by the apprenticeship scheduling subroutine.

In such a manner, an operator can determine whether the apprenticeship scheduling

solution is acceptable or whether waiting for successive solutions is warranted.

1IBM ILOG CPLEX Optimization Studio http://www-03.ibm.com/software/products/en/
ibmilogcpleoptistud
2Gurobi Optimization, Inc. http://www.gurobi.com
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4.3 Training Dataset

I demonstrate COVAS in the context of a real-world ASMD problem3, described in

Chapter 3. COVAS trains the apprenticeship scheduler using a dataset collected from

military domain experts playing a serious game that emulates the ASMD problem as

formulated in the previous section. I considered a specific level within the game that

requires players to defend against a randomized enemy attack in which 10 missiles

are fired at the player’s ship from multiple directions, and the player has access to

a limited quantity of five different types of soft-kill weapons to divert these missiles.

Although the missile bearings and launch times are fixed, the seeking behavior of the

missile is not known a priori.

I used the same ASMD dataset of 311 games played by 35 human players across 45

threat configurations, or “scenarios,” from Chapter 3. I then sub-selected the single

best demonstration from each of these 45 scenarios. The demonstrators included

ASMD professionals with expertise ranging from “generally knowledgeable about the

ASMD problem” to “domain experts” with professional experience or ASMD training.

I trained the apprenticeship scheduling algorithm using the following features

employed in [89]: pointwise features for each action included the number of decoys of

each type left for possible deployment (i.e., the ammunition). Pairwise features for

each action included, for each decoy/missile pair (or null decoy deployment due to

inaction), indicators for whether a decoy had been placed such that the missile was

successfully distracted by that decoy, whether the missile would be lured into hitting

the ship due to decoy placement, or whether the missile would be unaffected by decoy

placement.

3I do not apply COVAS to the real-world healthcare problem because a mathematical model
(i.e., an objective function and constraints) is not readily available and is an open area of research
in healthcare. Ultimately, the goal in labor and delivery is to have mothers and babies leave the
hospital to live long and healthy lives. Tying these downstream outcomes to upstream resource
management decisions is less clear than the objective inherent in ASMD: survive the immediate
attack. In future work, I propose exploring formulations of an objective function for labor and
delivery that is supported by epidemiological evidence.
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Figure 4-2: The total computation time for COVAS, as well as the time COVAS re-
quired to identify a solution superior to that resulting from a human expert’s demon-
stration.

4.4 Results and Discussion

In this section, I empirically validate that COVAS is able to generate optimal so-

lutions more efficiently than state-of-the-art optimization techniques. As a bench-

mark, I solve a pure MILP formulation (Equations 3.13 through 3.34) using Gurobi,

which applies state-of-the-art techniques for heuristic upperbounds, cutting planes

and linear-program (LP) relaxation lowerbounds. I set the optimality threshold,

which defines when the optimization terminates, at 10−3.

I note that, for the apprenticeship scheduling subroutine’s schedulability test, I

apply Equations 3.26 and 3.27 as a constraint satisfaction check when testing the

feasibility of action τ ∗i , given by applying Equation 4.1. With regard to tasks within

the apprenticeship scheduler’s seed solution that are not satisfactorily completed, the

MILP can leave those tasks incomplete to start by initially setting Vm ← 0.

4.4.1 Validation Against Expert Benchmark

I trained COVAS’ apprenticeship scheduling algorithm on demonstrations of experts’

solutions to unique ASMD scenarios (except for one “hold-out” scenario); I then

tested COVAS on this hold-out scenario. I also applied a pure MILP benchmark
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on this scenario and compared the performance of COVAS to the benchmark. I

generated one data point for each unique demonstrated scenario (i.e., leave-one-out

cross validation) to validate the benefit of COVAS.

Figure 4-2 consists of two performance indicators: The total computation time

required for the MILP benchmark and COVAS to solve for the optimal solution is

depicted on the left; to the right is the computation time required for the benchmark

and COVAS to identify a solution better than that given by a human expert. This

figure indicates that COVAS is not only able to improve overall optimization time, but

that it also substantially improves computation time for solutions that are superior

to those produced by human experts. The average improvement in computation time

with COVAS is 6.7x and 3.1x, respectively.

Next, I evaluate COVAS’ ability to transfer prior learning to more challenging

task sets. I trained on a level in the ASMD game in which a total of 10 missiles of

varying types came from specific bearings at given times. I randomly generated a set

of scenarios involving 15 and 20 missiles, with bearings and times randomly sampled

with replication from the set of bearings used in the 10-missile scenario. Figure 4-

3 depicts the computation time required by COVAS and the MILP benchmark to

identify the optimal solution for scenarios involving 10, 15, and 20 missiles. I found

that the average improvement to computation time with COVAS was 4.6x, 7.9x, and

9.5x, respectively. This evaluation demonstrates that COVAS is able to efficiently

leverage the solutions of human domain experts to quickly solve problems twice as

large as those the demonstrator provided for training.

4.4.2 Limitations and Future Work

COVAS is able to leverage expert scheduling demonstrations to speed up the com-

putation of provable, globally optimal scheduling solutions. However, the approach

is still limited by the quality of the demonstrations provided by the experts and

the ability of the apprenticeship scheduling algorithm to generalize the information

within those demonstrations. The MILP’s computation time is expedited by tight

lowerbound (i.e., an initial seed) provided by the apprenticeship scheduling algorithm.

122



Figure 4-3: The total computation time needed for COVAS and the MILP benchmark
to identify the optimal solution for the tested scenarios.

If the apprenticeship scheduling algorithm is unable to provide a tight lowerbound,

the MILP’s computation time may not be significantly improved. Future work will

explore extensions to the apprenticeship scheduling algorithm to improve its ability to

learn from noisy demonstrations. One approach could be to incorporate a trustwor-

thiness metric á la [266] directly into the training of the classifier to uncover a latent

action ranking. For example, instead of binary labels, I could reformulate the prob-

lem to be one of regression, where positive and negative labels are proportional and

inversely proportional, respectively, to the fidelity of the demonstrator. Finally, de-

spite the empirical benefit of COVAS, solving a MILP remains an exponentially-hard

search problem.

4.5 Conclusions

In this work, I developed an approach to learning from human demonstrations to

efficiently produce optimal solutions for complex real-world scheduling problems. I

showed that policies learned from human experts can be used in conjunction with a

MILP solver to substantially improve the efficiency of a branch-and-bound search for

an optimal schedule. I validated my technique on a dataset collected from human

experts solving an anti-ship missile defense problem, and showed that my approach
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can substantially improve upon solutions produced by human domain experts, at a

rate up to 9.5 times faster than an optimization approach that does not incorporate

human expert demonstration.
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Chapter 5

Robot Embodiment as a

Scheduling Apprentice1

5.1 Introduction

The goal of my thesis is to develop the computational techniques and human factors

understanding to transform service robots from drones that must be explicitly tasked.

Healthcare serves as a domain where these service robots are becoming the most

widely utilized. They are deployed to improve operational efficiency by delivering and

preparing supplies, materials, and medications [24, 63, 111, 178, 191]. While these

systems exhibit autonomous capabilities for navigating from point to point, [175, 176],

they do not operate with an understanding of patient status and needs, and must be

explicitly tasked and scheduled. This can impose a substantial burden upon the

nurse in charge of resource allocation, or the “resource nurse,” – particularly within

fast-paced hospital departments, such as the emergency or labor and delivery units.

Proficient human labor nurses, on the other hand, are able to assist the resource nurse

by anticipating her needs, act with some autonomy, and update the her as needed.

1This chapter is based upon work published at Robotics: Science and Systems. The citation is
as follows:
Matthew C. Gombolay, Xi Jessie Yang, Brad Hayes, Nicole Seo, Zixi Liu, Samir Wadhwania, Tania
Yu, Neel Shah, Toni Golen, and Julie A. Shah (2016, June). Robotic Assistance in Coordination of
Patient Care. In Proc. Robotics: Science and Systems (RSS), Ann Arbor, Michigan, USA.
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The need to explicitly task many service robots, or even novice labor nurses, may

degrade the performance of a resource nurse [41, 56, 190], which has implications for

both patient safety and the well-being of healthcare professionals [28, 129, 203, 229].

It is logical then, to give these system the ability to learn to adapt and anticipate

the needs of their human counterparts via, e.g., apprenticeship scheduling. How-

ever, a robot that autonomously takes initiative when performing tasks may make

poor decisions in the absence of oversight [146, 184, 237]. Decades of research in

human factors cautions against fully autonomous decision making, as it contributes

to poor human situational awareness and degradation in the human supervisor’s per-

formance [124, 196, 228, 258]. When integrating machines into human cognitive

workflows, an intermediate level of autonomy is preferred [124, 258], in which the

system provides suggestions to be accepted or modified by a human supervisor. Such

a system would fall within the “4-6” range on the 10-point scale of Sheridan’s levels

of automation [196].

However, even when systems have limited autonomy, studies of human-automation

interaction in aviation – another safety-critical domain – have shown that human

supervisors can inappropriately trust in and rely upon recommendations made by

automation systems [64]. For example, numerous aviation incidents have been at-

tributed to human overreliance on imperfect automation [64]. Other studies have

examined the effects of changes in system reliability, and found that it led to subop-

timal control allocation strategies and reduced levels of trust in the systems [60, 61].

There is also evidence that suggestions provided by embodied agents engender over-

trust and inappropriate reliance [215]. This concern is a critical barrier to fielding

intelligent hospital service robots that take initiative to participate with nurses in

decision making.

This chapter presents two novel contributions to the fields of robotics and health-

care. First, through human subject experimentation with physicians and registered

nurses, this chapter presents the first known study involving experts working with an

embodied robot on a real-world, complex decision making task comparing trust in

and dependence on robotic versus computer-based decision support. Previous studies
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have focused on novice users and/or simple laboratory decision tasks [10, 58, 131, 154].

Our findings provide the first evidence that experts performing decision making tasks

appear to be less susceptible to the negative effects of support embodiment, as trust

assessments were similar in both the computer-based and robotic decision support

conditions. Furthermore, embodiment yielded better performance on the part of the

human counterpart as compared to a computer-based support specifically when the

quality of recommendations would change. This work provides encouraging evidence

that intelligent service robots can be safely integrated into the hospital setting.

Given evidence that robotic decision support has benefits for healthcare decision-

making, we conduct a test demonstration in which a robot, using apprenticeship

scheduling, assisted resource nurses on a labor and delivery floor in a tertiary care

center. To assist in labor and delivery, the robot used computer vision techniques to

read the current status of the labor floor, speech recognition to receive feedback from

the resource nurse, and apprenticeship scheduling (Chapter 3) to generate scheduling

recommendations. To my knowledge, this is the first investigation to field a robotic

system in a hospital to aid in the coordination of resources required for patient care.

5.2 Experimental Investigation

In this section, I describe human-subject experimentation aimed at comparing trust

in and dependence upon an embodied robot assistant versus computer-based deci-

sion support in a population of physicians and registered nurses. The participants

interacted with a high-fidelity simulation of an obstetrics department at a tertiary

care center. This simulation provided users the opportunity to assume the roles and

responsibilities of a resource nurse, which included assigning labor nurses and scrub

technicians to care for patients, as well as moving patients throughout various care

facilities within the department. These care professionals work with the resource

nurse, have an accurate model for her decision-making and can thus discern the ap-

propriateness of the decision-support system’s recommendations

The experiment employed a within-subjects design and manipulated two inde-
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pendent variables: embodiment – subjects received advice from either a robot or a

computer, and recommendation quality – subjects received high- or low-quality ad-

vice. Each participant experienced four conditions, the quality of advice was blocked

and the ordering of the conditions was counterbalanced in order to mitigate potential

learning effects. Figure 5-1 depicts the experimental setup for the embodied condition.

5.2.1 Hypotheses and Measures

H1 Rates of appropriate compliance with and reliance on robotic decision sup-

port will be comparable to or greater than those observed for computer-based decision

support. Objective measures of compliance and reliance were assessed based on the

participants’ “accept” or “reject” response to each decision support recommendation.

Statistics on appropriate compliance, appropriate reliance, Type I (i.e., a miss) and

Type II (i.e., a false alarm) errors were recorded.

H2 Robotic decision support will be rated more favorably than computer-based de-

cision support in terms of trust and other attitudinal measures. Numerous studies

have demonstrated that embodied and anthropomorphic systems are rated more fa-

vorably by users than computer-based interactive systems. I hypothesized that the

robotic system in this study would elicit this favorable response (H2), while engender-

ing appropriate rates of compliance and reliance (H1). This would indicate a positive

signal for the successful adoption of a hospital service robot that participates in deci-

sion making. Subjective measures of trust and attitudinal response were collected via

questionnaires administered to each participant after each of the four trials. Trust was

assessed by a composite rating of seven-point Likert-scale responses for a commonly

used, validated trust questionnaire [119]. Other attitudinal questions were drawn

from [147] to evaluate personality recognition, social responses, and social presence

in human-robot interaction, and were responded to on a 10-point Likert scale.
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5.2.2 Materials and Setup

The experiments were conducted using a high-fidelity simulation of a labor and deliv-

ery floor. This simulation had previously been developed through a hospital quality

improvement project as a training tool over a year-long, rigorous design and iteration

process that included workshops with nurses, physicians, and medical students to

ensure the tool accurately captured the role of a resource nurse. Parameters within

the simulation (e.g. arrival of patients, timelines on progression through labor) were

drawn from medical textbooks and papers and modified through alpha and beta test-

ing to ensure that the simulation closely mirrored the patient population and nurse

experience at the partner hospital.

An Aldebaran Nao was employed for the embodied condition (Figure 5-1). A video

of the Nao offering advice to a participant with speech and co-speech gestures is view-

able at http://tiny.cc/NAORecommendation. Participants received advice through

synthesized speech under both the embodied and computer-based support conditions,

using a male voice drawn from the Mary Text-to-Speech System (MaryTTS) [226].

The advice was also displayed as text in an in-simulation pop-up box under both

conditions. The subject clicked a button in order to accept or reject the advice.

These buttons were not clickable until the narration of the advice was complete; this

narration took equal time in both conditions.

5.2.3 Experimental Procedure

Seventeen physicians and registered nurses participated in the experiment (one man

and sixteen women). The participants were recruited from the partner hospital’s

obstetrics department via email and word-of-mouth.

First, participants provided consent for the experiment and watched an 8-minute

tutorial video describing the labor and delivery floor simulation. The tutorial video

is viewable at http://tiny.cc/simTutorial. Participants were instructed to play

four simulated shifts on labor and delivery, with each iteration lasting 10 minutes,

simulating a total of 4 hours on the labor floor. The computer or embodied sys-

129

http://tiny.cc/NAORecommendation
http://tiny.cc/simTutorial


Figure 5-1: Experiment participant pictured receiving advice from the robotic decision
support.

tem would interject during the simulation to make recommendations on which nurse

should care for which patient, and on patient room assignments. Participants were

asked to accept or reject the advice based on their own judgment. They were not

informed whether the robotic or virtual decision support coach was providing high-

or low-quality advice. Finally, after each of the four trials, participants were asked

to rate their subjective experience via a set of Likert-scale questions, as described in

Section 5.2.1.

5.3 Implementation of Decision Support

The challenge to decision support guidance is that the precise form of the objective

function (Equation 3.35) that resource nurses optimize for is unknown. Prior work

has indicated that domain experts are adept at describing the features (high-level,

contextual and task-specific) used in their decision making, yet it is more difficult for

experts to describe how they reason about these features [45, 206]. As such, I applied

my apprenticeship scheduling technique from Chapter 3 to learn a set of heuristic
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scheduling policies from demonstrations of resource nurse decision making. I then

applied these learned policies to produce advice for the computer-based and robotic

decision support systems. Recall from Chapter 3 that apprenticeship scheduling was

validated to generate advice that was accepted 90% of the time by the labor nurses

and physicians.

To test the hypotheses, it was necessary to provide high- and low-quality advice.

To generate high-quality advice, we merely apply the same apprenticeship scheduling

technique from Chapter 3 vis-à-vis Equation 5.1 to find the action that has the highest

cumulative probability of being more important than all other actions.

τ ∗i = argmax
τi

∑
τx

fpriority(τi, τx) (5.1)

To generate low-quality advice, I employed two separate methods: one to generate

low-quality, and potentially infeasible advice, and one to generate low-quality but

feasible advice. I make the distinction between infeasible and feasible advice for the

following reason: In order to measure the reliance of the nurses on the generated

advice, it would be necessary to have nonzero rates of false alarms and misses. If I

merely used infeasible advice, the task of identifying the quality of that advice may

be trivially simple. However, low-quality but feasible advice may require a more

discerning eye. Thus, I presented participants with both types of low-quality advice.

The first method was applied to offer low-quality, potentially infeasible advice

(e.g., assign a patient to an already-occupied room). This advice was generated by

minimizing Equation 3.47, instead of maximizing it, as shown in Equation 5.2.

τ ∗i = argmin
τi

∑
τx

fpriority(τi, τx) (5.2)

The second method was applied to offer low-quality, feasible advice (e.g., assign a

post-operating patient to triage). This advice was generated by evaluating Equation

5.2 after filtering the space of possible actions to include only feasible actions (per

the constraints in Equations 3.36 through 3.44 from Chapter 3). We repeat these
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equations here for convenience.

M
(

2− At a
τ ji
−Hτi

)
≥ −Uτ ji + Gt a

τ ji
≥M

(
At a
τ ji

+Hτi − 2
)
,∀τ ji ∈ τ ,∀t (5.3)∑

τ ji ∈τ

Gt a
τ ji
≤ Ca,∀a ∈ A, ∀t (5.4)

∑
r∈R

Rt r
τ ji
≥ 1−M (1−Hτi) ,∀τ

j
i ∈ τ ,∀t (5.5)

∑
τ ji ∈τ

Rt r
τ ji
≤ 1,∀r ∈ R, ∀t (5.6)

ubτ ji
≥ fτ ji

− sτ ji ≥ lbτ ji
, ∀τ ji ∈ τ (5.7)

sτyx − fτ ji ≥ W〈τi,τj〉,∀τi, τj ∈ τ |,∀W〈τi,τj〉 ∈ TC (5.8)

fτyx − sτ ji ≤ Drel
〈τi,τj〉,∀τi, τj ∈ τ |∃D

rel
〈τi,τj〉 ∈ TC (5.9)

fτ ji
≤ Dabs

τi
,∀τi ∈ τ |∃Dabs

τi
∈ TC (5.10)

Recommendations for the low-quality condition were produced by randomly selecting

between these two methods in order to mitigate ordering effects. Within one simulated

shift, the advice would either be all high-quality or all low-quality. We hypothesized

the existence of a delay in recognizing the quality of advice and wanted each, separate

shift to reach an equilibrium state of accepting and rejecting advice.

5.4 Results

This section reports the results of statistical testing of the experiment’s hypotheses.

Statistical significance is set at the α = 0.05 level.

5.4.1 Analysis & Discussion of H1

Objective measures of compliance and reliance were assessed based on the partic-

ipant’s “accept” or “reject” responses to each decision support recommendation.

Statistics on hits, misses, false alarms, and correct rejections are shown in Table

5.1. Results from a z-test for two proportions indicated no statistically significant
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Table 5.1: Confusion matrix for participants shown as a raw count and percentage of
the whole.

Robotic Decision Support
Response

Accept Reject

Advice Quality
High 130 (44.5%) 16 (5.48%)
Low 16 (5.48%) 130 (44.5%)

Virtual Decision Support
Response

Accept Reject

Advice Quality
High 134 (45.3%) 14 (4.78%)
Low 19 (6.48%) 126 (43.0%)

Table 5.2: Correct accept and reject decisions made with computer-based (C-Accept,
C-Reject) versus Robotic (R-Accept, R-Reject) decision support, as a function of trial
number, shown as a raw count and percentage of the whole.

Trial Number
Bad Advice Good Advice

1 2 3 4
C-Accept 5 (10.4%) 4 (6.7%) 41 (82.0%) 49 (92.5%)
R-Accept 9 (17.6%) 5 (9.6%) 43 (91.5%) 44 (93.6%)

Trial Number
Good Advice Bad Advice
1 2 3 4

C-Reject 2 (28.6%) 1 (2.8%) 11 (73.3%) 20 (87.0%)
R-Reject 3 (8.6%) 1 (10.0%) 21 (84.0%) 16 (94.1%)
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difference in the Type II error rates for the robotic (pR = 13.1%) and computer-

based (pC = 11.0%) decision support conditions (z = 0.562, p = 0.713), nor in the

rates of correct “accept” responses to high-quality advice (pR = 90.5%, pC = 89.0%,

p = 0.713) and “reject” responses to low-quality advice (pR = 86.9%, pC = 89.0%,

p = 0.287) across the two conditions. Results from a TOST equivalence test using two

z-tests for two proportions indicated that the rates of error, appropriate compliance,

and appropriate reliance between the robotic and virtual decision support conditions

were equivalent within 95% confidence.

The rates of Type I and Type II errors in the second and third trials, at the

transition in advice quality (Table 5.2), were analyzed. Fisher’s exact test found a

significant difference in the rate of incorrect “accept” of low-quality advice (Type

I error) across the second and third trials for the computer-based decision support

(6.7% vs. 26.7%, p = 0.046), but not for the robotic support (9.6% vs. 16.0%, p =

0.461). A significant difference was also found in the rate of incorrect “reject” of high-

quality advice (Type II error) across the second and third trials for the computer-

based decision support (2.8% vs. 18.0%, p = 0.040), but not for robotic decision

support (10.0% vs. 8.5%, p ∼ 1.0). In other words, participants’ rate of Type I errors

associated with computer-based support increased significantly when participants had

received high-quality advice in the previous trial. Similarly, the rate of Type II errors

associated with computer-based support increased significantly when participants had

received low-quality advice in the previous trial. No such significant differences were

found for the robotic support conditions.

H1 Takeaway: These results support H1, in that Type I and Type II error rates

were comparable between robotic and computer-based decision support. Further-

more, embodiment appeared to offer performance gains, as indicated by lower error

rates after the quality of recommendation changed mid-experiment. These are en-

couraging findings because they provide evidence that a robotic assistant may be able

to participate in decision making with nurses without eliciting inappropriate depen-

dence. One potential rationale for these results is that experts may be less susceptible

to the negative effects of embodiment, as has been documented for experienced users
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Table 5.3: Subjective Measures Post-Trial Questionnaire with statistical significance.
Questions 1-5 were responded to on a 7-point scale, and Questions 6-7 on a 10-point
scale.

Trust and Embodiment in Human-Robot Interaction
1. I am suspicious of the system’s intent, actions or outputs.
2. I think I could have a good time with this decision support coach.
3. People will find it interesting to use this decision support coach.
4. While you were interacting with this decision-support coach, how much did you
feel as if it were an intelligent being?
5. While you were interacting with this decision-support coach, how much did you
feel as if it were a social being?
6. Unsociable/Sociable.
7. Machine-Like/Life-Like.

interacting with anthropomorphic agents [195]. I note that this study was conducted

with a stationary robot, in which movement was limited to co-speech gestures. Fur-

ther investigation is warranted for situations in which experts interact with mobile

service robots that participate in decision-making.

5.4.2 Analysis & Discussion of H2

A composite measure of trust was computed, as in [119]. Results from a repeated-

measures ANOVA (RANOVA) demonstrated a statistically significant increase in

the average rating for the decision support system under the high-quality advice

condition (M = 5.39, SD = 0.666) as compared with the low-quality condition (M =

3.49, SD = 1.26) (F (1, 14) = 46.3, p < 0.001). However, a RANOVA yielded no

statistically significant difference in trust between the robotic (M = 4.41, SD = 1.32)

and computer-based (M = 4.48, SD = 1.47) embodiment conditions (F (1, 14) =

0.450, p = 0.513). Results from a TOST equivalence test, using two t-tests, indicated

that subjects’ trust ratings for the computer-based and robotic support were within

one point of one another on a 7-point Likert Scale.

There were significant differences in the attitudinal assessment of the robotic ver-

sus computer-based decision support conditions for Questions 2, 3, 5, 6 in Table 5.3,

indicating that participants rated the robotic system more favorably. The result was
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established using a two-way omnibus Friedman test, followed by pairwise Friedman

tests. The test statistics for the pairwise Friedman tests were p = 0.028, 0.007, 0.043,

and 0.005, respectively. Strikingly, there was not a single question (out of 37) for

which participants rated the computer-based decision support significantly better

than the robotic support.

The subjective perception of the character of the robot was significantly less sen-

sitive to transitions in advice quality than the computer-based decision support. To

reach this conclusion, the frequency with which the ratings of one embodiment condi-

tion subsumed the other, and vice versa, was computed. Specifically, xR,L is defined as

the Likert-scale rating for a given question and a particular participant in the robotic

low-quality advice condition, and likewise for the high-quality condition, xR,H . The

variables xC,L, xC,H were similarly defined for the computer-based low- and high-

quality conditions. The robotic condition was defined as subsuming the computer-

based condition if either min(xR,L, xR,H) ≤ min(xC,L, xC,H) ≤ max(xC,L, xC,H) <

max(xR,L, xR,H) or min(xR,L, xR,H) < min(xC,L, xC,H) ≤ max(xC,L, xC,H)

≤ max(xR,L, xR,H), and vice versa for the computer-based condition subsuming the

robotic condition. A χ2 test on the frequency of subsuming indicated that the partic-

ipants’ subjective evaluation according to Questions 1, 4, 6, 7 (p = 0.045, 0.022, 0.005

and 0.0043, respectively) changed more significantly under the computer-based con-

dition than the robotic condition. There were no questions for which the response

changed more significantly under the robotic condition versus the computer-based

condition. In other words, the subjective assessment of the robot was more robust

to advice-quality changes than the computer-based decision support. Further investi-

gation is warranted to determine whether these effects persist over time as the users

habituate to interaction with the robot.

H2 Takeaway: Our findings support H2 in that the robotic system was rated

more favorably on attitudinal assessment than computer-based decision support, even

as it engendered appropriate dependence. It is inevitable that a service robot will

occasionally make poor-quality suggestions, and, advantageously, the robot engen-

dered greater tolerance of errors than the computer-based decision support. These
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results indicate a positive signal for successful adoption of a robot that participates

in a resource nurse’s decision making.

5.4.3 Discussion on Embodiment

In the field of HRI, embodiment has become a ubiquitous topic of study; researchers

have shown on numerous occasions that anthropomorphizing a computational algo-

rithm affects human operators [105, 123, 135, 148, 149, 213, 240]. Yet, there is a lack

of consensus for why embodiment has an effect. While I cannot speak for the effect

of embodiment in all scenarios, I want to explore some ideas for why an embodied

system (i.e., the NAO robot) improved rates of appropriate compliance with, reliance

on, and engendered more positive attitudes toward the decision-support system as

opposed to an unembodied system (i.e., computer-based). It is my goal that offering

these ideas could inspire future, hypothesis-driven work to develop theories regarding

embodiment’s effect on human operators.

Conjecture 1: Information provided via an embodied system represents a

more salient cue than information provided via an unembodied system.

In the experiment on the labor floor, a robotic decision-support system yielded

more appropriate rates of compliance with and reliance on that decision-support

system than a computer-based system. Specifically, participants’ false alarm and

miss rates increased significantly when the computer-based decision-support system

changed its advice quality from high to lower; this effect was not significantly present

for the robotic decision-support system.

I interpret this effect to mean that participants were more sensitive to – better able

to detect – changes in the quality of the advice given by the robotic decision-support

system. This objective measure of sensitivity showed a parallel to the subjective

measures. Specifically, the magnitude of the change in people’s attitudes towards the

robot, as measured by a set of Likert items, was more significant than the change in

their attitudes towards the computer-based decision-support system as a function of

the advice quality of that system. In other words, people’s opinion of the robot varied

widely as a function of its advice quality changed, but not so for the computer-based
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system.

Anecdotally, I found the nurses on the labor floor to be inundated with computer-

based information, including a deluge of false alarms and non-critical alerts. I believe,

to a large extent, nurses have been forced to develop a level of indifference towards

information delivered via computer screen. Instead, nurses tend to rely on human-

generated information; nurses are alerted in-person by residents, physicians, and even

their patients, when a need arises. Nurses know that, if a person has come to them

with information, it must be important. Otherwise, that person would not have

interrupted his or her current job to come speak with that nurse.

I believe that the robotic agent elicits more careful attention from the human

operator because nurses have been tuned to respond to information from a physical

agent (e.g., another nurse) as opposed to computer-based information, which, as noted

above, is commonly unhelpful. To explore this idea further, one could conduct an

experiment in which participants are primed by receiving unhelpful advice from a

human, and helpful advice from a computer-based system (or vice versa). After the

participants are primed, one then repeats a similar experimental protocol as the one

conducted in this paper. I would hypothesize that participants primed by receiving

bad advice from a human would be more sensitive to the advice from a computer-

based system; similarly, participants primed with bad advice from a computer would

be more sensitive to advice from a human.

Conjecture 2: People would rather work with an embodied system because

a robot is more akin to a person than is a mere computer.

Nurses working with our robot were found to have more positive attitudes towards

the NAO as compared to a computer-based decision-support system; they indicated

they would prefer to work with the robot rather than the computer-based system. I

believe this attitude to be true because a human would rather work with a teammate

that is more similar to him- or herself. This belief is grounded in the notion of

“homophily.” Psychology, sociology, and human factors researchers have studied

homophily, which is the idea that people prefer things (i.e., other people) that are

similar to themselves [132, 127, 166, 170, 216, 261]. I believe people find it easier to
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understand and communicate with a robotic agent because it better approximates

how people interact with other people than does a computer-based system.

One could conduct a relativity simple experiment which would compare degrees

of anthropomorphization of the robotic agent, similar to the work of Pak et al. [195].

However, I would argue that changing a robots form factor to be more or less human-

like, but still basically human-shaped, does not capture the significant difference

between an animated robot and an inanimate computer.

A more grandiose proposal would be to explore the following hypothesis: People’s

attitudes towards an animal (i.e., a mouse, cat, human, etc.) is proportional to

their attitudes towards a robot with the same form factor. One could conduct an

experiment with robots of various animal form factors in which the robots assist in

cognitive tasks. Then, measure the human participants’ attitudes, and compare those

attitudes to trials in which the participant interacts with the real animals. However,

there are two potential limitations. The first limitation is technical – the ability to

approximate the form factors of certain animals may be greater in some animals than

in others; such discrepancies in the realism of the approximation could confound the

experimental outcomes. Second, attitudes towards an agent assisting in a cognitive

task (e.g., helping to make a scheduling decision) may not be directly comparable

to attitudes towards that agent performing other tasks (e.g., a cat meowing in an

attempt to be petted). This experiment proposal is merely a starting point.

There are likely many other ways to potentially explore this conjecture, and future

researchers should not be limited by my experimental design as initially offered.

5.5 Pilot Demonstration of a Robotic Assistant on

the Labor and Delivery Floor

Based on the positive results of this experiment, a pilot demonstration was conducted

in which a robot assisted resource nurses on a labor and delivery floor at a tertiary

care center. Vision System: In the experiments, the statuses of patients, nurses,
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Figure 5-2: Images of the robot system in action on the labor floor.

and beds were provided and updated in the simulation. In contrast, nurses and

robots on a real labor floor must read handwritten information off of a whiteboard

(i.e., “dashboard”) depicted in Figure 5-4. Extracting and parsing this information

autonomously with high accuracy and reliability presents a substantial technical chal-

lenge. Two assumptions to address this challenge. 1) the set of physician and nurse

names is closed and known in advance, and 2) patient names are transcribed for the

robot upon patient arrival.

5.5.1 Robot System Architecture

As shown in Figure 5-3, the system was comprised of subsystems providing the vision,

communication and decision support capabilities.

In this demonstration, the structured nature of the dashboard was leveraged to

introduce priors that ensured patient information was interpretable. Rows on the

dashboard indicate room assignments, while columns indicate patient parameters

(e.g., attending physician, gestational age, etc.). Once the robot captured an image

of the dashboard on the labor and delivery floor, Canny edge detection operator [35]

and Hough transformation [71] were applied to isolate the handwriting in individual

grid cells, as shown in Figure 5-5. The contents of each grid cell were processed using

a classification technique appropriate to the data type therein. Numeric fields were

parsed using a Convolutional Neural Network (CNN)2 trained on MNIST data, while

alphabetical fields with known sets of possible values (e.g., attending physician, nurse

2Thanks to Mikhail Sirontenko for developing this package, which is available at https://sites.
google.com/site/mihailsirotenko/projects/cuda-cnn.
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Figure 5-3: This figure depicts the service robot’s system architecture.

Figure 5-4: A resource nurse must assimilate a large variety and volume of information
to effectively reason about resource management for patient care.

names) were parsed using a multi-class CNN trained on handwriting3.

Handwriting samples (28 uniquely written alphabets) were used as a basis for

generating classifier training data. Fonts were created from the provided samples

and used (along with system fonts) to create a large set of binary images containing

samples of nurse names. These synthetic writing samples were constructed with a

range of applied translations, scalings, and kerning values within a 75x30 pixel area.

The vision system was used to determine the current status of patient-nurse allo-

3The CNN was constructed with the following architecture: 75x30 input layer → 5x5 kernel
convolution layer→ 2x2 kernel maxpool layer→ 5x5 kernel convolution layer→ 2x2 kernel maxpool
layer → 100 node dense layer → classification layer.
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Figure 5-5: This figure depicts the cell extraction process.

cations, nurse role information, and room usage. Prior to deployment, a validation

of the vision system was conducted; the recognition system was found to correctly

classify handwritten samples across 15 classes (names) with a 97.8% accuracy. These

results were obtained without performing any environmental manipulations (adjust-

ing lighting, using high-resolution cameras, etc.). In the pilot deployment, the vision

system assisted humans with transcription of patient data.

Communication: CMUSphinx [1] was employed for robot speech recognition. To

achieve high performance in a live setting, a list of template-based phrases a user

might utter, such as “Where should I move the patient in room [#]?” or “Who

should nurse [Name] take care of?” were defined. All possible instantiations were

enumerated based on information available a priori (e.g., the list of nurse names).

Levenshtein distance [153] was computed to infer the phrase most likely uttered by

the speaker, and the appropriate corresponding query was issued to the decision

support system.

Decision Support: The live pilot demonstration of the robot used the same

mechanism for generating decision support as that it used during the experiments.

However, unlike the experiments, the decision support system’s input was taken from

the vision subsystem, and the user query from the communication subsystem. The

set of possible actions to be recommended was filtered according to the query as

recognized by the communication subsystem. For example, if the user asked, “Where

should I move the patient in room 1A?,” actions that would change nurse assignments
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were not considered. The recommended action was communicated to the user via

text-to-speech software.

Feedback from Nurses and Physicians: A test demonstration was conducted on

the labor floor (Figure 5-2). Three users interacted with the robot over the course

of three hours. Ten queries were posed to the robot; seven resulted in successful

exchanges and three failed due to background noise. A live recording of the demo can

be seen at http://tiny.cc/RobotDemo. After interacting with the robotic support,

User 1, a physician, said “I think the [robot] would allow for a more even dispersion

of the workload amongst the nurses. In some hospitals . . . more junior nurses were

given the next patient . . . more senior nurses were allowed to only have one patient

as opposed to two.” User 2, a resource nurse said, “New nurses may not understand

the constraints and complexities of the role, and I think the robot could help give

[the nurse] an algorithm . . . that she can practice, repeat, and become familiar with

so that it becomes second nature to her.” User 3, a labor nurse offered, “I think you

could use this robot as an educational tool.”

5.6 Conclusion

This chapter addresses two barriers to fielding intelligent hospital service robots that

take initiative to participate with nurses in decision making. Through experimental

investigation, experts performing decision making tasks were found to be less suscep-

tible to the negative effects of support embodiment. Further, based on the previous

two findings, a first successful test demonstration was conducted in which a robot

assisted resource nurses on a labor and delivery floor in a tertiary care center.
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Chapter 6

Situational Awareness, Workload,

and Workflow Preferences with

Service Robots

6.1 Introduction

Thus far, I have developed and demonstrated a novel computational technique that

enabled a hospital service robot to assist in the coordination of patient care. Chapter

5 investigated the effect of the embodiment of apprenticeship scheduling, which is an

important variable affecting the human factors of human-robot teaming. While an

embodied teammate was found to have positive effects on nurses and physicians in

terms of trust and reliance, embodiment is but one variable. This chapter investigates

three, quintessential facets of human factors: situational awareness, workload, and

workflow preferences. Failing to consider these factors when introducing automation

into a human environment has been shown to have serious consequences [74, 75, 77,

125, 214].

To begin, situational awareness has been defined as the ability to perceive, com-

prehend, and project the state of an environment [75]. Loss of situational awareness

while operating highly autonomous systems has accounted for hundreds of deaths in
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commercial and general aviation (e.g., [179, 180, 181, 182, 183]). Humans must main-

tain their situational awareness in order to effectively take control of a job typically

performed by an autonomous machine in the event that that machine fails. Second,

workload assignment is another key issue in human factors [198, 233, 249, 257]. It has

been shown in prior work that human performance is highly dependent upon work-

load [198, 204, 233, 249, 257]: A workload that is too heavy or too light can degrade

performance and contribute to a loss of situational awareness [204, 249]. Third, un-

derstanding and incorporating workflow preferences is also essential for safe, effective,

human-machine teaming [4, 104, 142, 144, 187]. In manufacturing, human teams can

develop individualized workflow preferences that are not shared by other teams in the

same environment; consequently, a member of one team may be unable to effectively

replace a worker on another team without a period of adjustment.

This chapter reports the results from a series of three human subject experiments

studying the factors of situational awareness, workload, and workflow preferences

in the context of human-robot team coordination. First, this chapter investigates

how situational awareness varies as a function of the degree of autonomy a robotic

agent has during scheduling, and found that human participants’ awareness of their

team’s actions decreased as the degree of robot autonomy increased. Given prior

work indicating that humans typically prefer the robot to have greater autonomy [12,

87, 104, 113, 159], roboticists must balance the desire for increased automation and

the performance improvements it yields with the risk for – and cost resulting from –

reduced situational awareness. Second, this chapter studies how team fluency varies

as a function of the workload (tasks not related to decision making about scheduling)

given to a human team member by a robotic agent, and, third, the manner in which a

robot should include the workflow preferences of its human teammates in the decision

making process.

A roboticist or practitioner of multi-agent coordination might take the most

straightforward approach by including the preferences of each human team mem-

ber and balancing work assignments according to a given fairness metric. However,

these experiments show that when the goal of including human team members’ pref-
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erences is orthogonal to the goal of assigning each agent tasks in the way that most

benefits the team’s overall performance, people are usually amenable to relinquishing

their preferred assignments for the sake of improved team fluency. The results of this

experiment show that there is a relationship between humans’ preferences, their uti-

lization during task execution, and their perception of team efficiency. Participants

felt more strongly that their teams performed the assigned tasks using the least pos-

sible amount of time, even though the schedule duration (makespan) was constant

across all trials within participants.

6.2 Aims of the Experiment

Prior literature [44, 68, 81, 87, 101] has shown the potential advantages of providing

a robotic teammate with greater autonomy, and recent work in the realm of shared-

autonomy in scheduling has extended these findings. Such works have indicated that a

robot generates a schedule more quickly and a team is able to complete assigned tasks

more efficiently when the schedule is generated by the robotic agent alone as opposed

to when a human team member assists in the scheduling process [91]. Furthermore,

participants in prior experiments have readily stated they would prefer working with

a robotic teammate with a greater degree of autonomy [87].

However, this recent work provides an incomplete picture. For example, the rami-

fications of conceding autonomy to a robotic agent, especially in environments where

human team members might have to reallocate work manually due to an environmen-

tal disturbance that the robot is unable to consider, is unclear. Also, it is unknown

whether the way in which a robot schedules a team (e.g., whether the robot happens

to assign tasks to participants who prefer them) substantially affects the participants’

experiences. Finally, prior work has not shown whether the amount of work assigned

by the robot in such a human-robot teaming scenario results in a suitable workload

for human teammates.

This chapter presents three experiments to better understand 1) whether situa-

tional awareness degrades when the robotic agent has a greater degree of control over
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scheduling decisions, 2) how a robotic agent should schedule tasks for a human-robot

team given the humans’ workflow preferences, and 3) whether there is a trade-off be-

tween the degree to which human team members’ scheduling preferences are included

in the scheduling process and the effective utilization of those workers.

6.2.1 Experiment: Situational Awareness in Mixed-Initiative

Human-Robot Teaming

Prior work in human factors has indicated that there are significant consequences

associated with ceding decision making initiative to an autonomous agent [74, 75,

125, 126, 214]. Chiefly, the human counterpart can experience a decline in situational

awareness. This phenomenon has been observed in a variety of domains, including

telerobotics [126]. Thus, an experiment was proposed to serve as the first such in-

vestigation in the setting of human-robot teaming using mixed-initiative1 scheduling,

with the human and robot sharing scheduling responsibilities.

Independent Variable

To determine the potential consequences of providing a robotic teammate with greater

autonomy over scheduling decisions, a novel human subject experiment was con-

ducted, which consisted of three team members: a robot, a human subject, and

a human assistant (i.e., a confederate) who were required to complete a series of

fetching and building tasks. In this experiment, the independent variable was the

allocation of authority over scheduling decisions; this independent variable had three

levels, or conditions:

� Manual control : The human subject decides who will perform each of the tasks.

1I use the term “mixed-initiative” to describe that, in some of the experimental conditions
presented in this chapter, the human is responsible for some or all of the high-level task allocation
decisions, while the robot is responsible for the remaining task allocation decisions as well as all
of the low-level sequencing decisions. However, the term mixed-initiative can be used in different
contexts [80].
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� Semi-autonomous control : The human subject decides which tasks he or she

will perform, and the robot assigns the remaining tasks to itself and the human

assistant.

� Autonomous control : The robot decides who will perform each of the tasks.

Hypothesis

The following hypothesis was established:

Hypothesis 1: Participants’ situational awareness will be poorer when the robotic

teammate has greater autonomy over scheduling decisions.

Dependent Variables

An experiment using the Situation Awareness Global Assessment Technique, or SAGAT [74]

was conducted to test Hypothesis 1. SAGAT was designed to measure the situa-

tional awareness of a pilot in an aircraft cockpit. During an experiment in which

a pilot operated a simulated aircraft, the experimenter blanked out the information

displays and the pilot was required to recall vital information about the state of the

aircraft.

This protocol has disadvantages. For example, halting the experiment to question

the subject is highly intrusive and could lead to a decline in performance when the

subject must resume flying the aircraft. Also, the responses are highly dependent

upon the subject’s ability to remember information, which decays as a function of

time – over the course of a long test, the subject may begin to forget important pieces

of information about the system’s state. In the experimental design, the same test

was applied, in the same manner, to all participants; therefore, any such negative

effect would be balanced across experimental conditions. Furthermore, the SAGAT

test was not repeated. The test was only administered once during the experiment,

which concluded after this administration.

For the SAGAT test, a set of objective and subjective measures, as shown in Table

6.1, was employed. The objective measures evaluated the accuracy of the participants’
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Table 6.1: This table depicts the post-trial questionnaire administered to partici-
pants for the experiment measuring situational awareness as a function of the level
of autonomy over scheduling decisions given to the robotic teammate. Participants
responded to Questions 1, 5, 9, 13, and 17 using the response form shown in Table 6.2.
Participants responded to Questions 2-4, 6-8, 10-12, 14-16, and 18-20 using a Likert
response format consisting of “Strongly Disagree,” “Weakly Disagree,” “Neutral,”
“Weakly Agree” and “Strongly Agree.”

Current Actions
1. What is each team member currently doing? (Circle nothing if the team member
is idle).
2. I am aware of what the robot co-leader is doing.
3. I am aware of what the human assistant is doing.
4. I am aware of what I am doing.

Preceding Action
5. Which task did each team member last complete prior to the current task? (Circle
nothing if the team member has not yet completed a task.).
6. I am aware of which task the robot co-leader just did.
7. I am aware of which task the human assistant just did.
8. I am aware of what I just did.
Past Schedule
9. Please list tasks each team member has completed. List the tasks in the order in
which they were completed by writing 1 for the first task, 2 for the second task, and
so forth.
10. I am aware of which tasks the human/robot co-leader has completed.
11. I am aware of which tasks the human assistant has completed.
12. I am aware of which tasks I have completed.

Future Schedule
13. Which tasks will each team member complete in the future? (Circle one task in
each row to show which team member will complete which task in the future.)
14. I am aware of which tasks the human/robot co-leader will do in the future.
15. I am aware of which tasks the human assistant will do in the future.
16. I am aware of which tasks I will do in the future.

Dynamic Re-Scheduling
17. Given the work that has already been completed, who do you anticipate will
complete the remaining tasks if the human/robot co-leader was no longer available?
18. I am aware of the team’s schedule.
19. If I had to come up with a new schedule for the team, I would know enough.
20. If I had to come up with a new schedule for the team, I would do a good job.
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Team
Leader
(You)

Human
Assistant

Robot
Co-

Leader

Fetch B Fetch B Fetch B
Fetch C1 Fetch C1 Fetch C1
Fetch C2 Fetch C2 Fetch C2
Build A Build A Build A
Build B Build B Build B
Build C1 Build C1 Build C1
Build C2 Build C2 Build C2
Fetch E Fetch E Fetch E
Fetch F Fetch F Fetch F
Fetch G Fetch G Fetch G
Build D Build D Build D
Build E Build E Build E
Build F Build F Build F
Build G Build G Build G

Table 6.2: This table depicts the response format for the post-test questionnaire
shown in Table 6.1.

perceptions of the state of the human-robot team; the subjective measures were paired

with the objective measures to evaluate the participants’ confidence in their answers

to the objective questions.

Participants responded to the objective questions (i.e., Questions 1, 5, 9, 13, and

17) using the template-based response format shown in Table 6.2, and responded to

subjective questions (i.e., questions 2-4, 6-8, 10-12, 14-16, and 18-20) according to a

5-point Likert response format consisting of “strongly disagree,” “weakly disagree,”

“neutral,” “weakly agree,” and “strongly agree.” The later questions were applied to

gain insight into the participants’ subjective perception of their situational awareness.

Table 6.2 depicts each individual subtask that could be assigned to each team

member. (I describe the nature of these subtasks in the subsequent description of the

experiment design.) However, I note for clarity that the task set consisted of fetching

and building tasks A, B, C1, C2, D, E, F, and G, such that the fetch and build

subtasks for C1 were required to be completed before the fetch and build subtasks for

C2 could begin. The table does not include fetch operations for A and D because the
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experiment began with kits A and D already fetched. This condition increased the

number of possible actions the human agents could take at the start of the experiment.

To test Hypothesis 1 via objective measures, a metric, called the “SA Score,” was

defined to assess how well participants are able to provide the desired information

for each question in Table 6.1. The SA Score for each team member was computed

according to Equation 6.1, and the overall SA Score was computed for the whole

team according to Equation 6.2. In these equations Saresponse is the set of tasks the

subject reported for agent a for a given question, and Sacorrect is the correct set of

tasks for agent a for that same question. In this manner, sets Saresponse and Sacorrect

were obtained for each agent and for each of the objective Questions 1, 5, 9, 13, and

17.

SA Score for Agent a := |Saresponse\Sacorrect|+ |Sacorrect\Saresponse| (6.1)

SA Score for Team :=
n∑
a=1

(SA Score for Agent a) (6.2)

In essence, Equation 6.1 counts the number of mistakes, false positives (incorrect

tasks identified in the response) and false negatives (correct tasks not identified in

the response). The team’s SA score is a sum of the individual SA scores. This work

assumed that the subject’s situational awareness of each team member is equally

important. A perfect score is equal to zero, and the worst possible score is equal to

the total number of fetch and build tasks (14).

Let us consider an example in which the correct answers are as follows: Subject -

Sparticipantcorrect = {Fetch B, Build C1}, Human Assistant - Sasst.correct = {Fetch C1, Build A},

and Robotic Agent - Srobotcorrect = {∅}. Let us say the subject provided the follow-

ing answer: Subject - Ssubjectresponse = {Fetch B, Build A}, Human Assistant - Sasst.correct =

{Fetch C1, Build D, Build G}, and Robotic Agent - Srobotcorrect = {Fetch E}. The SA
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score would then be calculated as follows:

SA Score for subject = |Sparticipantresponse \S
participant
correct |+ |Sparticipantcorrect \Sparticipantresponse |

= |{Build A}|+ |{Build C1}|

= 2

SA Score for asst. = |Sasst.response\Sasst.correct|+ |Sasst.correct\Sasst.response|

= |{Build D, Build G}|+ {Build A}|

= 3

SA Score for robot = |Srobotresponse\Srobotcorrect|+ |Srobotcorrect\Srobotresponse|

= |{Build A}|+ |{∅}|

= 1

SA Score for Team =
n∑
a=1

(SA Score for Agent a)

= 2 + 3 + 1

= 6

6.2.2 Experiment: Workflow Preferences

An experiment was proposed to understand how the robot’s inclusion of human team

members’ preferences (e.g., a subject preferring to complete build tasks over fetch

tasks) for completing particular tasks affects the relationship between the human and

robotic agents.

Independent Variable

The independent variable was the degree to which participants’ preferences were

respected by the robotic teammate when scheduling. Three experimental conditions

for this variable using a within-participants experiment design:
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� Positive: The robot generates a schedule incorporating the preferences of the

subject.

� Neutral : The robot ignores the preferences of the subject.

� Negative: The robot schedules according to the opposite of the preferences

stated by the subject.

Hypothesis

The following hypothesis was established:

Hypothesis 2: Participants would prefer to work with a robotic teammate that in-

corporates their scheduling preferences than with one that is unaware of their prefer-

ences, and participants would prefer to work with a robotic teammate that is ignorant

to their preferences than with one that actively schedules against their preferences.

Dependent Variables

To test this hypothesis, a within-participants experiment was conducted in which all

participants experienced each of the three conditions once, and received a post-trial

questionnaire after experiencing each condition. This questionnaire consisted of 21

Likert statements, as shown in Table 6.3. Hoffman previously developed and validated

the questions drawn from the “Robot Teammate Traits” and “Working Alliance for

Human-Robot Teams” surveys [103]. The later survey is a derivative of the “Working

Alliance Inventory,” originally developed and validated by Horvath et al. [110].

Participants also responded to a questionnaire upon completing the tasks under

each condition, as shown in Table 6.4. This questionnaire gathered demographic infor-

mation and included three additional Likert statements summarizing the experience

of the participants, along with two open-ended questions.

This questionnaire is not balanced. The number of positive prompts (e.g., “I

believe the robot likes me.”) outweighed the number of negative prompts (e.g., “I feel

uncomfortable with the robot.”). However, potential bias arising from an unbalanced

survey is mitigated since the same questionnaire is administered in each condition.
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Table 6.3: Subjective Measures – Post-Trial Questionnaire

Robot Teammate Traits
1. The robot was intelligent.
2. The robot was trustworthy.
3. The robot was committed to the task.
Working Alliance for Human-Robot Teams
4. I feel uncomfortable with the robot. (reverse scale)
5. The robot and I understand each other.
6. I believe the robot likes me.
7. The robot and I respect each other.
8. I feel that the robot worker appreciates me.
9. The robot worker and I trust each other.
10. The robot worker perceives accurately what my goals are.
11. The robot worker does not understand what I am trying to accomplish. (reverse
scale)
12. The robot worker and I are working toward mutually agreed-upon goals.
13. I find what I am doing with the robot worker confusing. (reverse scale)
Additional Measures of Team Fluency
14. I was satisfied by the team’s performance.
15. I would work with the robot the next time the tasks were to be completed.
16. The robot increased the productivity of the team.
17. The team collaborated well together.
18. The team performed the tasks in the least time possible.
19. The robot worker was necessary to the successful completion of the tasks.
20. The human worker was necessary to the successful completion of the tasks.
21. I was necessary to the successful completion of the tasks.

6.2.3 Experiment: Workload vis á vis Workflow Preferences

The exclusive focus of the previous experiment was on modulating the degree to

which scheduling preferences were included, and did not control for workload – rather,

the experiment controlled for overall team efficiency (makespan). This experiment

examined how team fluency varies as a function of the size of the workload assigned

to a human by a robotic teammate while controlling for workflow preferences. The

results section discusses how including participants’ preferences in the scheduling

process can decrease their workload, and, in turn, lead to decreased team fluency.

To isolate the effects of variation in a subject’s workload, the inclusion of schedul-

ing preferences and increasing the subject’s workload were separated into two inde-
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Table 6.4: Subjective Measures – Post-Test Questionnaire

Overall Preference
22. If the robot scheduled me to do the tasks I preferred, I would want to work with
the robot again.
23. If the robot did not know my preferences when scheduling, I would want to work
with the robot again.
24. If the robot scheduled me to do different tasks than what I preferred, I would
want to work with the robot again.
Open-Response Questions
25. Which of the three scenarios did you prefer, and why?
26. If you were going to add a robotic assistant to a manufacturing team, to whom
would you give the job of rescheduling the work, and why?

pendent variables. The hypothesis posits that decoupling workload from preferences

results in a clearer understanding of the effects of varying workload – and, in turn,

the inclusion of workflow preferences.

Independent Variables

This experiment considered two independent variables: 1) the participants’ utiliza-

tion, defined as the total amount of time the subject was occupied during execution

of a particular schedule, and 2) the degree to which the robot respected participants’

preferences during scheduling. Subject are considered as having high utilization if the

majority of their time was spent working as opposed to being idle, and vice versa for

low utilization. This experiment was comprised of a 2x2 within-participants design

with the following four conditions, as shown in Table 6.5.

� High Preference - High Utilization: The robot generates a schedule incorporat-

ing the preferences of the participant and highly utilizes the participant.

� High Preference - Low Utilization: The robot generates a schedule incorporating

the preferences of the participant and minimally utilizes the participant.

� Low Preference - High Utilization: The robot generates a schedule according

to the opposite of the preferences of the participant and highly utilizes the

participant.
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2x2 Design High Utilization Low Utilization
High Preference High Preference - High Uti-

lization
High Preference - Low Uti-
lization

Low Preference Low Preference - High Uti-
lization

Low Preference - Low Uti-
lization

Table 6.5: This table depicts the four experimental conditions varying the two inde-
pendent variables (the degree to which the scheduling preferences are included and
the participants’ utilization), each of which have two levels: high and low.

� Low Preference - Low Utilization: The robot generates a schedule according

to the opposite of the preferences of the participant and minimally utilizes the

participant.

Hypotheses

The following hypotheses were established for this experiment:

Hypothesis 3A: A participant’s subjective assessment of their robotic teammate is

favorably influenced by working with a robot that makes allocation decisions that

incorporate their scheduling preferences, as opposed to decisions that contradict their

preferences. (In contrast to H2, this hypothesis was assessed while controlling for the

workload utilization of the participant.)

Hypothesis 3B: A participant’s subjective assessment of their robotic teammate is

favorably influenced by working with a robot that makes work allocation decisions

that result in high utilization of the participant’s time, as opposed to low utilization.

Dependent Variables

A within-participants experiment in which each participant experienced each condi-

tion once was conducted to test these hypotheses. As in the previous experiment, a

post-trial questionnaire was administered after each of the conditions, as well as a

post-test questionnaire after each participant completed all conditions. The investi-

gating agent workload included four conditions; as such, participants responded to a

total of four post-trial questionnaires. The same design for the post-trial (Table 6.3)
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and post-test questionnaires (Table 6.4) were used from the previous experiment.

6.3 Formal Problem Definition

The problem of scheduling a team of heterogeneous agents to complete a set of tasks

with upper- and lowerbound temporal constraints and shared resources (e.g., spatial

locations) falls within the XD [ST-SR-TA] class of scheduling problems, according to

the comprehensive taxonomy defined by [139]. This class is one of the most computa-

tionally challenging in the field of scheduling. The XD [ST-SR-TA] class of problems

is composed of tasks requiring one robot or agent at a time (single-robot tasks [ST]),

robots/agents that perform one task at a time (single-task robots [SR]) and a time-

extended schedule of tasks that must be built for each robot/agent (time-extended

allocation [TA]). This time-extended schedule includes cross-schedule dependencies

(XD) amongst the individual schedules of the agents; such dependencies arise, for

example, when agents must share limited-access resources (e.g., physical locations).

I formulated an instance of this problem in order to develop an experiment task

as a mixed-integer linear program, as depicted in Equations 6.3 through 6.13. This

formulation serves as a common basis to model each of the three experiments. I

subsequently discuss experiment-specific extensions.
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min z, z = g
(
{Aa

τ ji
|τ ji ∈ τ , a ∈ A},

{J〈τ ji ,τyx〉|τ
j
i , τ

y
x ∈ τ}, {sτ ji , fτ ji |τ

j
i ∈ τ}

)
(6.3)

subject to∑
a∈A

Aa
τ ji

= 1,∀τ ji ∈ τ (6.4)

ubτ ji
≥ fτ ji

− sτ ji ≥ lbτ ji
, ∀τ ji ∈ τ (6.5)

fτ ji
− sτ ji ≥ lba

τ ji
−M

(
1− Aa

τ ji

)
,∀τ ji ∈ τ , a ∈ A (6.6)

sτyx − fτ ji ≥ W〈τ ji ,τyx〉,∀τ
j
i , τ

y
x ∈ τ |,∀W〈τ ji ,τyx〉 ∈ TC (6.7)

fτyx − sτ ji ≤ Drel
〈τi,τj〉,∀τ

j
i , τ

y
x ∈ τ |∃Drel

〈τ ji ,τyx〉 ∈ TC (6.8)

fτ ji
≤ Dabs

τ ji
,∀τi ∈ τ |∃Dabs

τ ji
∈ TC (6.9)

sτyx − fτ ji ≥M
(
Aa
τ ji

+ Aaτyx − 2
)

+M
(
J〈τ ji ,τyx〉 − 1

)
,∀τ ji , τ yx ∈ τ ,∀a ∈ A (6.10)

sτ ji
− fτyx ≥M

(
Aa
τ ji

+ Aaτyx − 2
)

−M
(
J〈τ ji ,τyx〉

)
,∀τ ji , τ yx ∈ τ ,∀a ∈ A (6.11)

sτyx − fτ ji ≥M
(
J〈τ ji ,τyx〉 − 1

)
,

∀τ ji , τ yx ∈ τ |Rτ ji
= Rτyx (6.12)

sτ ji
− fτyx ≥ −M

(
J〈τ ji ,τyx〉

)
∀τi, τj ∈ τ |Rτ ji

= Rτyx (6.13)

In this formulation, Aa
τ ji
∈ {0, 1} is a binary decision variable for the assignment of

agent a to subtask τ ji (i.e., the jth subtask of the ith task); Aa
τ ji

equals 1 when agent a is

assigned to subtask τ ji and 0 otherwise. J〈τ ji ,τyx〉 ∈ {0, 1} is a binary decision variable

specifying whether τ ji comes before or after τ yx , and sτ ji
, fτ ji
∈ [0,∞) are the start and

finish times of τ ji , respectively. TC is the set of simple temporal constraints relating
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task events. M is a large, positive constant used encode conditional statements as

linear constraints.

Equation 6.3 is a general objective that is a function of the decision variables

{Aa
τ ji
|τ ji ∈ τ , a ∈ A}, {J〈τ ji ,τyx〉|τ

j
i , τ

y
x ∈ τ} and {sτ ji , fτ ji |τ

j
i ∈ τ}. Equation 6.4 ensures

that each τ ji is assigned to a single agent. Equation 6.5 ensures that the duration

of each τ ji ∈ τ does not exceed its upper- and lowerbound durations. Equation 6.6

requires that the duration of τ ji , fτ ji
− sτ ji is no less than the time required for agent

a to complete τ ji . Equation 6.7 requires that τ yx occurs at least W〈τ ji ,τyx〉 units of time

after τ ji (i.e., W〈τ ji ,τyx〉 is a lowerbound on the amount of time between the start of τ yx

and the finish of τ ji ).

Equation 6.8 requires that the duration between the start of τ ji and the finish

of τ yx is less than Drel

〈τ ji ,τyx〉
(i.e., Drel

〈τ ji ,τyx〉
is an upperbound on the finish time of τ yx

relative to the start of τ ji ). Equation 6.9 requires that τ ji finishes before Dabs
τ ji

units of

time have expired since the start of the schedule (i.e., Dabs
τ ji

is an upperbound on the

latest absolute time τ ji can be finished). Equations 6.10 and 6.11 enforce that agents

can only execute one subtask at a time. Equations 6.12 and 6.13 enforce that each

resource Ri can only be accessed by one agent at a time.

The worst-case time complexity of a complete solution technique for this problem

is dominated by the binary decision variables for allocating tasks to agents (Aa
τ ji

)

and sequencing (J〈τ ji ,τyx〉), and the complexity is given by O
(

2|A||τ |
3
)

, where |A| is

the number of agents and |τ | is the number of tasks. Agent allocation contributes

O
(
2|A||τ |

)
, and sequencing contributes O

(
2|τ |

2
)

.

6.4 Scheduling Mechanism

For all three experiments, I adapted a dynamic scheduling algorithm, called Ter-

cio [91], to schedule the human-robot teams. Tercio is an empirically fast, high-

performance dynamic scheduling algorithm designed for coordinating human-robot

teams with upper- and lowerbound temporospatial constraints. The algorithm is de-

signed to operate on a simple temporal network [177] with set-bounded uncertainty.
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Figure 6-1: Tercio takes as input a temporal constraint problem and finds a satisficing,
flexible schedule by utilizing an analytical schedulability test to ensure a feasible
solution.

If the schedule’s execution exceeds its set bounds, Tercio re-schedules the team [91].

I note that, for this experimental investigation, I did not employ apprenticeship

scheduling as the basis for the robotic teammate’s ability to make scheduling de-

cisions. The premise of apprenticeship scheduling is to learn from human expert

demonstration how to solve complex scheduling problems. However, for this experi-

ment, I need to directly manipulate the scheduling policy to change the participants’

workload, adhere to or ignore the workflow preferences of the participants’, and vary

their level of control input into the algorithm. Further, requiring subjects to train

and validate the robot’s apprenticeship scheduling policy would be a limiting factor

in conducting the experiment. As such, I chose to employ an optimization algorithm

(i.e., Tercio), that allowed me to readily manipulate the desired parameters for a

controlled experiment.

I now step through the Tercio algorithm. As shown in Figure 6-1, the algorithm

takes as input a temporal constraint problem, a list of agent capabilities (i.e., the

lowerbound, upperbound and expected duration for each agent performing each task)

and the physical location of each task. Tercio first solves for an optimal task allocation

by ensuring that the minimum amount of work assigned to any agent is as large as

possible, as depicted in Equation 6.14. In this equation, Agents is the set of agents,
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Aa
τ ji

is a task allocation variable that equals 1 when agent a is assigned to subtask

τ ji and 0 otherwise, A is the set of task allocation variables, A∗ is the optimal task

allocation and Ca
τ ji

is the expected time it will take agent a to complete subtask τ ji .

A∗ = min
{A}

max
Agents

∑
τ ji

Aa
τ ji
× Ca

τ ji
, ∀a ∈ Agents (6.14)

After determining the optimal task allocation, A∗, Tercio uses a fast sequenc-

ing subroutine to complete the schedule. The sequencer orders the tasks through

simulation over time. Before each commitment is made, the sequencer conducts an

analytical schedulability test to determine whether task τi can be scheduled at time t

given prior scheduling commitments. If the test returns that this commitment can be

made, the sequencer then orders τi and continues. If the schedulability test cannot

guarantee commitment, the sequencer evaluates the next available task.

If the schedule, consisting of a task allocation and a sequence of tasks, does not

satisfy a specified makespan, a second iteration is performed by finding the second-

most optimal task allocation and the corresponding sequence. The process terminates

when the user is satisfied with the schedule quality or when no better schedule can

be found. In this experiment, Tercio was specified to run for 25 iterations and return

the best schedule.

Tercio was employed because it allows for easy altering of task allocation within

its task allocation subroutine. Here, I describe the specific Tercio alterations incor-

porated into each experiment. Note that only the task allocation subroutine within

Tercio was modified for the three experiments; the sequencing subroutine remained

unaltered.

6.4.1 Algorithm Modifications for Mixed-Initiative Schedul-

ing

The situational awareness experiment sought to determine whether situational aware-

ness degrades as a robotic agent is allowed greater autonomy over scheduling deci-
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sions. This experiment considered three conditions: autonomous, semi-autonomous,

and manual control. Under the autonomous condition, the robotic teammate per-

formed scheduling for the entire team; as such, the robot could use Tercio without

modifications.

Under the semi-autonomous condition, in which the human participant decides

which tasks he/she will perform and the robotic agent decides how to allocate the

remaining tasks between itself and a human assistant, Tercio was required to consider

the tasks allocated by the participant. After the participant specified which tasks

he/she would perform, the experimenter provided these assignments to the robot,

which encoded the allocation as an assignment to the decision variables. Specifically,

Tercio set Aparticipant
τ ji

= 1, Aasst.
τ ji

= 0, Arobot
τ ji

= 0 for subtasks τ ji assigned to the

participant, and Aparticipant
τyx

= 0 for subtasks τ yx the participant did not assign to

him/herself. Thus, the robot (via Tercio) only needed to solve for the allocation

variables not already allocated by the participant.

Under the autonomous condition, the participant specified all task allocation as-

signments. As such, the robotic agent set Aa
τ ji

= 1 for all subtasks τ ji assigned to

agent a, and Aa
τyx

= 0 for all subtasks τ yx not assigned to agent a, for all agents a.

6.4.2 Algorithm Modifications for Scheduling with Prefer-

ences

This work focused on the effect of incorporating the preferences of human team mem-

bers when generating a team’s schedule. Preferences can exist in a variety of forms.

For example, humans may have preferences about the duration of events (how long

it takes to complete a given task) or the duration between events (the lowerbound or

upperbound on the time between two tasks) [259]. In this investigation, preferences

related to task types were considered – for example, a worker may prefer to com-

plete a drilling task rather than a painting task. Such preferences can be included

in the mathematical formulation in Equations 6.3 through 6.13 as an objective func-

tion term where one seeks to maximize the number of preferred tasks assigned to the
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participant, as shown in Equation 6.15. In this equation, the objective function term

for maximizing preferences is balanced with the established criteria (i.e., function

g
(
{Aa

τ ji
|τ ji ∈ τ , a ∈ A}, {J〈τ ji ,τyx〉|τ

j
i , τ

y
x ∈ τ}, {sτ ji , fτ ji |τ

j
i ∈ τ}

)
from Equation 6.3)

via a weighting parameter α.

min z, z = α× g
(
{Aa

τ ji
|τ ji ∈ τ , a ∈ A},

{J〈τ ji ,τyx〉|τ
j
i , τ

y
x ∈ τ}, {sτ ji , fτ ji |τ

j
i ∈ τ}

)
− (1− α)×

 ∑
τ ji ∈τpreferred

Aparticipant
τ ji

 (6.15)

Alternatively, one could incorporate preferences as a set of constraints on enforce-

ment of a minimum or maximum level of preferred work assigned to the participant,

as shown in Equations 6.16 and 6.17. In these equations, kprefub and kpreflb are upper-

and lowerbounds on the number of preferred tasks allocated to the participant, and

kpref
c

ub and kpref
c

lb are upper- and lowerbounds on the number of non-preferred tasks

allocated to the participant.

kpreflb ≤
∑

τ ji ∈τpref

Aparticipant
τ ji

≤ kprefub (6.16)

kpref
c

lb ≤
∑

τ ji ∈τpref c

Aparticipant
τ ji

≤ kpref
c

ub (6.17)

For these experiments preferences were modeled as a set of constraints, which

were added to Tercio’s task allocation subroutine. For the purpose of human-subject

experimentation, where one must control for confounders, this approach offers greater

control over schedule content, as opposed to including a preference term within the

objective function. The challenge of using an objective function model is in the

need to tune one or more coefficients (e.g., α in Equation 6.15) in the objective

function to balance the contribution of the schedule efficiency (i.e., makespan) with

the importance of adhering to preferences. This tuning across a variety of participants

is difficult and inconsistent.
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For all three conditions, kpreflb = kpref
c

lb = 0. Under the positive condition, par-

ticipants could be assigned only one task that did not align with their preferences

(i.e., kprefub = ∞ and kpref
c

ub = 1) – participants preferring to build could be assigned

one fetching task at most, and vice versa. Under the negative condition, participants

could be assigned a maximum of one task that aligned with their preferences (i.e.,

kprefub = 1 and kpref
c

ub = ∞) – for example, participants preferring to build could be

assigned one build task at most. Under the neutral condition, Tercio’s task allocation

subroutine would run without alteration (i.e., kprefub = kpref
c

ub = 1, τpreferred = ∅).

Based on results from previous studies indicating the importance of team effi-

ciency [87, 88], these experiments sought to control for the influence of schedule

duration on team dynamics. For the experiment studying scheduling preferences, 50

iterations of Tercio were run for each participant under the positive, neutral, and neg-

ative parameter settings, generating a total of 150 schedules. A set of three schedules,

one from each condition, was identified such that the makespans were approximately

equal. (The workload of the individual agents was not controlled for.) The robot

then used these schedules to schedule the team under the respective conditions.

6.4.3 Algorithm Modifications for Workload- and Scheduling

Preference-based Constraints

In this experiment, I needed to control for makespan across all four conditions while

varying the participants’ workloads and the types of tasks they were assigned.

To control for the degree to which preferences were included in the schedule, I

again added Equations 6.16 and 6.17 to Tercio’s task allocation subroutine. Under

conditions with high preference, all tasks assigned to the participant were preferred

tasks (i.e., kprefub =∞ and kpref
c

ub = 0); under conditions with low preference, all tasks

assigned to the participant were non-preferred tasks (i.e., kprefub = 0 and kpref
c

ub =∞).

Under all conditions, I set kpreflb = kpref
c

lb = 0.

To control for the utilization of the participant, I added an objective function

term to Tercio’s task allocation subroutine that minimized the absolute value of the
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difference between the desired utilization of the participant U target and the actual

utilization of the participant
∑

τ ji ∈τ
Aparticipant
τ ji

×lbτ ji . Since the absolute value function

is nonlinear and cannot be handled by a linear program solver, I linearized the term

in Equations 6.18 and 6.19:

zutility ≥ U target −
∑
τ ji ∈τ

Aparticipant
τ ji

× lbτ ji (6.18)

zutility ≥ −U target +
∑
τ ji ∈τ

Aparticipant
τ ji

× lbτ ji (6.19)

I generated schedules for each condition in three steps: First, I ran Tercio without

any alterations to the task allocation subroutine for 100 iterations. Tercio works

by iteratively generating task allocations and then sequencing the task set given the

corresponding task allocation. Each iteration takes approximately one-third of a

second. By running Tercio for several iterations, I allowed it to explore the search

space so that it could then identify a candidate schedule with given characteristics

(e.g., a specific degree of utilization of a particular agent). From these iterations, I

recorded the median utilization Umedian of the participant.

Next, I ran four additional sets of 100 iterations of Tercio – one set for each of the

four conditions listed above. As before, I used Equations 6.16 and 6.17 to control for

the degree to which the robot included the participant’s preferences while scheduling.

When the preference variable was set to high, I set kprefub = ∞ and kpref
c

ub = 0, and I

set kprefub = 0 and kpref
c

ub = ∞ for the low preference condition. In both conditions,

kpreflb = kpref
c

lb = 0.

In the experiment studying workload, I controlled for the participant’s utilization

via Equations 6.18 and 6.19. When the utilization variable was set to high, I set

U target = Umedian. When the utilization variable was set to low, I set U target = Umedian

2
.

I then identified one schedule from each of the four sets of 100 Tercio iterations to

generate a set of schedules with short, approximately equal makespans and utilizations

close to their respective targets. To generate this set, I employed Equation 6.20,

which minimizes the difference between the longest and shortest makespans across

166



Figure 6-2: This figure depicts a diagram of the laboratory room where the experiment
took place. There were two locations where the human and robot workers could
inspect part kits during a fetching task, and two locations where the human workers
built part kits.

the four conditions (i.e., maxi,j (mi −mj)), the longest makespan (i.e., maximi) and

the maximum difference between each schedule’s target utilization U target
i and its

actual utilization Ui. In the experimental procedure, I set α1 = α2 = 1, α3 = 2.

ztuning = α1 max
i,j∈schedules

(mi −mj) + α2 max
i∈schedules

mi

+ α3 max
i∈schedules

(
U target
i − Ui

)
(6.20)

6.5 Experimental Design

I conducted a series of three human-participant experiments (n = 17, n = 18, n3 =

20) that required the fetching and assembly of Lego part kits. The goal of these

experiments was to assess the following: 1) how a robotic teammate’s inclusion of the

preferences of its human teammates while scheduling affects team dynamics, 2) how

the benefits of including these scheduling preferences varies as a function of the degree

to which the robot utilizes the human participant, and 3) how situational awareness

degrades as a function of the level of autonomy afforded to the robot over scheduling

decisions. I used the same basic experimental setup for all three experiments, which

I describe below.
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6.5.1 Materials and Setup

My human-robot manufacturing team consisted of the human participant, a robotic

assistant, and a human assistant. The human participant was capable of both fetch-

ing and building, while the robot assistant was only capable of fetching. One of the

experimenters played the role of a third teammate (the human assistant) for all par-

ticipants and was capable of both fetching and building. This human assistant was

included in order to more realistically represent the composition of a human-robot

team within a manufacturing setting. A Willow Garage PR2 platform, depicted in

Figure 6-2, was used as the robotic assistant for the human-robot team. The robot

used adaptive Monte Carlo localization (AMCL) [82] and the standard Gmapping

package in the Robot Operating System (ROS) for navigation.

6.5.2 Procedure

The scenario included two types of tasks: fetching and assembling part kits. As

shown in Figure 6-2, the experiment environment included two fetching stations and

two build stations, with four part kits located at each fetching station.

Fetching a part kit required moving to one of two fetching stations where the kits

were located, inspecting the part kit, and carrying it to the build area. The archi-

tecture of the fetching task is analogous to actions required in many manufacturing

domains. In order to adhere to strict quality assurance standards, fetching a part

kit required verification from one to two people that all of the correct parts were

present in the kit, as well as certification from another person that the kit had been

verified. Additional constraints were imposed in order to better mimic an assembly

manufacturing environment: A part kit must have been fetched before it could be

built, and no two agents were able to occupy the same fetching or build station at

the same time.

Agents were required to take turns using the fetching stations, as allowing workers

to sort through parts from multiple kits at the same location risked the participants

mixing the wrong part with the wrong kit. Furthermore, in manufacturing, if a part
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or part kit is missing from an expected location for too long, work in that area of

the factory will temporarily cease until the missing item has been found. As such, a

10-minute deadline was imposed from the time that the fetching of a part kit began

until that kit had been built.

Assembly of the Lego model involved eight tasks τ = {τ1, τ2, . . . , τ8}, each of

which consisted of a fetch and build subtask τi = {τ fetchi , τ buildi }. The amount of time

each participant took to complete each subtask Cparticipant−fetch
i and Cparticipant−build

i

was measured during a training round. The timings for the robot Crobot−fetch
i and

human assistant Cassist−fetch
i and Cassist−build

i (performed by an experimenter) were

collected prior to the experiments.

In all three experiments, the robotic agent employed Tercio as a dispatcher, com-

municating to the participant and human assistant when to initiate their next sub-

tasks. Tercio would tell each agent when they were able to initiate or complete each

subtask, and each agent would send a message acknowledging initiation or completion

via simple, text-based messages over a TCP/IP GUI2.

Modifications for the Experiment Studying Situational Awareness

For the study evaluating the effects of mixed-initiative scheduling on the situa-

tional awareness of the human team members, a between-participants experiment

was performed in which each participant experienced only one of three conditions:

autonomous, semi-autonomous, or manual.

As stated above, under the autonomous condition, the robot scheduled the three

members of the team using Tercio with the default task allocation subroutine. Under

the semi-autonomous condition, each participant selected which tasks they would

perform and the robot allocated the remaining tasks to itself and the human assistant.

Under the manual condition, the participant allocated tasks to each of the team

members. The robot sequenced the tasks under all conditions.

After the human and/or robot completed the task allocation and sequencing

2SocketTest v3.0.0 ©2003-2008 Akshathnkumar Shetty (http://sockettest.sourceforge.
net/)
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process, the participants were allowed 3 minutes to review the schedule. In prior

work [87], participants required approximately 3 minutes to perform task allocation;

as such, participants were given at least this much time to review a robot-generated

schedule under the autonomous condition. Participants were not told they would

later respond to questionnaires about their experiences because I did not want to

unduly bias them to focus on preparing for such a questionnaire. Instead, I wanted

participants to fully attend to carrying out the task at hand.

After the participants reviewed the schedule, the team executed their tasks accord-

ing to that schedule. At approximately 200 seconds into execution, the experimenter

halted the process and administered the post-trial questionnaire (as shown in Table

6.1) according to the SAGAT technique. The timing of the intervention was tuned

to allow each team member to have been assigned at least one task on average. The

team did not complete the schedule after the SAGAT test; the experiment concluded

following administration of the questionnaire

Extensions for the Experiment Studying Scheduling Preferences

For the experiment studying scheduling preferences, I employed a within-participants

design. As such, participants experienced all three experimental conditions: positive,

neutral, and negative. The order in which participants experienced these conditions

was randomized. Participants were randomly assigned to these conditions. At the

beginning of each condition, participants were told their robot teammate wanted to

know whether they preferred to complete fetch tasks or build tasks, and the partici-

pants responded accordingly.

Deference to the participants with regard to their preferred tasks is in keeping

with a pseudo-experiment. I did not attempt to balance participants according to

the number in the sample who preferred fetching vs. building, as fourteen of eighteen

participants (78%) preferred building tasks. Participants were not informed a priori

of the different conditions; as such, subjective evaluations of team dynamics under

each condition would not be influenced by the expectation that the robot would or

would not cater to the participants’ preferences.
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The preferences, along with task completion times for each of the three team

members, were provided to the robot, which scheduled the team. The team then

performed the tasks to completion. After the schedule was completed, participants

received the post-trial questionnaire depicted in Table 6.3. This process was repeated

once for each condition, as indicated previously. After completing the tasks under all

three conditions, the participant received the post-test questionnaire shown in Table

6.4. The experiment concluded after completion of this questionnaire.

Extensions for the Experiment Studying Workload

For the experiment studying workload influence, I employed an experimental design

that mirrored the procedure for the experiment studying workflow preferences, with

one primary difference: I varied workload and the degree to which human preferences

were considered during scheduling, rather than preferences alone. Participants were

not informed about whether the robot was varying their utilization, and the schedule

itself was not reported to the participant; participants had to infer changes to their

degree of utilization based only on their subjective experience.

6.6 Results

In this section, I report the results from statistical analysis of the experiments. Sta-

tistical significance is measured at the α = 0.05 level.

6.6.1 Participants

I recruited participants for all three experiments from a local university. The sample

population for the situational awareness study consisted of 20 participants (six men

and 14 women) with an average age of 19.5± 1.95 years (range, 18 to 25 years). The

cohort for the study of scheduling preferences included 18 participants (10 men and

eight women) with an average age of 27± 7 years (range, 19 to 45 years). The cohort

for the workload study consisted of 18 participants (10 men and eight women) with

an average age of 21±3 years (range, 18 to 30 years). In all experiments, participants
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were assigned to the various experimental conditions via random sampling without

replacement, so as to balance participants across the conditions.

6.6.2 Results for Situational Awareness

Recall that the associated hypothesis H1 states that human participants’ situational

awareness would decline as the robot’s autonomy over scheduling decisions increased.

I administered a SAGAT-based test in which participants received a question-

naire consisting of both objective and subjective measures. I observed statistically

significant decreases in situational awareness and participants’ confidence in their sit-

uational awareness while under the autonomous condition, when the robot had full

control over scheduling decisions.

Figure 6-3 depicts the team situational awareness score for Questions 1, 5, 9,

and 13 from the post-trial questionnaire (shown in Table 6.1). For visual clarity

when comparing the results from each question, I have normalized the values for each

question in Figure 6-3 such that the maximum team score for each question is equal

to 1.

I conducted a mixed-factor analysis of variance (ANOVA) for Question 1, and

observed a statistically significant difference for participants’ responses to Question

1 (F (2, 17) = 3.894, p < 0.041) across the three conditions. Results from a pair-

wise comparison with a Student’s t-test indicated that participants were statisti-

cally significantly more accurate when recalling which action team members per-

formed under the semi-autonomous condition (M = 0.67,SD = 0.48) than the au-

tonomous condition (M = 2.13,SD = 1.36), (t(12), p < 0.014). The manual condition

(M = 1.00,SD = 0.89) was not statistically significantly different from the other two

conditions.

I also applied a set of pair-wise t-tests with a Bonferroni correction α′ = α
3

= 0.05
3

=

0.016̄ for responses to Question 9, and found that participants were less accurate

when recalling all previous actions of each agent under the autonomous condition

(M = 7.88,SD = 2.75) compared with the manual condition (M = 3.38,SD = 3.49)

(p < 0.0158). There was no statistically significant difference with regard to the
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Figure 6-3: This figure depicts participants’ average SA scores for Questions 1, 5, 9,
and 13 in the post-trial questionnaire shown in Table 6.1, as a function of the degree
of automation over scheduling decisions. The standard error of the mean is shown as
whisker bars. Note that a lower score indicates a better situational awareness.

semi-autonomous (M = 6.67,SD = 5.71) condition.

Next, the participants’ responses to the set of participant questions from Table

6.1 (i.e., Questions 2-4, 6-8, 10-12, and 14-16) are considered. Choosing the correct

test was challenging. In general, a statistician would want a composite measure for

confidence as it is more robust to false positives. Such a measure would combine

responses to Questions 2-4, and likewise for Questions 6-8, 10-12, and 14-16, as a

repeated measure. However, one could not immediately apply an ANOVA in this

manner because the data were on an ordinal rather than an interval scale.

As such, two types of analysis were performed on these data. First, a non-

parametric analysis was used, assuming ordinal, non-normally distributed data. In

this analysis, the confidence of an individual participant under a given condition for

the current actions of agents (referring to Questions 2-4), the median of the answers

were used as a single data point (i.e., the median response across Questions 2-4).

Second, a set of medians for participants under each condition was constructed and

compared to the medians for other participants. For a qualitative description, a
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Figure 6-4: This figure depicts the average of the medians of participants’ responses
to Likert-response Questions 2-4, 6-8, 10-12, and 14-16 under the autonomous, semi-
autonomous and manual conditions. The standard error of the mean is shown as
whisker bars.

histogram of the medians is depicted in Figure 6-4.

Results from an omnibus Kruskal-Wallis test indicated significant differences across

the conditions with regard to participants’ confidence in their situational awareness for

the current activities (Questions 2-4; χ2(2) = 6.09, p = 0.0476), and past activities of

their team members (Questions 10-12; χ2(2) = 7.98, p = 0.018). A pair-wise Kruskal-

Wallis test indicated that participants were statistically significantly more confident

in their situational awareness for the current activities of team members (Questions

2-4) when under the manual condition than the semi-autonomous (χ2(1) = 5.61,

p < 0.018) or autonomous (χ2(1) = 4.04, p < 0.044) conditions. Likewise, partici-

pants were found to be statistically significantly more confident in their situational

awareness for the current activities of team members (Question 10-12) under the man-

ual condition than the semi-autonomous (χ2(1) = 7.93, p < 0.005) or autonomous

(χ2(1) = 4.15, p = 0.0416) conditions.

In the second analysis, the data were treated as interval data. Prior work has
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included extensive analyses suggesting that one can reasonably approximate a sym-

metric Likert-response format as interval data [37, 38], and that the F-test is quite

robust with respect to breaking the assumptions of normality with regard to interval

data [86]. A mixed-factor ANOVA was used to measure the composite confidence for

the sets of questions corresponding to the current, preceding, past, and future actions

of team members.

A mixed-factor ANOVA found that the level of robotic autonomy over scheduling

decisions affected participants’ confidence in their knowledge of the current actions of

their team (Questions 2-4, F (2, 18) = 4.228, p < 0.031), as well as their confidence in

their knowledge of the team’s previous actions (Questions 6-8, F (2, 18) = 6.293, p <

0.008). These findings support the results from the Kruskal-Wallis test.

Upon performing pair-wise comparisons of the autonomous, semi-autonomous,

and manual conditions using the mixed-factor ANOVA, there was statistically sig-

nificantly greater confidence in situational awareness among participants with regard

to the current activities of team members (Questions 2-4) under the manual con-

dition than in the autonomous condition (F (1, 13) = 11.377, p = 0.005). Likewise,

participants were statistically significantly more confident in their situational aware-

ness about the current activities of team members (Questions 10-12) when under

the manual condition than the semi-autonomous (F (1, 11) = 18.615, p = 0.001) or

autonomous conditions (F (1, 11) = 8.960, p = 0.010). These findings corroborate

those from non-parametric testing and strongly suggest that participants have less

confidence in their situational awareness when under the autonomous condition.

6.6.3 Results for Scheduling Preferences

Recall that hypothesis H2 states that human participants would prefer to work with

a robot when it included their workflow preferences in scheduling decisions. Based

on responses to Questions 22-24 in Table 6.4, there was a statistically significant

evidence that human participants preferred working with a robot that included their

preferences when scheduling (p < 0.001). Participants reported that they would

rather work with a robotic teammate that included their preferences than one that
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Table 6.6: Correlation between utilization and participants’ perception of the team
(N = 17).

Q. Correlation Coefficient t-value p-value

7 r = 0.285 t = 2.084 p = 0.021
10 r = 0.311 t = 2.287 p = 0.013
14 r = 0.286 t = 2.086 p = 0.021
15 r = 0.269 t = 1.957 p = 0.028

was unaware of their preferences (p < 0.001). Furthermore, participants reported

that they would prefer to work with a robot that was unaware of their preferences

than a robot that scheduled according to the opposite of their preferences (p < 0.001).

Participants felt the robot liked them more (Question 6 in Table 6.4) under the neutral

condition, when the robot was unaware of the participants’ preferences, than under

the negative condition (p < 0.05). These results support the hypothesis that the

preferences of human workers are important for a robotic teammate to include when

making scheduling decisions.

Surprisingly, the amount of work allocated to participants had a strong impact

on their subjective perceptions of their teams’ interactions. In post-hoc analysis, the

Pearson product-moment correlation coefficient was calculated for the rank of par-

ticipants’ Likert-scale responses to questions from the post-trial questionnaire (Table

6.3) for each condition as a function of the amount of work assigned to each partic-

ipant; a statistically significant proportion of Likert-Scale responses responses on 16

of the 21 questions3 were positively correlated with the amount of time assigned to

participants (χ2 = 5.762, p = 0.016). Furthermore, four of the 16 with a positive

correlation (Questions 7, 10, 14, and 15 from Table 6.3) were statistically signifi-

cantly correlated, as shown in Table 6.6 (p < 0.05). There did not exist a statistically

significant negative correlation with the amount of time assigned to participants.

To further investigate this finding, an analysis of variance found that the robot

allocated a statistically significantly different amount of work to the participant as a

function of how the robot included the participant’s preferences when scheduling, as

shown in Figure 6-5 (ANOVA F (2, 48) = 5.16, p = 0.009). Interestingly, participants

3Questions 1-7, 9-10, 12-16, 18, and 20 from Table 6.3 showed participants’ responses were
positively correlated with their utilization.
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Figure 6-5: This figure depicts the mean and standard error of the amount of work, in
seconds, assigned to the participant by the robotic teammate. Horizontal bars with
an asterisk denote statistical significance (p < 0.01).

were allocated statistically significantly more work, as measured in seconds, when

under the negative condition (M= 448, SD= 113) compared with the positive (M=

373, SD= 92) (t(16) = 1.86, p = 0.04) or neutral conditions (M= 345, SD= 82)

(t(17) = 2.14, p = 0.03).

In collecting participants’ preferences for the types of tasks they would rather

complete, fourteen of eighteen participants (78%) reported they preferred to build

the part kits rather than fetch them. Under the positive condition, participants

received a maximum of one fetching task; under the negative condition, they received

a maximum of one building task. The third teammate (the human assistant) was

typically more proficient at building than the average participant; consequently, the

optimal work allocation would typically assign the majority of building tasks to the

assistant, with the participant providing support by performing more fetching tasks.

(The robot teammate was only able to fetch part kits.) As such, the negative condition

afforded participants the opportunity to complete a larger share of the work. Based

on this result, I propose that participants’ preferences for task types must be balanced

with an innate desire on the part of a human worker to be an important contributor

to his or her team.
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6.6.4 Results of Varying Workload

Recall that H3.A states that participants would prefer to work with a robotic agent

that included their workflow preferences, and H3.B states that participants would

prefer working with a robotic agent that provided them with a relatively high work-

load. To test the hypotheses, an experiment was conducted to control for both the

degree to which preferences were included and the degree to which participants were

utilized.

Across 12 measures of the participants’ perceptions about the human-robot team,

there is statistically significant evidence that participants preferred working with a

robot that included their preferences when scheduling – and, across 10 measures,

that participants preferred working with a robot that utilized them more frequently,

as opposed to working with a robot that is antagonistic to their preferences. Results

are depicted in Table 6.7. For the findings reported here, an omnibus Friedman test

was first used to determine that a statistically significant difference existed across

all conditions, and then applied a pair-wise Friedman test to examine the differences

between the conditions.

The experiment in which a robotic agent included the preferences of a human team

member when scheduling provided initial evidence that human participants would

prefer to work with a robotic agent when it considered their workflow preferences

and more frequently utilized their time. These data statistically significantly support

the hypotheses: When a robot schedules for a human-robot team, the human team

members’ perception of the robot and the team as a whole are significantly improved

when the robot considers the preferences of the human worker and utilizes more of

the workers’ time.

In addition to these findings, there is a surprising trend between preferences, uti-

lization and the participants’ perception of team efficiency in post-hoc analysis. Under

the high preference - high utilization condition, participants felt more strongly that

the team performed tasks using the least possible amount of time, even though the

schedule duration (i.e., makespan) was constant across all trials within participants

178



Table 6.7: P-values for statistically significant post-trial questions (N = 18). Statis-
tically significant values are bolded.

Q. Omnibus High Util. vs. Low Util. High Pref. vs. Low Pref.

2 p = 0.013 p = 0.002 p = 0.096
5 p = 0.010 p = 0.003 p = 0.020
7 p = 0.026 p = 0.035 p = 0.016
9 p < 0.001 p < 0.001 p = 0.170
10 p < 0.001 p = 0.007 p = 0.061
11 p = 0.026 p = 0.027 p = 0.029
13 p < 0.001 p = 0.001 p = 0.001
14 p < 0.001 p < 0.001 p = 0.004
15 p < 0.001 p = 0.005 p = 0.001
16 p = 0.010 p = 0.011 p = 0.003
17 p < 0.001 p = 0.011 p < 0.001
18 p = 0.004 p = 0.012 p = 0.012
20 p = 0.026 p = 0.052 p = 0.013

(p < 0.004). In the interests of further investigation, I propose a follow-on study

examining how human team members’ perceptions of the passage of time and team

efficiency is affected by the way in which a robot schedules the team.

6.7 Discussion

6.7.1 Design Guidance for Roboticists

This chapter investigated key gaps in prior literature by assessing how situational

awareness is affected by the level of autonomy in mixed-initiative scheduling for hu-

man robot teams, the effects of increased or decreased workload in human-robot team

fluency, and the role of workflow preferences in robotic scheduling. These findings

can serve as the basis for design guidance for roboticists developing intelligent collab-

orative robots that engage in mixed-initiative decision-making with humans.

Human situational awareness is poorer when the robotic agent has full autonomy

over scheduling decisions, as assessed by both objective and subjective measures.

However, prior work has indicated that decreasing robotic autonomy over scheduling

decisions reduces efficiency and decreases the desire of the human to work with a

robotic agent. Therefore, the positive and negative effects of increasing the robot’s

role in decision making must be carefully weighed. If there is a high probability

the human agent will have to intervene in order to adjust work allocations, or the
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potential cost of poorer human performance due to reduced situational awareness is

high, then I recommend that the human retain primary decision making authority. If

human intervention is unlikely, or the cost of poorer human performance is low, then

the benefits of improved team efficiency can be safely achieved by allowing the robot

to retain primary decision making authority. In many applications, a mixed-initiative

approach in which the participant and robot collaborate to make decisions offers a

suitable middle ground between the two ends of this spectrum.

Also, a human’s perception of a robotic teammate scheduling a team’s activities

may improve when the human is scheduled to complete tasks that he or she prefers.

However, human team members’ perception of the robot may be negatively impacted

when they are scheduled to be idle for much of the time. Providing human team

members with more highly preferred tasks at the cost of decreasing the total amount

of work assigned to them may, in fact, have more of a negative impact than assigning

human team members less-preferred tasks. Although the degree to which these vari-

ables interact is likely to be application-specific, it cannot be assumed that increasing

one criterion at the cost of the other will improve team fluency.

Collaborations with robots that participate in decision making related to the plan-

ning and scheduling of work present unique challenges with regard to preserving hu-

man situational awareness and optimizing workload allocation to human teammates

while also respective their workflow preferences. Careful consideration is necessary

in order to design intelligent collaborative robots that effectively balance the benefits

and detriments of maintaining an increased role in the decision making process.

6.7.2 Limitations and Future Work

There are limitations to the findings of the experiments presented in this chapter.

The sample population consisted of young adults enrolled from a local university

campus, whereas the target population consists of older, working adults in the fields of

manufacturing and search-and-rescue, among other domains. Impressions of robotic

teammates, in general, may differ significantly between these populations.

Workers may also use different criteria to evaluate a human-robot team. For
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example, if chronic fatigue is an issue in a given setting, workers may prefer a greater

amount of idle time. Also, the expression of preferences was limited to a binary choice

between two types of tasks; however, the preferences of real workers may be more

nuanced and difficult to encode computationally. For these reasons, I recommend

a follow-on study, conducted in multiple factories across a variety of industries and

work environments, in order to confirm the results of the experiments.

These experiments studied one robot form factor (i.e., a PR2) in the investigation.

It is possible that other form factors could elicit a different response from participants.

Further, a specific scheduling technique, Tercio, well-suited for human-robot team-

ing, was used. It is possible that alternate scheduling algorithms could alter the

participants’ experience.

When manipulating the degree to which participants are utilized and the amount

of preferred work assigned to those participants, the experiment used “high” and

“low” settings. Increasing the setting of these independent variables from low to high

was found to have positively affected the participants’ experience working with the

robot. It is possible, however, that the relationship between utilization and partici-

pants’ subjective experience is not linear. For example, an “extremely high” utiliza-

tion could be less desirable than even low utilization. Future work should investigate

utilization and workflow preferences across the entire spectrum.

Regarding The Factor Level Extremes in the Experiment on Workflow

Preferences

Further, it is important to discuss the motivation for using opposing conditions in the

experiment studying workflow preferences and utilization. This particular experiment

considered two independent variables (i.e., factors): the degree to which workflow

preferences were included and the degree to which the participants were utilized.

Each variable had two factor levels: high and low. For the participants’ utilization,

the robot either scheduled them with more or less work. For the participants’ workflow

preferences, the robot either scheduled in favor of their preferences or opposite of their

preferences (i.e., antagonistically); there was no condition for which the preferences
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were ignored.

However, in the first experiment studying workflow preferences, there were three

factor levels: Positive, Neutral, and Negative. These factor levels corresponded to

the robot incorporating the participants’ preferences, ignoring those preferences, and

scheduling opposite of those preferences. However, the results did not show definitely

that the degree to which preferences were incorporated affected the participants’

subjective perception of the team’s fluency. Rather, the results showed an interplay

between the degree to which preferences were incorporated and the utilization level

of the participants in the experiment.

To tease out the relative effects of workflow preference inclusion and participants’

utilization in this experiment, it was necessary to vary them separately as independent

variables. Further, to show that there is any effect, it is only necessary to show that

the independent variables, set at their extrema, result in a different experimental

outcome. Using factor levels at the variables extrema to find a difference, however,

does not provide one with an understanding of the nature of the gradation between

those extrema – only that such a gradation exists.

The aim of the first experiment studying workflow preferences was to determine

whether a roboticist should consider workflow preferences because it is possible that

the way in which a robot incorporates those preferences might affect the team’s inter-

action. The experimental results reported in this chapter support this consideration

of workflow preferences – a robot that schedules antagonistically to a participant’s

preferences are less-desired by participants than a robot that schedules in favor to

those preferences. However, the experimental result does not precisely explore of how

including some preferences, ignoring all preference, or scheduling opposite of the pref-

erences might affect the interaction. I recommend that a roboticist with a particular

application in mind conduct an experiment that considers a fuller spectrum of factor

levels.
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A Word on Situational Awareness and Memory

Finally, I want to offer a word on a potential confounding factor for the investigation

into how decision-making authority affects situational awareness. The aim of my

experimental design was to test the hypothesis that having participants take a lesser

role over scheduling decisions would decrease their situational awareness. Using the

SAGAT technique [74], I found that participants were, in fact, less situationally aware

of the human-robot teams activities during the execution of the teams schedule.

Recall from our discussion in Chapter 2 that Endsley defined a three-level model

for situational Awareness [75]: perception (Level 1 SA), comprehension (Level 2 SA),

and projection (Level 3 SA). These levels require the operator of a complex system

to perceive the state of the environment, understand the meaning of this state, and

project the state into the future to understand how that state must change [75].

The SAGAT questionnaire I employed in the experiment was aimed to gauge how

well participants were able to perceive and be aware of the team’s activities. I found

that, by having the participant construct part (i.e., in the semi-autonomous condition)

or all of the schedule (i.e., in the manual condition), participants were better able

to complete the SAGAT questionnaire. This finding provides evidence that giving a

robot full authority over scheduling decisions (i.e., in the autonomous condition), even

if participants are allowed to review those decisions, decreases participants’ situational

awareness.

However, one could argue that, rather than participants’ having a heightened

ability to perceive in the manual or semi-autonomous conditions, they merely were

recalling information for the questionnaire that they memorized at the beginning of

the trial. In other words, constructing a schedule may be a better memorization tool

than studying an already-constructed schedule which was prepared by the robot.

Yet, carrying this thought process one further step, better memorization may

have helped participants develop better mental models of the team’s activities. In

fact, operators relying on their internalized mental models to supplement situational

awareness is an integral component of the fields theoretical understanding of situa-
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tional awareness Endsley [76].

Endsley hypothesized and developed evidence to support the notion that memory

stored in the form of mental models or schema play a major role in helping people

overcome the limitations to their own working memory. Specifically, these models help

people more efficiently direct their attention to various features of their environment to

maintain a sufficiently accurate awareness of that environment [73, 78]. The Endsley

hypothesis [76] is supported by the works of many notable researchers in human

factors [83, 128, 222].

Thus, one could argue that situational awareness and memory go hand in hand.

In trials where the participants constructed their team’s schedule, those participants

might have relied on their memories in the form of mental models to help them more

efficiently attend to the team’s activities. Alternatively, having participants construct

the schedule could have better engaged participants’ attention to the team’s activities

(i.e., enhanced their perception). Regardless, requiring participants to construct part

or all of the team’s schedule did improve their ability to recall information, and, that

information could be valuable if the participant were required to re-schedule. Thus, I

still recommend that roboticists do not fully automate the scheduling decisions unless

safeguards are developed to counteract human team members’ lack of awareness of

the team’s activities.

6.8 Conclusions

While new computational methods have significantly enhanced the ability of people

and robots to work flexibly together, there has been little study into the ways in which

human factors must influence the design of these computational techniques. This

chapter investigated how situational awareness varies as a function of the degree of

autonomy a robotic agent has during scheduling, and found that human participants’

awareness of their teams’ actions decreased as the degree of robot autonomy increased.

This indicates that the desire for increased autonomy and accompanying performance

improvements must balanced with the risk for – and cost resulting from – reduced
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situational awareness. This chapter also studied how team fluency varies as a function

of the workload given to a human team member by a robotic agent, and the manner

in which a robot should include the workflow preferences of its human teammates

in the decision making process. Results indicate a complex relationship between

preferences, utilization, and the participants’ perception of team efficiency. The three

study results provide guidelines for the development of intelligent collaborative robots,

and a framework for weighing the positive and negative effects of increasing the robot’s

role in decision making.
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Chapter 7

Contribution and Future Work

7.1 Thesis Contribution

I envision a future where service robots are intelligent, adaptive teammates that

can learn from and adapt to their human counterparts. Currently, these robots are

explicitly tasked, programmed, and supervised, which places an undue burden on

their human teammates. To move from a paradigm where these systems are micro-

managed to one where robots can learn to adapt to their human teammates, we need

new computational methods for learning from scheduling demonstration. Further, we

need to understand the human factors design principles necessary to embody these

computational techniques in physical systems. In this thesis, I have contributed to

realizing this vision by developing an embodied apprenticeship scheduling framework

and exploring human-robot interaction with my system.

I developed a novel machine-learning optimization technique, COVAS, which en-

ables robots to learn how to coordinate team activities from observing human domain

experts. COVAS relies on a new policy learning formulation, apprenticeship schedul-

ing. The key to my policy learning approach was the use of pairwise comparisons

between the features describing the action taken by the expert versus the features

describing each action not taken, and vice versa. Through these comparisons, I con-

structed a classifier, fpriority(τi, τj), which can be used to predict the action τ ∗i the

algorithm thinks is most likely to be taken by the expert. COVAS uses this classifier
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to construct a schedule, which then serves as the input to COVAS’ mathematical

optimization subroutine. This optimization leverages the apprentice scheduler’s solu-

tion to inform a mathematical optimization with a tight lowerbound and initial seed

solution that can be used to more efficiently explore the search space. A key contri-

bution is COVAS’ ability to learn from good, but imperfect, human demonstration

to more efficiently and optimally solve scheduling problems.

I validated this apprenticeship scheduling formulation in a synthetic data set as

well as with real-world data from human decision-makers in ASMD and healthcare.

Within ASMD, I showed apprenticeship scheduling can learn policies from expert

human demonstration that are able to outperform the average human expert (p <

0.011). Further, COVAS is able to apply an apprentice scheduler trained on good,

but imperfect, demonstrations of experts solving easier ASMD scenarios to optimally

solve harder problems and do so an order of magnitude faster than state-of-the-art

optimization techniques. I also showed that apprenticeship scheduling can learn from

demonstration by resource nurses on a labor and delivery ward to generate scheduling

advice accepted 90% of the time by nurses and physicians.

Having developed a framework from human demonstration for learning how to

perform team coordination, I next investigated how to design a service robot from

a human factors perspective. First, I studied how embodiment of a scheduling algo-

rithm affects human teammates’ trust and reliance on that algorithm. I demonstrated

through human-subject experimentation that professionals working with the embod-

ied system were better able to discern the quality of the advice generated by the

system as opposed to when the system was un-embodied (p < 0.05). Next, I demon-

strated that a humans’ situational awareness decreases as a robotic agent assumes

more responsibility for scheduling decisions (p < 0.05). Moreover, I showed that

human participants desire to contribute to the team with a non-nominal workload

and by performing tasks they prefer. However, workload and workflow preferences

are tightly related: lowering workload for the sake of giving participants their desired

tasks does not necessarily improve team fluency, and vice versa. Through this in-

vestigation, I developed design guidelines for developing and deploying autonomous
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service robots that contribute to scheduling decisions.

7.2 Recommended Future Work

My thesis serves as a strong contribution to the goal of enabling service robots to be

intelligent teammates that can learn as apprentices rather than be explicitly tasked

and controlled. Yet, not all problems in any field are solved in only one thesis. In this

section, I propose future research directions that build upon my thesis to advance the

capabilities of apprenticeship scheduling.

7.2.1 Learning to Teach

In my thesis, I explored the challenge of developing an apprenticeship scheduling tech-

nique that scales beyond the power of the single expert. I have shown my techniques

can learn from a single expert how to optimally solve scheduling problems more com-

plex than those demonstrated by the expert and do so an order of magnitude faster

than state-of-the-art techniques. By replicating this learning system across multiple

physical platforms, a single expert can simultaneously contribute to solving many

scheduling problems.

Yet, there is another way to interpret the phrase, “scaling beyond the power of the

single expert.” Experts have an inherent responsibility to bestow their knowledge on

others in their domain (i.e., to teach). I propose the challenge of using apprenticeship

scheduling to teach human students. There are many interesting challenges that arise

from this proposal. For example, it is likely that merely showing demonstrations of

solved problems is helpful but not sufficient for transferring knowledge. Students

may be able to mimic the decision-making with sufficient effort, but it is likely that

students will be unable to understand why those decisions are being made. Being

able to justify why one action was made over another would be impactful, not just

for teaching but also for building confidence in the system.

Another interesting challenge arises when one compares how a machine might

teach as opposed to how a human educator teaches. The machine might generate
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a set of example trajectories for students to mimic; however, the human educator’s

examples might be able to also convey latent information the students could capture

in their studies. The manner in which a human generates a schedule may differ from

the way a human would demonstrate to another human how to schedule. Thus, the

policy for autonomous scheduling may need to be inherently different from a policy

for autonomous teaching.

7.2.2 Learning with Similarities and Differences

Commonly, supervisory learning approaches (e.g., apprenticeship learning) assume

the demonstrators provide a homogeneous set of demonstrations. In other words, the

demonstrators must attempt to achieve the same goal in the same manner. However,

this is not always true. For example, Sammut et al. showed that commercial pilots,

tasked with executing the same flight plan, generate demonstrations so different that

it is more effective to learn an individual policy for each individual pilot rather than

aggregating their data [220].

Learning to organize data according to differences within that data is an inher-

ently unsupervised learning problem (e.g., clustering demonstrators according to their

behavior). There have been some works that have attempted to bring together super-

vised and unsupervised learning, such as the work by Nikolaidis et al. [186]. However,

these methods often solve the problem by first clustering over the types of demonstra-

tors to create homogeneous sets of demonstrations, and, second, applying separate

supervisory learning instances on each homogeneous set. Such approaches are a vast

improvement over learning individual policies for each person because the amount of

data to learn from increases by a factor of n
k
, where n is the number of demonstrations

and k is the number of clusters. Yet, the approach is still learning from only 1
k

th
of

the total amount of data available.

I think it is important we develop new techniques that integrate unsupervised

and supervised learning in a combined learning step, rather than as a hierarchical

approach. Such a learning algorithm would have the advantage of being able to gen-

eralize across all demonstrators’ similarities while still tailoring its actions for the
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individual differences among the demonstrators. A combined mathematical function,

however, would be more computationally complex than the individual constituents

of supervised and unsupervised learning, which would likely necessitate new approx-

imation techniques to more efficiently solve the problem.

7.2.3 Robots that Support Rather than Degrade SA

Autonomous robots have the ability to enhance our capabilities, efficiency, and work

environments. However, as these robots assume responsibility for more and more

of the decision-making, humans will naturally fall further out-of-the-loop. Human

factors research, including that found in this thesis, has frequently shown this effect

to exist. Further, this effect can be fatal, particularly in safety-critical domains such

as healthcare and military operations. Situational awareness is necessary because,

without it, humans may misinterpret a robot’s actions or be incapable of adequately

assuming responsibility for the robot’s task in the event of a robot failure.

The challenge posed to researchers is then to develop artificial intelligence meth-

ods that enable robots to assume responsibility without sacrificing the human team

members’ situational awareness. This challenge of developing human-machine inter-

faces that support situational awareness is not new [52, 55]. These works typically

focus on a scenario where a human must supervise a team of unmanned vehicles,

and the key challenge is in designing clever user interfaces that convey information

appropriately. However, enabling robots as physical team members to communicate

their awareness to humans is relatively unexplored.

Recent work by Unhelkar et al. has posed algorithms that enable robots to intuit

what information to convey, and when, to other robotic team members based on their

model of the other team members’ decision-making process [250]. This approach,

in particular, assumes the robotic agents operate according to a Markov decision

process. By understanding how an agent would change its behavior after receiving

new information, one can decide whether or not to communicate that information.

However, developing and integrating a model of human decision-making, which

is unlikely to be strictly Markovian, is an open question. A technique that could
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capture and reason about models of human decision-making could be beneficial in

creating robots to enable human teammates to maintain their situational awareness.

7.2.4 Long-term Interactions

Many studies in human-robot interaction are cross-sectional, rather than longitudi-

nal. This thesis, for example, conducted a user study in a hospital in which nurses

and physicians work with a robot for approximately one hour. While I found signif-

icant positive effects by embedding apprenticeship scheduling in a robot over using

an un-embodied system, it is possible that this effect would diminish (e.g., there may

be a novelty effect that wears off), or even increase, if the interaction between the

participant and the robot were to continue for days, weeks, or years. Such transient

effects can be difficult to tease out without a significant time investment. Nonethe-

less, if these systems are to transfer from the research lab to the hospital, factory,

and battlefield, it is critical that researchers undertake longitudinal studies of these

systems.

Yet, longitudinal interactions involve more than merely human factors consider-

ations. There are also important technical challenges. If these robotic systems are

meant to learn from human demonstration, a human operator or teammate would

expect that system to continue learning. As a first step, one could embed apprentice-

ship learning in a robotic platform and, at the conclusion of each interaction, have

the algorithm re-train its policy given the old and newly acquired information.

This initial approach may be effective, but there could be some challenges. For

example, human operators would have little patience for multiple errors of omission or

commission on the part of the robot. Once the human operator offers correction, the

robot’s designer may want the robot to weigh the new and contrary example heavily

to demonstrate to the human that the robot has incorporated this new information.

However, heavily weighing new information could result in altering parts of the

robot’s policy that were learned correctly the first time. Thus, it may be better to

have a blend between a robust, validated policy and a database of exceptions for

use in case-based reasoning. Exploring the intersection of generalization and specific
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case-based reasoning would be fruitful for future work.

7.2.5 Further Areas of Consideration

In addition to the open questions posed above, I provide the following areas for

consideration.

� Is there a general mathematical description of problems in the complex-dependencies

(CD) domain? Whereas current work on problems with CD are ad hoc in na-

ture, developing a common basis for these problems could improve theoretical

advances in the field.

� How can we exactly model tasks that can be decomposed without enumerating all

possible decompositions? Consider a scenario where, depending on which robots

work on a task, the nature of the task (e.g., its duration or location) changes.

Without knowing a priori when one robot will stop working on that task and

when a second robot will begin, one must enumerate all possible ways the task

can be decomposed. Then, the optimization algorithm would search through

the decompositions to find the best. However, this exponentially increases the

search space. Rather, I ask, is there a way to compactly represent a task and

its decompositions exactly without enumerating all possible decompositions?

� Are there alternative formulations for exact discrete apprenticeship learning?

Apprenticeship learning typically relies on using regression to learn an objec-

tive function. In the case of IRL, the algorithm then uses reinforcement learning

to generate an optimal policy. In the case of PTIME, a MILP is used to opti-

mally solve for a specific problem instance [19]. While both are optimal, both

are intractable for large problem sizes. In reinforcement learning, there are an

exponential number of states to explore. In MILP, there are an exponential

number of solutions to consider. I put forth as a challenge the goal of for-

mulating an alternative to reinforcement learning and MILP that is exact and

computationally efficient.
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[4] Rachid Alami, Raja Chatila, Aurélie Clodic, Sara Fleury, Matthieu Herrb,
Vincent Montreuil, and Emrah Akin Sisbot. Towards human-aware cognitive
robots. In The Fifth International Cognitive Robotics Workshop (The AAAI-06
Workshop on Cognitive Robotics), 2006.

[5] Jacopo Aleotti and Stefano Caselli. Robust trajectory learning and approxi-
mation for robot programming by demonstration. Robotics and Autonomous
Systems, 54(5):409–413, 2006.

[6] Jennifer Alsever. Robot workers take over warehouses. CNN Money. http:

//money.cnn.com/2011/11/09/smallbusiness/kiva_robots/, November 9,
2011.

[7] Ulrich Anders and Olaf Korn. Model selection in neural networks. Neural
Networks, 12(2):309 – 323, 1999.

[8] L. Ardissono, G. Petrone, G. Torta, and M. Segnan. Mixed-initiative scheduling
of tasks in user collaboration. In Proc. Eighth International Conference on Web
Information Systems and Technologies, pages 342–351, 2012.

[9] Wilma A Bainbridge, Justin Hart, Elizabeth S Kim, and Brian Scassellati. The
effect of presence on human-robot interaction. In In Proc. International Sym-
posium on Robot and Human Interactive Communication (RO-MAN), pages
701–706. IEEE, 2008.

[10] Wilma A Bainbridge, Justin W Hart, Elizabeth S Kim, and Brian Scassellati.
The benefits of interactions with physically present robots over video-displayed
agents. International Journal of Social Robotics, 3(1):41–52, 2011.

195

http://money.cnn.com/2011/11/09/smallbusiness/kiva_robots/
http://money.cnn.com/2011/11/09/smallbusiness/kiva_robots/


[11] Ashis Gopal Banerjee, Masahiro Ono, Nicholas Roy, and Brian Williams.
Regression-based lp solver for chance-constrained finite horizon optimal con-
trol with nonconvex constraints. pages 131–138, June 2011.

[12] Jimmy Baraglia, Maya Cakmak, Yukie Nagai, Rajesh Rao, and Minoru Asada.
Initiative in robot assistance during collaborative task execution. In 2016
11th ACM/IEEE International Conference on Human-Robot Interaction (HRI),
pages 67–74. IEEE, 2016.

[13] Michael J. Barnes, Jessie Y. C. Chen, Florian Jentsch, and Elizabeth S. Red-
den. Designing effective soldier-robot teams in complex environments: train-
ing, interfaces, and individual differences. In Proc. International Conference
on Engineering Psychology and Cognitive Ergonomics (EPCE), pages 484–493.
Springer, 2011.

[14] Andrew G. Barto and Sridhar Mahadevan. Recent advances in hierarchical
reinforcement learning. Discrete Event Dynamic Systems, 13(1-2):41–77, 2003.

[15] Chumki Basu, Haym Hirsh, and William Cohen. Recommendation as classifica-
tion: Using social and content-based information in recommendation. In Proc.
Fifteenth National Conference on Artificial Intelligence, pages 714–720. AAAI
Press, 1998.

[16] Randal W. Beard, Timothy W. McLain, Michael A. Goodrich, and Erik P. An-
derson. Coordinated target assignment and intercept for unmanned air vehicles.
IEEE Transactions on Robotics and Automation, 18(6):911–922, 2002.

[17] Jacques F. Benders. Partitioning procedures for solving mixed-variables pro-
gramming problems. Numerische Mathematik, 4:238–252, 1962.

[18] Pauline Berry, Bart Peintner, Ken Conley, Melinda Gervasio, Tomás Uribe, and
Neil Yorke-Smith. Deploying a personalized time management agent. In Proc.
AAMAS, pages 1564–1571, 2006.

[19] Pauline M. Berry, Melinda Gervasio, Bart Peintner, and Neil Yorke-Smith.
Ptime: Personalized assistance for calendaring. ACM Trans. Intell. Syst. Tech-
nol., 2(4):40:1–40:22, July 2011.

[20] Demitri P. Bertsekas. A distributed algorithm for the assignment problem.
Technical report, Cambridge, Massachusetts Institute of Technology, Labora-
tory for Information and Decision Systems (LIDS), 1979.

[21] Demitri P. Bertsekas. Auction algorithms for network flow problems: A tutorial
introduction. Computational Optimization and Applications, 1:7–66, 1990.

[22] Dimitris Bertsimas and Robert Weismantel. Optimization over Integers. Dy-
namic Ideas, Belmont, 2005.

196



[23] Elizabeth Blickensderfer, Janis A. Cannon-Bowers, and Eduardo Salas. Cross-
training and team performance. In Making decisions under stress: Implications
for individual and team training, pages 299–311. American Psychological Asso-
ciation, Washington, DC, 1998.

[24] Richard Bloss. Mobile hospital robots cure numerous logistic needs. Industrial
Robot: An International Journal, 38(6):567–571, 2011.

[25] Craig Boutilier, Ronen I. Brafman, Carmel Domshlak, Holger H. Hoos, and
David Pool. Cp-nets: A tool for representing and reasoning with conditional ce-
teris paribus preference statements. Journal of Artificial Intelligence Research,
21:135–191, February 2004.

[26] Craig Boutilier, Ronen I. Brafman, Holger H. Hoos, and David Poole. Reasoning
with conditional ceteris paribus preference statements. In Proc. UAI, UAI’99,
pages 71–80, 1999.

[27] Steven J. Bradtke and Michael O. Duff. Reinforcement learning methods for
continuous-time markov decision problems. In NIPS, pages 393–400. MIT Press,
1994.

[28] Lisa Brandenburg, Patricia Gabow, Glenn Steele, John Toussaint, and
Bernard J. Tyson. Innovation and best practices in health care scheduling.
Technical report, February 2015.

[29] Jeffrey B. Brookings, Glenn F. Wilson, and Carolyne R. Swain. Psychophys-
iological responses to changes in workload during simulated air traffic control.
Biological Psychology, 42(3):361 – 377, 1996. Psychophysiology of Workload.

[30] Peter Brucker. Scheduling Algorithms. Springer-Verlag New York, Inc., Secau-
cus, NJ, USA, 3rd edition, 2001.

[31] Luc Brunet, Han-Lim Choi, and Jonathan P. How. Consensus-based auction
approaches for decentralized task assignment. In Proc. AIAA Guidance, Navi-
gation, and Control Conference (GNC), Honolulu, HI, 2008.

[32] Luc Brunet, Han-Lim Choi, and Jonathan P. How. Consensus-based auction
approaches for decentralized task assignment. In Proc. GNC, Honolulu, HI,
2008.

[33] L. Busoniu, R. Babuska, and B. De Schutter. A comprehensive survey of multi-
agent reinforcement learning. IEEE Trans. SMC Part C, 38(2):156–172, March
2008.

[34] Deng Cai, Xiaofei He, Ji-Rong Wen, and Wei-Ying Ma. Block-level link analysis.
In Proc. 27th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’04, pages 440–447. ACM, 2004.

197



[35] John Canny. A computational approach to edge detection. IEEE Transactions
on Pattern Analysis and Machine Intelligence, (6):679–698, 1986.

[36] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. Learning to
rank: from pairwise approach to listwise approach. In Proc. ICML, pages 129–
136. ACM, 2007.

[37] J. Carifio. Assigning students to career education programs by preference: scal-
ing preference data for program assignments. 1, 1976.

[38] J. Carifio. Measuring vocational preferences: ranking versus categorical rating
procedures. 3, 1976.

[39] Jennifer Casper and Robin Roberson Murphy. Human-robot interaction in
rescue robotics. IEEE Transaction on Systems, Man, and Cybernetics (SMCS),
34(2):138–153, 2004.

[40] Elkin Castro and Sanja Petrovic. Combined mathematical programming and
heuristics for a radiotherapy pre-treatment scheduling problem. Journal of
Scheduling, 15(3):333–346, 2012.

[41] Jessie YC Chen, Michael J Barnes, and Michelle Harper-Sciarini. Supervisory
control of multiple robots: Human-performance issues and user-interface de-
sign. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE
Transactions on, 41(4):435–454, 2011.

[42] Jessie Y.C. Chen, Michael J. Barnes, and Zhihua Qu. Roboleader: an agent
for supervisory control of mobile robots. In Proc. International Conference on
Human-Robot Interaction (HRI), 2010.

[43] Jiaqiong Chen and Ronald G. Askin. Project selection, scheduling and resource
allocation with time dependent returns. European Journal of Operational Re-
search, 193:23–34, 2009.

[44] J.Y.C. Chen, E.C. Haas, and M.J. Barnes. Human performance issues and
user interface design for teleoperated robots. Systems, Man, and Cybernetics,
Part C: Applications and Reviews, IEEE Transactions on, 37(6):1231–1245,
November 2007.

[45] Tsang-Hsiang Cheng, Chih-Ping Wei, and Vincent S. Tseng. Feature selec-
tion for medical data mining: Comparisons of expert judgment and automatic
approaches. In Proc. CBMS, pages 165–170, 2006.

[46] Sonia Chernova and Manuela Veloso. Confidence-based policy learning from
demonstration using gaussian mixture models. In Proc. AAMAS, pages 233:1–
233:8. ACM, 2007.

198



[47] Sonia Chernova and Manuela Veloso. Multi-thresholded approach to demon-
stration selection for interactive robot learning. In 3rd ACM IEEE International
Conference on Human-Robot Interaction (HRI). IEEE, March 2008.

[48] Steve Chien, Anthony Barrett, Tara Estlin, and Gregg Rabideau. A comparison
of coordinated planning methods for cooperating rovers. In Proc. Fourth In-
ternational Conference on Autonomous Agents, AGENTS ’00, pages 100–101.
ACM, 2000.

[49] Yoon Ho Cho, Jae Kyeong Kim, and Soung Hie Kim. A personalized recom-
mender system based on web usage mining and decision tree induction. Expert
Systems with Applications, 23(3):329 – 342, 2002.

[50] Uffe Gram Christensen and Anders Bjerg Pedersen. Lecture note on benders’
decomposition. 2008.
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