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Abstract— With the latest advancements in robotic manufac-
turing technology, there is a desire to integrate robot workers
into the labor force to increase productivity and efficiency.
However, coordinating the efforts of humans and robots in
close physical proximity and under tight temporal constraints
poses challenges in planning and scheduling and the design
of human-robot interaction. In prior work, we present a
scheduling algorithm capable of performing the coordination
of heterogeneous multi-agent teams. Given this capability, we
now want to understand how best to implement this technology
from a human-centered perspective. Humans derive purpose
and identity in their roles at work, and requiring them to
dynamically change roles at the direction of an automated
scheduling algorithm may result in the human worker feeling
devalued. Ultimately, overall productivity of the human-robot
team may degrade as a result. In this paper, we report the
results of a human-subject pilot study aimed at answering
how best to implement such an automated scheduling system.
Specifically, we test whether giving humans more control over
the task allocation process improves worker satisfaction, and
we empirically measure the trade-offs of giving this control in
terms of overall process efficiency.

I. INTRODUCTION

Robotic systems are increasingly entering domains pre-
viously occupied exclusively by humans. In manufacturing,
there is an increasing desire to integrate robots into the
workforce to leverage the heterogeneous strengths of both
humans and robots. This integration requires a choreography
of human and robotic work that meets upperbound and
lowerbound temporal deadlines on task completion (e.g.
assigned work must be completed within one shift) and
spatial restrictions on agent proximity (e.g. robots must
maintain four meter separation from other agents), to support
safe and efficient human-robot co-work.

In our recent work [6], we present Tercio, a centralized
task assignment and scheduling algorithm that scales to
multi-agent, factory-size problems and supports on-the-fly
replanning with temporal and spatial-proximity constraints.
We demonstrate that this capability enables human and
robotic agents to effectively work together in close proximity
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to perform manufacturing-relevant tasks. Tercio is made effi-
cient through a fast, satisficing, incomplete multi-agent task
sequencer inspired by real-time processor scheduling tech-
niques. We demonstrate that Tercio generates near-optimal
schedules for up to 10 agents and 500 tasks in less than 10
seconds.

In this paper, we will seek to understand how much control
human workers should have over the assignment of roles
and schedules when working in a team with robot partners.
Successful integration of robot systems into human teams
requires more than just algorithms capable of performing
dynamic task allocation and scheduling. The mechanisms
for coordination must be valued and appreciated by the
human workers. Human workers often find identity and
security in their roles or jobs in the factory and are used to
some autonomy in decision-making. A human worker that
is instead tasked by an automated scheduling algorithm may
begin to feel that his or her value is importance. Even if
the algorithm increases process efficiency at first, there is
concern that taking control away from the human workers
may alienate them and ultimately damage the productivity
of the human-robot team. The study of human factors can
inform the design of effective algorithms for collaborative
tasking of humans and robots.

In this work, we present results from a pilot study (n=8)
where participants collaborate with a robot on a construction
task. In one condition, both the human and robot are tasked
by Tercio, the automatic scheduling algorithm. In the second
condition, the human worker is provided with a limited set
of task allocations from which he or she can choose. We
hypothesize that giving the human more control over the
decision-making process will increase worker satisfaction,
but that doing so will decrease system efficiency in terms of
time to complete the task.

We begin in Section II with a brief review of related
work in human factors studies of human-machine systems
and task allocation. Section III briefly describes Tercio, the
task allocation and scheduling algorithm we use in our
experiment. In Section IV and Section V we describe our
experimental method and we report the results from the
human subject experiment. We then discuss the implications,
limitations, and lessons learned from the results of our pilot



study in Section VI. Lastly, we summarize our findings and
discuss future work in Section VII.

II. BACKGROUND

Developing human-machine systems that are able to lever-
age the strengths of both humans and their artificial coun-
terparts has been the focus of much attention from both
human factors engineers and researchers in artificial intelli-
gence. Parasuraman has pioneered work examining adaptive
automation to regulate operator workload [10]. When the
operator is over-tasked, the automation can reduce the burden
on the operator by assuming certain tasks. If the human-
automation system experiences a period of low workload,
the automation can shift more responsibility to the human
operator to mitigate possible complacency or a reduction in
manual skills [9].

The human-robot interface has long been identified as a
major bottleneck in utilizing these robotic systems to their
full potential [2]. As a result, we have seen significant re-
search efforts aimed at easing the use of these systems in the
field, including careful design and validation of supervisory
and control interfaces [1], [4], [7], [8]. Other, related research
efforts have focused on utilizing a human-in-the-loop to
improve the quality of task plans and schedules [3], [4],
[5]. This is particularly important when the search space is
large or if it is not possible to represent all aspects of the
environment in the problem formulation.

These prior efforts have focused primarily on utilizing a
human-in-the-loop to improve plans and schedules for work
performed by other agents. In this work, we are motivated
by applications in the manufacturing domain where human
workers will be performing physical tasks in coordination
with robotic partners. In some cases, the human workers
may also be responsible for tracking the progress and task-
ing the team. We seek to understand how much control
human workers should have over the assignment of roles
and schedules when working in teams with robots. While
we necessarily want to maximize the efficiency of human-
robot teams, we also desire for the human workers to value,
accept, and cooperate with the new technology. With this
in mind, the following sections of this paper will describe
the pilot study we conducted to lend insight into trade-offs
among flexibility in decision-making, overall task efficiency,
and worker satisfaction.

III. TERCIO: TASK ALLOCATION AND SCHEDULING
ALGORITHM

We use the Tercio algorithm [6] to perform task allocation
and scheduling for our pilot study. In this section, we
formulate the task assignment and scheduling problem for
multiple robots moving and working in the same physical
space as a mixed-integer linear program (MILP), as shown
in Equations 1 - 9, and briefly discuss the benefits of the
Tercio algorithm for this problem domain.

min f(A,Aprev, J, S, E,R, τ) (1)

subject to ∑
a∈Ag

Aa,j = 1, ∀j ∈ τ (2)

lbi ≤ tm − tn ≤ ubi,∀i ∈ T, n,m ∈ τ (3)

tEk − tSk ≥ lba,k −M(1−Aa,k), ∀k ∈ τ, a ∈ Ag (4)

tEk − tSk ≤ uba,k +M(1−Aa,k), ∀k ∈ τ, a ∈ Ag (5)

tSj − tEi ≥M(1− Ji,j),∀i, j ∈ R (6)

tSi − tEj ≥MJi,j , ∀i, j ∈ R (7)

tSj − tEi ≥M(1− Ji,j) +M(2−Aa,i −Aa,j)

∀i, j ∈ τ (8)

tSi − tEj ≥MJi,j +M(2−Aa,i −Aa,j)

∀i, j ∈ τ (9)

In this formulation, Aa,j ∈ {0, 1} is a binary decision
variable for the assignment of agent a to task j, and Ji,j is
a binary decision variable specifying the relative sequencing
of two tasks i and j (Ji,j = 1 implies task i occurs before
j). T is the set of all interval temporal constraints relating
tasks, Ag is the set of all agents, τ is the set of all tasks,
and tSi and tEi represent the start and end times of task
i, respectively. ubi and lbi are the upper and lowerbound
temporal constraints on the duration of task τi. R is the set
of all task pairs (i, j) that are separated in space by less than
the minimum separable distance. S and E are the set of task
start and end times, respectively. Finally, Aprev

a,i represents
Aa,i from the previous task allocation (if any). M is an
artificial variable set to a large positive number, and is used
to encode conditional constraints.

The objective function f(A,Aprev, J, S,E,R, τ), shown
in Equation 1, is application specific. In our pilot study,
the objective function served to minimize the makespan, or
total process duration. Equation 2 ensures that each task is
assigned to one agent. Equation 3 ensures that the temporal
constraints relating tasks are met. Equations 4 and 5 ensure
that agents are not required to complete tasks faster or slower
than they are capable. Equations 6 and 7 sequence actions
to ensure that agents performing tasks maintain safe buffer
distances from one another. These equations enforce spatial
constraints by requiring tasks that overlap in physical space
do not also overlap in time. Equations 8 and 9 ensure that
each agent only performs one task at a time. Note Equations
6 and 7 couple the variables relating sequencing constraints,
spatial locations, and task start and end times, resulting in
tight dependencies among agents’ schedules.

Solving the task allocation and scheduling problem as a
MILP for large-scale manufacturing applications (i.e., tens of
agents and hundreds of tasks) is computationally intractable;
the key bottleneck is the binary decision variables for the
sequencing of tasks, which is exponential with the number
of tasks. To alleviate this bottleneck we developed Tercio, a
hybrid algorithm that uses a MILP to solve the task allocation
problem in Equations 1-2 and a heuristic scheduler to provide
near-optimal schedules that satisfy Equations 3-9.



By leveraging problem structure and utilizing a polynomial
time approach for the sequencing of tasks, we are able to
dynamically perform task allocation and scheduling for ten
agents and hundreds of tasks in less than twenty seconds on
average [6], in contrast to current methods that timeout at
approximately five agents and fifty tasks. Next, we discuss
how we use Tercio to perform task allocation and scheduling
for our pilot study.

IV. METHODS

The purpose of this pilot study is to gain insight into how
to best integrate multi-agent task allocation and scheduling
algorithms to improve the efficiency of coordinated human
and robotic work. We hypothesize that keeping the human
worker in the decision making process by letting him/her
decide the task assignments will decrease performance of the
system (i.e., increase time to complete the task objective) but
will increase the human appreciation of the overall system.
We conducted a pilot study to assess the tradeoffs in task
efficiency and user satisfaction, depending on whether or not
the worker is allowed control over task allocation.

For our pilot study, we consider two experimental condi-
tions:

• Condition 1: A task allocation and scheduling algorithm
(i.e., Tercio) specifies the plan.

• Condition 2: The human worker is given a limited set
of task allocations from which he or she can choose.

A. Experimental Setup

The task objective given to the human-robot team is to
complete two Lego kits, each consisting of seven steps. The
parts required to build each of the seven steps for both Lego
kits are placed into bins away from the build area. There are
two classes of roles for the agents: builder or a part fetcher.
If an agent is a builder, then the agent is responsible for
building either one or both of the Lego kits. If an agent is
a fetcher, that agent retrieves part bins and transports them
to a specified builder. We enforce that the fetcher can only
fetch one part bin at a time.

If a robot is assigned to fetch parts, we must have some
mechanism of informing the robot when and to whom to
fetch the part bin. A priori we tuned the temporal constraints
of the task network so that the robot would fetch the next part
bin for a human builder just before the human finished the
previous step. In a future experiment, we want to incorporate
a closed-loop feedback mechanism so that the timing of the
fetching adapts to when the human is ready for the parts. We
discuss this further in Section VI.

We use two KUKA Youbots (See Figure 1), which are
mobile manipulator robots (height 65cm, weight 31.4 kg). To
control the robots movement through the space, we imple-
mented a simple closed-loop control system. A PhaseSpace
motion capture system, which tracks the locations of LEDs
that pulse with unique frequencies, providing real-time feed-
back of the state of the robots (i.e., ~x = [x, y, z] for each
robot).

Fig. 1. A picture of a KUKA Youbot. Image Courtesy of KUKA Robotics.

When the experiment begins, the initial assignment of the
roles is as follows:

1) The human subject is responsible for completing one
of the Lego kits.

2) One Youbot, called ”Burra“, is responsible for com-
pleting the second Lego kit

3) A second Youbot, called ”Kooka“, is responsible for
fetching the Lego parts for both the subject and the
robot Burra.

After “Kooka” fetches the first three part bins for the
human subject and ”Burra”, we simulate a failure of “Kooka”
and inform the human subject of the malfunction. Because
”Kooka” was responsible for fetching the remaining four part
bins for the human subject and ”Burra”, the assignment of
roles must change to complete the build process. We recall
that we want to observe the effects of giving the human
subject control over his or her task assignment versus using
an autonomous task allocation scheduling algorithm (i.e.,
Tercio).

For participants assigned to Condition 1, the Tercio algo-
rithm is used to assign roles to the human and robot workers
in an optimal manner. In the optimal solution, the participant
and the robot Burra work independently, fetching their own
part bins and completing their own Lego kits. For participants
assigned to Condition 2, the human worker decides the roles
of both himself or herself and the robot Burra. The two
options proposed to the human worker are:

1) The human worker and “Burra” work independently
2) “Burra” fetches all remaining part sets and the human

worker completes the two Lego kits.
After task allocation has been performed, either by Tercio or
the human participant, the human and ”Burra” complete their
respective tasks. The completion of both Lego construction
tasks marks the end of the trial.

In manufacturing domains, the initial task allocation and
scheduling is performed offline, well in advance of the actual
work. The challenge for researchers is performing dynamic
recomputation of these plans in response to disturbances
during runtime. Currently, this recomputation is performed
by a human supervisor and the process can be costly to



the manufacturer. For this reason, we want to understand
the tradeoffs of using an automated or manual mechanism
for recomputing the task allocation online after a significant
online disturbance.

B. Data Collection

All experiments were performed at the Interactive
Robotics Group (IRG) laboratory at MIT. The experiment
was approved by the Massachusetts Institute of Technology’s
Committee on the Use of Humans as Experimental Subjects
(COUHES) and informed consent was obtained from each
subject prior to each experimental session.

We tested eight subjects in total; four subjects were
randomly assigned to each of the two conditions. The dis-
tribution of gender was 1 male and 3 females for Condition
1, and 2 males and 2 females for Condition 2. Subjects’ age
ranged between 23-27 years old with a mean and standard
deviation of 25 years, 3 months ± 1 year, 9 months of
age. All subjects were recruited from the MIT graduate
student population. Because the target population consists
of workers in a manufacturing environment, our pilot study
suffers from a selection bias. In a future experiment, we
will attempt to collaborate with industry to test the use of
automated task allocation and scheduling algorithms on the
target population.

Time to complete the task objective (i.e. finish building
both Lego sets) was measured using a stopwatch. This time
includes the time that the human spent deciding how to
reallocate him/herself and “Burra” to the remaining fetching
and building tasks after “Kooka” malfunctions. We include
this decision time to better simulate the extra time the
decision-making process would take versus the computer-
assigned decision. At the end of the trial, each participant
completed a questionnaire asking them to rate their level of
agreement with the seven statements using a five-point Likert
scale from 1 (strongly disagree) to 5 (strongly agree):

1) I was satisfied by the robot system’s performance.
2) I would use this robot system next time this set of tasks

was to be repeated.
3) The robots collaborated well with me.
4) The robots and I performed the tasks in the least

possible time.
5) I was content with the task allocation after the robot

malfunctioned.
6) I felt safe and comfortable with the robots.
7) The robots were necessary to the successful completion

of the tasks.

C. Statistical Analysis

Performance data (time to complete the task objective in
seconds) were tested for normality using the Kolmogorov-
Smirnov test (Condition 1: p = 0.994; Condition 2: p =
0.49). A one tail t-test for two independent samples with
equal variances was used to compare the two conditions.
Prior to that, the samples were tested for equal variances
using the F test (p = 0.08).

Fig. 2. Boxplot showing the median, quartile and standard deviations of
the performance of the human subjects in both conditions.

Human appreciation of the system (or human satisfaction)
data were calculated for each subject as the average of all
seven questions in the questionnaire. Thus, every subject
had an ordinal score between 1 and 5. The Mann-Whitney
U test (a.k.a Wilcoxon test) were used to compare the
two conditions. In all cases, significance was taken at the
α = 0.05 level. Data is presented as the average ± standard
deviation.

V. RESULTS

A. Performance

The average time for the four participants in Condition
1 was found to be 436 ± 19.1 s. Similarly, the average
time for the four participants in Condition 2 was found
to be 598.8 ± 47.5 s. Figure 2 shows the boxplot of the
performance results (time to complete the two Lego kits)
across the two conditions (in Condition 1, the algorithm
decides assignments; in Condition 2, the subject decides
assignments). Time to complete the task was significantly
higher in Condition 2 than in Condition 1 (p < 0.001).

B. Human Appreciation of the System

We measure the subject’s appreciation of the system as
the mean of his/her scores across the seven questions of our
post-test questionnaire. The average questionnaire rating for
the four participants in Condition 1 is 3.54±0.18. Similarly,
the average questionnaire rating for the four subjects in
Condition 2 was found to be 3.22 ± 0.60. Figure 3 shows
the boxplot of the rating results across the two condi-
tions (in Condition 1, the algorithm decides assignments;
in Condition 2, the subject decides assignments) The non-
parametric Mann-Whitney U test did not find any significant
difference between the two conditions (U = 5 > Ucrit = 1).
Furthermore, the average rating in Condition 1 is higher than
the average rating in Condition 2, which is in disagreement
with the initial hypothesis.



Fig. 3. Boxplot showing the median, quartile and standard deviations of
our measure of human appreciation of the autonomous system based on a
five-point Likert scale.

Question Condition 1 Condition 2 P-Value
1 4.00± 0.00 3.25± 0.96 0.13
2 3.25± 0.96 3.00± 1.41 0.65
3 4.25± 0.96 4.00± 1.41 0.88
4 1.75± 0.50 2.00± 1.41 0.87
5 4.00± 0.82 4.50± 0.58 0.34
6 5.00± 0.00 4.75± 0.50 0.32
7 2.50± 0.58 1.00± 0.00 < 0.01

Table 1: Table reporting the mean and standard deviation of
the ratings for each experimental condition and question on
our post-test questionnaire. This table also shows the results
of statistical testing for these ratings; statistically significant
results (α = 0.05) are shown in bold.

We also evaluate the ratings across subjects for the indi-
vidual questions. The mean and standard deviations for each
experimental condition as well as the p-vales are shown for
each question in Table 1. While the ratings for Questions 1-6
are not statistically significant, there is a statistically signif-
icant difference between the subjects in each experimental
condition for Question 7 (p < 0.01) shown in Figure 4.
All four subjects in Condition 2 reported that they “strongly
disagree” with the statement that “The robots were necessary
to the successful completion of the tasks.” While we cannot
establish the cause for the subjects in Condition 2 believing
that the robots were not necessary for the completion of the
task, this devaluing of the roles of the robots does correspond
to the humans having more direct supervisory control over
the system. In a future experiment, we plan to revise the post-
test questionnaire to better ascertain the underlying sentiment
of the subjects in regards to their views of the overall system,
the value of the team members, and their personal metric for
evaluating system optimality.

Fig. 4. Boxplot showing the median, quartile and standard deviations of
our measure of human appreciation of the autonomous system based on a
five-point Likert scale.

VI. DISCUSSION

A. Evaluation of Time to Complete the Task

Time to complete the task objective was significantly
higher in Condition 2 than Condition 1. All four human-
robot teams in Condition 2 needed more time than any of
the human-robot teams in Condition 1. Surprisingly, three of
the four participants in Condition 2 chose the non-optimal
solution (human completes both Legos and the robot “Burra
fetches the parts). Only one participant chose the optimal
solution and his/her time needed to complete the task was the
least in his/her group, although still higher than all four teams
in Condition 1. These results indicate that making decisions
takes time. Even in the case when workers chose the optimal
solution, the time needed to complete the tasks was higher,
possibly due to additional time for decision making.

B. Evaluation Human Appreciation of the System

No statistically significant differences were observed in
worker appreciation of the system contrary to what was
hypothesized. The three participants from Condition 2 that
chose the non-optimal solution present the worst ratings
among all participants in the experiment. Interestingly, the
participant from Condition 2 that chose the optimal-condition
presents the highest rating, even above the ratings from
participants in Condition 1. These results lend support to the
hypothesis that human satisfaction is most affected by an
inherent sense of efficiency while freedom of choice plays
a secondary role. In our pilot study, high efficiency with
freedom of choice yields the highest satisfaction, while high
efficiency without freedom was second. When the participant
is given freedom of choice, resulting in low efficiency, human
satisfaction appears to decrease drastically.

The lower average scores in Condition 2 could alterna-
tively be attributed to the disruption and difficulty the robot



malfunction caused the human participant. From the human’s
perspective, deciding under time pressure amongst a set of
options for how to resolve the problem may be less preferable
than having an automated algorithm resolve the problem. To
understand the true factors that affect both performance and
human appreciation of the system, we will conduct a full
experiment based on the observations from this pilot study.

VII. CONCLUSIONS AND FUTURE WORK

We aim to understand how best to integrate robots to
work in coordination with a human workforce. In the man-
ufacturing domain, human workers are often provided some
flexibility in decision-making for how to execute their work.
As a means of integrating robots into human teams, we have
developed an algorithm that takes a centralized approach to
producing agent-task assignments and schedules. However,
concerns exist that humans may not appreciate or may even
reject a system that does not allow them enough flexibility
in how to do their work. The pilot study we have conducted
is a first step towards understanding how much control over
decision-making a human worker should be provided.

We varied the amount of control that our participants had
over the task assignments in the human-robot team. Results
from the study supported our first hypothesis; giving the
human workers more control decreased temporal efficiency.
Our second hypothesis stated that worker appreciation of the
technology would benefit from providing the human with
some control over the decision-making. This hypothesis was
not supported with statistical testing. However, we did find
a trend where workers with more control who chose the
optimal solution were the most satisfied, and workers with
more control who chose the suboptimal solution were the
least satisfied.

Pilot studies are designed to provide guidance on how to
design a follow-on large scale experiment. While our pilot
provides initial results and trends, these results were obtained
through a small scale experiment and are not sufficient to
provide recommendations on algorithm and interface design.
Based on this pilot study, we plan on running a full human
subject experiment with a number of changes: 1) the roles
of the robots will be redesigned so that they are more
highly valued by the human participants (e.g., having the
fetching task be more realistic) 2) experimenter interference
will be reduced by removing tethered power, and 3) the
experiment will be redesigned to better isolate the dependent
variable of worker satisfaction from confounding factors
(e.g., uncoordinated timing between the fetching robot and
the human).
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