Machine Learning Techniques for Analyzing
Training Behavior in Serious Gaming

Matthew C. Gombolay, Reed Jensen, Sung-Hyun Son
Massachusetts Institute of Technology Lincoln Laboratory
244 Wood St, Lexington, MA 02421
{matthew.gombolay,rjensen,sson} @11.mit.edu

Abstract—Training time is a costly, scarce resource across
domains such as commercial aviation, healthcare, and mili-
tary operations. In the context of military applications, serious
gaming — the training of warfighters through immersive, real-
time environments rather than traditional classroom lectures
— offers benefits to improve training not only in its hands-on
development and application of knowledge, but also in data
analytics via machine learning. In this paper, we explore an
array of machine learning techniques that allow teachers to
visualize the degree to which training objectives are reflected
in actual play. First, we investigate the concept of discovery:
learning how warfighters utilize their training tools and develop
military strategies within their training environment. Second, we
develop machine learning techniques that could assist teachers by
automatically predicting player performance, identifying player
disengagement, and recommending personalized lesson plans.
These methods could potentially provide teachers with insight
to assist them in developing better lesson plans and tailored
instruction for each individual student.

I. INTRODUCTION

An increase in the sheer number and complexity of missile
threats to national security have prompted researchers in the
Department of Defense to develop innovative decision support
tools that promote better decision-making for the warfighter.
For the air and missile defense mission, initial research in this
area began with simple Red/Blue wargaming exercises, where
warfighters played against each other (i.e., red for offense
and blue for defense) to solve challenging, unsolved tactical
problems. Playing these games not only allowed the warfighter
to discover and learn new tactics, techniques, and procedures,
but also allowed the researchers to solicit feedback from the
warfighter to refine the development of their decision support
tools. While the data and feedback collected were invaluable,
the training and educational aspects were static and limited by
the sample size and update rate.

Limitations in conveying and collecting information across
relevant sample sizes have motivated a data-driven, game-
based simulation approach. For example, industry and
academia alike are keenly interested in understanding player
types and behaviors in games to better tailor the gameplay
experience [17], [33], [36], [43], [45], [47]. A key component

DISTRIBUTION STATEMENT: A. This material is based upon work sup-
ported by the Department of the Navy under Air Force Contract No. FA8721-
05-C-0002 and/or FA8702-15-D-0001. Any opinions, findings, conclusions or
recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the Department of the Navy. RAMS #
1001485

of understanding player behavior is performance prediction.
Performance prediction allows the educator to efficiently focus
attention on those students who are struggling and need
help. Further, performance prediction allows one to determine
with less time spent on testing whether a student is actually
proficient in a domain and ready to proceed to the next subject.

Still others within the field of education have thereby
sought to develop methods for understanding why students,
or players, drop out of educational programs [11], [14], [20],
[30]. Students becoming disengaged in learning exercises is a
chronic problem that greatly hampers the ability of educators
to give students the tools they need to succeed [11], [14],
[20], [30]. Researchers in artificial intelligence and machine
learning have sought to develop methods for predicting student
and player retention [3], [13], [29], which is a strong first step
in correcting the problem of trainee dropout.

We have conducted a study using machine learning with a
serious gaming (i.e., game designed as a professional training
tool) platform to support data-driven analytics of human
subjects for serious gaming. It is our aim that this analysis
(1) demonstrates the power of a variety of machine learning
techniques for data-driven analytics, (2) gives insight into how
to discover and interpret meaning in human-generated data,
and (3) serves as an informative machine-learning use case
for researchers who wish to harness the power of data for
decision-support. To our knowledge, this is the first such inves-
tigative approach into applying machine learning techniques
to study the training of warfighters through serious gaming.
Further, we believe ours is the first to employ a generative
model to learn from demonstration how to best order training
experiences in the form of a lesson plan.

The paper is structured as follows. In Section II, we briefly
survey related work in the fields of education, which includes
both traditional studies of human teachers and students as
well as the development of computational methods to augment
traditional education techniques. In Section III, we discuss the
educational platform used in our investigation: Strike Group
Defender. In Section IV, we describe our real-world data set
of human players, which we use to perform our computational
investigations. In Sections V-VI, we show how unsupervised
learning techniques can be applied to serious gaming to derive
insights into player types and the strategies players develop
during gameplay. Section VIII show how one can accurately
predict player disengagement. In Section VII, we investigate
how to predict how well players will perform on a test scenario

®s @3 @

Fig. 1. SGD enables development of automated teaching tools for ASMD.

as well as how to learn the features that are most important
for predicting that performance. In Section IX, we present
a novel method for learning how to automatically generate
lesson plans based on demonstrations of students’ self-play
of the game. To our knowledge, our approach is the first to
investigate learning to recommend lesson plans from human
demonstration. Finally, we review our findings in Section X.

II. RELATED WORK

A. Discovery of Player Types and Tactics

In developing a training curriculum, game, or training
environment, it is critical to understand how players interact
with the game. If the designer is able to better understand
what types of players exist and how they play the game, the
designer can improve the gameplay experience for the users.
Recent work has sought to better understand player types and
strategies for this very reason [17], [33], [36], [43], [45], [47].
For example, van Lankveld et al. [47] perform a correlation
analysis between players’ personality profiles [15] and how
people move and converse with other players and non-player
characters. Kim and Kim apply multiple linear regression to
identify key correlates relating age and style of game play
within a real-time strategy game, StarCraft [26]. Sarratt and
Pynadath et al. utilize a Monte-Carlo Tree Search to learn
belief distributions over player types to adapt the game in
response to user preferences and actions [42]. Drachen et al.
use archetypal analysis to identify unique player archetypes to
better understand how people naturally assume in-game roles
[17]. Thurau and Bauckhage apply matrix factorization to learn
lower-dimensional representations of player categories in an
massively multi-player online role-playing game with over 192
million recordings of 18 million characters [45].

These approaches provide a panoply of methods for unsu-
pervised learning in gaming. To the best of our knowledge,
however, these techniques have not been explored in the con-
text of serious gaming for training of professionals. As such,
we believe our investigation provides the first demonstration
that these techniques can benefit a largely unexplored world
of data-driven training in serious gaming.

B. Personalized Lesson Plans

Generating effective lesson plans is a key role of a teacher
[1]1, [8], [21], [44], [49]. Generally, a lesson plan consists of a
’learning trajectory’, or a sequence of topics to teach students.
In the context of traditional education (i.e., one not augmented
with a technological aid), Griffey and Housner sought to
understand how teachers collect information to effectively plan
lessons for their students. In their study, they investigated
differences between the more experienced and inexperienced
physical education teachers. They found that more experienced
teachers asked more questions before constructing their lesson
plans as compared to the less inexperienced teachers. The more
experienced teachers’ lesson plans considered more contingen-
cies and garnered more engagement from their students [21].
Researchers have sought to leverage such findings to create
frameworks for manually crafting lesson plans [8], [44], [49].

As an alternative to manual, observational studies [8],
[44], [49], the field of educational data mining has sought
autonomous methods (i.e., machine learning) to augment the
educational process [5], [6], [12], [13], [16], [40]. For a survey,
we recommend the reviews by Baker and Yacef [2] as well
as Romero and Ventura [39]. Nonetheless, we are aware of
only one prior investigation into automating the generation
of lesson plans [1]. In one study, Yang et al. [1] developed
a human-in-the-loop system which learns from teachers how
to generate lesson plans. In this framework, teachers would
specify certain constraints (e.g., amount of time available
to teach) and preferences for topics they want to teach. If
the system cannot satisfy the teachers’ preferences given the
constraints, the system will recommend how to augment the
lesson plan to satisfy the constraints.

Butler et al. develop a system to recommend and sequence
gameplay content to increase players’ skills and knowledge
while maintaining their engagement [9]. The approach used
by Butler et al. relies on a content-enumeration method from a
prior work [10] to create a library of levels and a hand-crafted
metric to assess players’ mastery of content to recommend
which level should be played next [9]. Furthermore, Grappi-
olo et al., explored the problem of using serious games to
teach conflict resolution skills [19]. They developed a genetic
algorithm with a hand-coded fitness function to automatically
generate content based upon a player’s gameplay experience
to best improve their skill at conflict resolution [19].

Nonetheless, we are not aware of any investigation which
develops a data-driven approach for generating lesson plans,
or trajectories of levels, based on demonstrations of students’
self-learning. In this paper, we present such a method, based
on a Hidden-Markov Model (HMM), that can recommend a
personalized, sequence of levels that a player should complete
to enhance his/her performance.

C. Classifying Players and Predicting Performance

Predicting students’ performance has been studied widely in
the field of artificial intelligence [2], [5], [6], [12], [13], [16],
[40]. For example, Beck et al. developed a learning agent that
models student behavior in the study of mathematics. This
model learns from examples of students interacting with a

virtual tutor [5], [6]. Using linear regression and hand-crafted
features, Baker et al., showed that one can reasonably predict
how long students will take to respond to questions and how
accurate those students’ answers will be [2].

Romero et al. [40] developed a data mining tool, built into
an online courseware system, that could be utilized by online
instructors. Romero et al. considered data from 438 Cordoba
University students enrolled in seven online courses with the
goal of classifying students by their final grades in the courses.
They found that a decision tree [7], [38] was able to predict
grades with ~ 65% accuracy using hand-crafted features [40].
Within the online gaming community, the TrueSkill™ metric
was derived to rank players on the Xbox Live platform [23].
The TrueSkill™ metric is based on a Bayesian formulation
and serves as a generalization of the Elo rating, which is
widely employed in ranking Chess players [18].

In our work, we seek not only to learn such a method
of predicting player performance but also the features that
describe those players. We have not seen such an investigation
within the context of serious gaming for military training.

D. Player Disengagement

One of the most important aspects to providing a quality
education is keeping students engaged in teaching activities.
Academia has conducted much work to determine why stu-
dents become disengaged or quit school at various levels of ed-
ucation [11], [14], [20], [30]. Through case studies, researchers
have shown that students’ attitudes towards their teachers
[11], beliefs of the role in the partnership between home and
school, and lack of time due to other responsibilities [30] all
have major effects in the engagement and eventual success
of students. The challenge of disengagement is common to
gaming as well. Anecdotal evidence from industry partners
suggests that only 5% of people who download a game for
their smart phone even open the game itself.

While professionals may not be able to quit their training
programs, they can become disengaged or frustrated, and their
education can suffer. Accordingly, educators should also be
given downstream tools to identify when a player is about
to disengage. With such a tool, educators can can interrupt
the student’s behavior, identify the problem, and guide the
student through the difficulty. Recent work by Bauckhage et
al. has shown that such a model can be learned with big data in
action-adventure and shooter games [3]. In their analysis, they
found that the average player’s interest in the game evolves
according to a non-homogeneous Poisson process implying
that initial gameplay behavior could predict when a player will
stop playing [3]. In another study, Mahlmann et al. used a suite
of supervised learning techniques, such as logistic regression,
decision trees, naive Bayes, and support vector machines, to
predict how many levels of a seven-level game a player will
complete based on data of the player’s experience on the first
one or two levels [29]. Within the sports gaming community,
Weber et al. [48] developed a model to predict when players
would disengage from playing Madden NFL 11. Based on their
finding that players who employ a variety of “plays” are more
likely to quit earlier, Weber et al. recommended the playbook

be shortened [48]. Further, Pedersen et al. explored predicting
the frustration and challenge a player experiences based on
level design within Super Mario Bros. [34].

Based on the need to help educators with disengagement
[11], [14], [20], [30] and the recent work in this area [3], [13],
[29], we have developed a mechanism, which we describe in
Section VIII, to predict when players are about to disengage
before it happens so that an educator can intervene and
facilitate learning. While the problem of player disengagement
has been studied, we have not seen it applied in the context
of serious gaming for military education.

III. INVESTIGATIVE PLATFORM

We have developed a game-based simulation, called Strike
Group Defender (SGD), to emulate anti-ship missile defense
exercises. SGD provides users across a variety of locations
and platforms with both single- and multi-player training
experiences in the context of relevant naval scenarios. SGD
collects participant actions and game events to analyze and
refine the educational experience of the users either post hoc
or in real time. The data-based collection capability of SGD
has opened the way for the development of machine learning
approaches that can analyze the user’s educational experience.

In the most recent version of the SGD application (Fig-
ure 1), users must learn and employ the techniques and
tactics relevant to the defense of naval assets against anti-
ship missiles (hereafter referred to as ASMD). The game
focuses on the proper use of naval electronic warfare — the
use of signals instead of missiles for ship defense, otherwise
known as soft-kill weapons (i.e., decoys) — but also includes
hard-kill weapons (i.e., interceptor missiles) and information,
surveillance, and reconnaissance (ISR) elements. Players as-
sign and deploy soft-kill weapons (e.g., flare, chaff, etc.)
to deceive or distract enemy missiles away from valuable
ships. The proper coordination of soft-kill decoys with hard-
kill interceptor missiles and ISR limitations ensures the long-
term survivability of the ships in the strike group against a
formidable raid of heterogeneous anti-ship cruise missiles. We
use this platform for our investigation into how to learn player
types and strategies as well as how to educate players to be
more proficient executors of ASMD tactics.

IV. DATA SET

For our analysis, we collected data of players training and
competing in red-blue exercises in SGD. This data consists of
people playing training and test levels. There is one training
level for each threat type to teach players general techniques
to combat each missile type as well as an introductory tutorial
level and an tutorial exam. The tutorial levels are as follows:
“Basics Tutorial,” “Hungry Missile Tutorial,” "Moth Missile
Tutorial,” “Catfish Missile Tutorial,” “Longshot Missile Tuto-
rial,” “Weasel Missile Tutorial,” “Muffled Missile Tutorial,”
“Headhunter Missile Tutorial,” “Cerberus Missile Tutorial,”
and “Tutorial Exam.”

There are also three test levels: “Daily Performance Evalu-
ation (DPE),” “Operation Neptune,” and “Final Countdown.”
DPE is a level where threat types are randomized, and threat

bearings are spread across a range of angles such that it
appears one’s own ship is surrounded. The DPE scenario
changes once per day. Operation Neptune is a deterministic
level consisting of three raids of threats (i.e. swarms of
many missiles) , and the player must defend three ships: two
destroyers and an aircraft carrier. This level is particularly
challenging because of the sheer volume and difficulty of the
missile types and the large radar cross-section of the aircraft
carrier. Final Countdown is a level designed to be a final
test in which players can only play the scenario once. Lastly,
players could construct their own custom levels as well as
watch gameplay replays of any game played by another player.

We collected data in two phases. First, we conducted
a month-long March Madness tournament at MIT Lincoln
Laboratory. Lincoln Laboratory personnel were then invited
to play SGD for two weeks. Players with the top scores
were invited to compete in a bracket-style tournament. Players
scores were based on a composite measure of performance
across the three test levels, DPE, Operation Neptune, and Final
Countdown. Specifically, the composite score for each player
was the sum of (1) the average score across DPE games, (2)
the maximum score across Operation Neptune games, and (3)
the score from the one Final Countdown game. We refer to
this score as the “tournament score.” A total of 16 players
were selected for participation in the tournament based on
their tournament score.

Bracket tournament players would play SGD in red-versus-
blue mode, and the player with the top score serving in the de-
fensive role would advance. There were two such red-versus-
blue levels: “Round 1 Challenge” and “Round 2 Challenge.”
The winner of the bracket won $500. We hereafter refer to
data collected from the first phase as the March Madness
data. The March Madness data set consists of 148 players,
> 100 hours of gameplay, and > 3,000 games played. In
these data, 34 accounts played the DPE level at least once,
45 accounts played Operation Neptune at least once, and 29
accounts played Final Countdown.

In a second phase, we collected data from an additional
76 players, for a total of 224 players. This additional data
increased the number of players who played each test level at
least once to 70 for the DPE, 82 for Operation Neptune, and
61 for Final Countdown.

Due to the nature of their employment, all participants were
experienced in the use of computational technology. The only
inclusion criterion was employment at MIT Lincoln Labora-
tory at the time of participation. Participants demonstrated a
variety of skill levels. Participants’ tournament scores had a
mean and standard deviation of 65 + 19 (normalized to the
interval [0,100]). This mean and standard deviation include
only 49 of all 226 players, as not all players completed the
levels required to achieve a tournament score.

V. DISCOVERING PLAYER TYPES

First we sought to answer what types of players emerge
and what types of strategies players develop. We employed
k-means clustering to discover k types of players that emerge
during gameplay based on features describing how they used

m 100 0.8

o —— Cumulative Distance to Centroid

c —? —e —Silhouette

i
a3 9
0 O 50 106 3
> & £
Z e —
%3 5
29

€+

: o L L 1 1 1 1 1 1 L 0.4
() 1 2 3 4 5 6 7 8 9 10

Number of Clusters (k)

Fig. 2. This figure depicts the cumulative distance and silhouette for clustering
our data with k& € {2,3,...,10} centroids.

the game (e.g., how often they pause the game, how efficiently
they use soft-kill, etc.). The k-means algorithm, proposed by
MacQueen et al. [28], finds the k centroids that minimizes the
sum of the distances from each centroid, k, to the location of
each players associated with that centroid. Specifically, if we
have a set of n observations {x;|i € {1,2,...,n},z; € R™}
(e.g., m features describing each player), k-means attempts to
create k partitions S = {S1,53,...,Sk} such that Equation
1 is minimized. In this equation, u; = %Zl,e s, Ti is the
centroid (i.e., mean) of cluster j.

argmlnz Z |z — pjl (D

j=1lz;€S;

Solving Equation 1 is an NP-Hard problem and is not compu-
tationally tractable for large, real-world data sets. As such, we
use an adaptation of the approximation technique known as
Expectation Maximization (EM), which is an iterative method
for finding the maximum a posteriori estimate of your decision
variables [32].

We apply the k-means clustering algorithm to our data
to determine what natural player types arise when playing
SGD. To determine the number of clusters, k&, we employ
two metrics: the cumulative distance and the silhouette. The
cumulative distance metric is equal to the inner error term,
Zle inesj |z; — 1], from Equation 1. This metric gives
us a sense of how far away individual players are from
their representative centroid. The closer the player is to their
centroid, the better. Alternatively, the silhouette [41] is a
measure of how far a player is to the second-closest centroid.
Specifically, the silhouette of a set of centroids and points
assigned to those centroids is defined by Equation 2, where
a(i) is the distance between z; and the closest centroid,
and b(¢) is the distance between x; and the second-closest
centroid. The silhouette is in the interval [—1,1]. We note
that the silhouette will be > 0 and the denominator (i.e.,
max(a(%),b(7)) from Equation 2) will equal b(:) if one has
assigned x; to the closest cluster; otherwise, the silhouette
will be < 0 and the denominator will equal a(7).

Silhouette := Z %

@)

We report the cumulative distance and silhouette of our data
for k € {2,3,...,10} in Figure 2.These two metrics help
to balance key trade-offs in clustering data. As we increase

the number of clusters, we strictly decrease the cumulative
distance metric, as shown in Figure 2, which is generally a
good goal. However, as we increase the number of clusters,
we also make the data more sparse; there are fewer members
of each cluster. With fewer members in each cluster, we cannot
be as certain about the parameters defining the clusters (i.e.,
the mean feature values). Thus, we want to find an “elbow”
in the curve where the cumulative distance plateaus. However,
we also must consider how far each cluster is from the other
clusters. The silhouette metrics helps us to see how well we
have separated the data. If the silhouette is relatively low, then
there are points that are near the boundaries between two or
more centroids. If the silhouette is high, then the clusters are
spaced further apart. The silhouette does not strictly increase
with the k. As such, one must set £ so that the cumulative
distance is low, the silhouette is high, and there are enough
data points within each cluster. Of course, one could use a
Bayesian prior (e.g., Chinese restaurant process) over k if one
believes their data are well-suited to such an interpretation.
Based on our data and the metrics shown in Figure 2, we
select k£ = 4 for our analysis. The cluster centroids for k = 4
are shown in Figure 3. The features we study are as follows:

o # Games Quit / # Games Played - number of games a
player quits divided by the total number of games played
by the player.

e Mean (# Repeats per Tutorial Level) - average number
of times a player repeats a tutorial level.

o 7 Replays / # Games Played - number of times a player
has watched a replay of another player’s game divided
by the total number of games played by the player.

o # Repeated Games / # Games Played - number of times
a player starts an already-played level divided by the total
number of games played by the player.

o # Unique Tests / # of Games Played - number of unique
test levels the player has attempted divided by the total
number of games played.

o # Avg Pause Time - average amount of time the player
pauses a game.

o # Unique Tutorials / # Unique Tests - number of unique
tutorial levels attempted divided by the number of unique
test levels attempted by the player.

e # Unique Tutorials / # Games Played - number of
unique tutorial levels attempted by the player divided by
the total number of games played by the player.

e # Unique Tutorials - number of unique tutorial levels
attempted by the player.

We evaluate these features for players after the first 20 games
(shown in purple) and at the conclusion of the players’ par-
ticipation (shown in blue). We consider the feature percentiles
for each player so as to better separate the data.

For our study, we did not use measures of performance
(i.e., game scores) or the total number of games played. Our
aim was to understand player behavior rather than player
performance. Understanding player behavior can help game
designers better develop training levels to guide players to-
wards exploring the game in a desired fashion. Furthermore,
instructors can use data based on player behavior to tailor their

instruction so that it is best-suited for each type of player.
Rather than emphasizing short-term performance, the goal is
to find the right behaviors to solicit good performance in the
long run and help generalize accumulated experience across
future learning disciplines.

While we did not use measures of performance or the total
number of games played, we can associate those feature values
with the cluster post hoc. In Figure 3, we report both the
tournament score described in Section IV, which considers
performance on three specific levels, and the “average score,”
which averages a player’s score across all levels. The tour-
nament score was conveyed to players as the most important
evaluation metric; however, we also report the average score
across all levels and the average number of games attempted
by players in each cluster.

In studying the clusters, we can identify several trends about
different player types. For example, the best players (far left)
tend to explore the game by repeating each level attempted
before moving on to another tutorial level. These players also
tend to quit rather than pause games. Medium-high performers
(center-left), on the other hand, tend to explore the tutorial
levels in a breadth-first fashion, rather than practicing levels
already attempted. Medium-low performers (center-right) ex-
plore very few tutorial levels, repeat the same few levels, and
do not typically pause. The worst performers (far right) spend
more time with the game paused and quit levels before their
completion less frequently.

Yet, it is the third cluster (center-right) that stands in most
contrast with the rest. This cluster is characteristic of players
who infrequently pause, proceed immediately to the test levels,
which are significantly more difficult, and repeat those difficult
levels ad nauseam. While this cluster has a slightly higher,
though not with statistical significance, tournament score than
that of the far-right cluster, the average score is by far the
lowest. Further, these players have attempted the fewest num-
ber of games. As such, it is likely that this cluster represents
players whose knowledge is the least robust.

This analysis indicates that certain player types naturally
develop within our gaming environment. However, this anal-
ysis is correlative rather than causative. For example, high-
performing players appear to quit games frequently when
they know that achieving a high score is no longer possi-
ble. However, it is unclear whether forcing low-performing
players to quit (rather than pause), after a few missiles leak
through their defenses, would cause them to improve their
skills. Further, it is unclear what would happen if certain
features of the game (e.g., the ability to pause) were removed.
Nonetheless, the value of this cluster analysis is two-fold.
First, an instructor could use this cluster analysis to develop
training plans for players of each type. Second, the instructor
could identify which lesson training plan is then appropriate
given the algorithm’s assignment of a new player’s cluster
membership.

VI. DISCOVERING PLAYER TACTICS

To discover what strategies exist, we used k-medoids clus-
tering, as presented in Kaufman et al. [25]. In k-medoids

Toumament Score: 78 +- 13 [n = 16)
Avg Score: TAT4 +-2358 (n=28)
Avg 8 Started: 147 +1. 119

Toumament Score: 53 +/-19 [n = 14)
Avg Score: T363 +/-20.93 (n = 29)
Avg § Started: 51 #1.44

100 100 -
E 75 = £ 75 -
g w §w
& 2% & 25
u
-\‘b @’ °" & 1\3 & &
" F‘ zﬁ'
0&" q‘ 3.
Q\e"%\s“ \1- \% $ q,
eﬁ' 6’\\? “‘:ﬁ"’ @@' q‘*‘
& A o
< & e ‘Q.é’a ‘OQQ K
S o &

Fig. 3. This figure depicts the cluster centroids for player types with k = 4.

clustering, one attempts to find the k points (i.e., medoids
or exemplars), as opposed to centroids, that best represent the
other points assigned to each medoid’s partition. Specifically,
if we have a set of n observations {z;|i € {1,2,...,n},2; €
R™} (e.g., m features describing each player), k-medoids
attempts to create k partitions S = {51, S2, ..., Sk} such that
Equation 3 is minimized. In this equation, m; is the medoid
of cluster j, and M is the set of £ medoids.

argmlnz Z ||z: —myjl|

j=lz;€S;

3

We use k-medoids here because while it is easy to con-
ceptualize the average of features describing players, taking
the average of two strategies does not intuitively yield a
descriptive strategy representing the two original strategies.

However, the k-medoids formulation in Equation 3 is not
specific enough to cluster players’ games. Each game is
comprised of a set of points describing the actions taken in
the game. At each moment in time, a player may choose to
deploy one of a number of assets in the game to defend one’s
ship against anti-ship missiles. The player may deploy this
asset in any location along the surface of the environment. The
surface is modeled as a plane in R? as opposed to the surface
of a spherical or ellipsoidal Earth. Thus, games may contain
differing numbers of deployments, changing the cardinality
of any feature vector describing the game. Thus, we need
some non-parametric means of finding the distance between
two games to partition the games into clusters.

A common method for measuring the distances between two
non-empty sets of points, A and B, is the Hausdorff Distance,
H(A, B), as shown in Equations 4-5.

H(A, B) = max {h(A, B), h(B, A)})
h(A, B) = maxmin [la —] Q)

In our application, a and b would be feature vectors describing
individual asset deployments in games A and B, respectively.

We must make one further alteration, however. Each action
taken in the game, such as the deployment of an asset or
the relocating of a ship, is not always directly comparable
to another action taken in a different game or even within
the same game. For example, the “distance” between two
deployments of the same asset would presumably be smaller
than the distance between deployments of different assets,

Tournament Score: 58 +. 17 (n=5)
Avg Score: 7,10 +-5.14 (n=8)
Avg # Started: 40 +-30

Toumament Score: 56 +1- 15 (n=4)
Avg Score; 8421+ 1603 (n=23)
Avg # Started: 45 +/-29

100 _ 100
= 75 % 75 ¥ -
fw § = i
<% & 25
i
o S
°F f;\é’@ o (,» ',, " Q\»*f 3{" o @:‘s; o
& 2 o A
* ﬁd‘i ; ; ° \zf’ i" f‘° & J ‘:\;; \a;\t" .fe*" K 4°. &
¥
«e“igﬂ»" S & SO S o
& ‘}f d o 5 ‘a?ﬁ-?"h &
L g & EC A AP #
43‘*0* ¥ ,@?Q «
&
o‘@‘ &

all other things being equal. As such, we adopt a tunable,
weighting scheme to more fairly compare pairs of actions
taken within games. We state that the distance (a, b) between
two points a and b in games A and B is the vector from b to
a weighted by 6, 4, as shown in Equations 6.

6(a,b) := ba,p [la —]| (6)

In our application, we model only asset deployments. We say
that each deployment a is a point in R3 consisting of the time
of deployment and the physical location of the deployment
on the R2 surface of the world. Furthermore, we state that
there are two characteristics defining each asset: radar-based
and infrared-based (IR-based). Each asset can have radar-
based and IR-based defensive characteristics. Our application-
specific definition of 0,5 is shown in Equation 7.

1, if @ and b are both exclusively IR-based,
RCS-based, or IR- and RCS-based

10, if a is both IR-based and radar-based
while b is exclusively only IR-based or
Oap = radar-based (or vice versa with respect to (7)
a and b)
100, if a is exclusively radar-based and b is

exclusively IR-based (or vice versa with
respect to a and b)

With these modifications, we fully define our criteria for k-
medoids clustering in Equation 8.

arg mm Z Z

j=1lz;€89;

—argmmz Z max {h(A, B),h(B,A)}

j=1lz;€S;

= arg mm Z Z max {max min d(a, b), max min 6(b, a) }

i=1ses, acA beEB beB acA
— arg mlnz Z max {maxgréljrgl(ab |la — b)),
j=lz;€S;

maxgrélg (0b,a ||b—a||)} (8)

beB
To perform k-medoids clustering, we again perform EM;

however, we now are solving Equation 8 as opposed to
Equation 1.

A. Results: Player Tactics

We apply a k-medoids clustering algorithm on data of games
played. We specifically investigate games played on the DPE
level. This level consists of anti-ship missiles launched from a
wide range of bearings, which means that players must account
for threats coming from essentially all directions. Further, this
level changes each day; the type of each missile is a random
variable. Thus, players must either 1) develop a strategy robust
to varying missile deployments or 2) adapt their strategy in
real time. Because the time pressure is so great, we find that
developing a robust strategy is a more viable option. As such,
we believe that analyzing this level can provide us with general
tactics rather than point-solutions.

As with clustering players, we perform an a priori analysis
to determine the optimal number of clusters, k£, which we set to
k = 4. Player tactics are shown in Figure 4. We calculate the
average and standard deviation of the scores of games in each
cluster post hoc. Scores are normalized linearly to fit a range of
[0,100]. We find that the unique game tactics we discover also
have statistically significantly different efficacies. The left-
most cluster in Figure 4 (M = 74, SD = 27) is statistically
significantly better than the center-right (M = 65, SD = 25),
t(81,112) = 2.40, p < 0.05, and far-right clusters (M = 61,
SD = 32), ¢(81,28) = 2.1,p < 0.05. Further, the center-left
cluster M = 71, SD = 27) is statistically significantly better
than the far-right cluster, ¢(86,28) = 1.7, p < 0.05.

Our analysis shows that the single best cluster involves a
symmetric deployment of persistent soft-kill weapons (i.e.,
soft-kill weapons that do not lose effectiveness), such as
one mobile persistent and two fixed persistent decoys early
in the game to form an “iron triangle,” which works well
to defeat missiles seeking targets with large radar cross-
sections incoming on any bearing. To counter heat-seeking
missiles, players in this cluster judiciously deploy flares, which
last a short duration, at bearings effective to defeat those
incoming missiles. However, players in the far-right cluster
are not judicious with their deployments and deploy decoys at
bearings that do not safely seduce missiles away from the ship.
This k-medoid analysis shows that the players who perform
the worst did not develop an intuition for how to reason about
the geometrical structure of the problem nor an understanding
of which decoys would work against which threats.

VII. PREDICTING PLAYER PERFORMANCE AND FEATURE
LEARNING

Predicting how well a player will perform is an important
way to determine whether players are ready to move on
to more difficult levels or identify weaknesses before those
weaknesses are exploited in combat. The conventional method
for assessing player capability is through a barrage of tests
— essentially a verification and validation process for human
operators. However, this process is lengthy, and, if weaknesses
are identified, further training will be prescribed. In turn,
trainees may need to go through a continuing cycle of training
and testing. If an educator were equipped with a tool that could
predict areas of weakness during the training process, that
educator could reduce the time required to pinpoint weakness

and expedite the training process. Further, if that algorithm
could identify the key feature for an educator to monitor, that
educator could more efficiently use his or her attention.

We construct a machine learning algorithm to predict player
performance, which we show in Figure 5. The algorithm, pre-
dictPlayerPerformance(), takes as input as a set of training
data (i.e., examples and labels), testing data (i.e., examples),
the number of folds, numFolds, to use during training, and
the number of distinct values to evaluate during training for
the shrinkage parameter, A\. Our approach combines a feature
selection subroutine [37] as well as LASSO regression [46] to
learn a model for predicting player performance.

In Line 1, the algorithm calls the feature selection subrou-
tine. Within machine learning, there are such techniques for
learning which features are most important. In general, if one
has m features, one must search O(2™) possible combinations
of those features to determine which features are the best
to employ in prediction. This exponential search space is
intractable, especially if one is using a polynomial kernel.
Instead, we use a greedy, polynomial-time approximation algo-
rithm [37]. Other such methods exist and could be substituted
[22], [24], [27], [35], [50].

In essence, the iterative, sequential, feature-selection algo-
rithm works in two steps. First, after an one-time initialization
step that trains the model on a subset of the features, the
algorithm adds the one unused features that most improves
prediction accuracy (if one exists). Second, the algorithm
removes one already-incorporated feature that does not de-
crease prediction accuracy with its removal (if one exists).
The algorithm terminates once the feature set converges [37].

In Line 2, our prediction algorithm prunes features from
Xtrain xtest not in our feature set F. In Line 3, we select
a shrinkage parameter, ;\ which has the lowest three-fold
cross-validation error on the training data. To estimate the
optimal shrinkage parameter, we enumerate a set of possible
values for A, perform three-fold cross-validation using LASSO
regression, and select the A value for which the lowest cross
validation error is achieved. Line 4 trains a regression model
on the pruned training data and best shrinkage parameter value,
5\, (Line 4). Lastly, we predict (Line 5) and return (Line 6)
how well we expect players from X!"%" to perform. We
note that we use LASSO regression here, but other regression
algorithms (e.g., Ridge Regression, Regression Trees, etc.)
would be suitable as well.

A. Results: Predicting Player Performance

We report the results of two investigations: 1) The accuracy
when predicting whether players will be in the top or bottom
50% of performers using the regression algorithm predict-
PlayerPerformance(), as depicted in Figure 6, and 2) The
features that are most helpful predicting the top and bottom
performers using our regression algorithm predictPlayerPer-
formance() (Figure 7). For our investigation, we perform
leave-one-out cross-validation (LOOCV). We hold one player
example as testing data, X ‘5!, while we use the examples of
the remaining players as training data, X*"*", We train and
test leaving out each player once.

\
\

it
Ppeilig

VLAY /
4 . Sl
Sl

7

74 +1-27 (n = 82)

65 +/- 25 (n = 113)
]

61 +/- 32 (n = 29)

*

Fig. 4. This figure shows four unique player tactics (i.e., game-cluster medoids) for confronting a scenario with random threat types (i.e., the DPE). The tactics
are shown on radial plots such that the bearing of a soft-kill weapon at a given moment in time is shown where time extends radially from the center. For
example, a point close to the center corresponds to the existence of a soft-kill weapon early in the game scenario, and a point far from the center corresponds
to the existence of a soft-kill weapon late in the game. The mean and standard deviation of the scores for each cluster (normalized to the interval [0, 100])
are depicted below each cluster. Horizontal bars with asterisks denotes statistically significant differences between clusters.

predictPlayerPerformance(X ¢t X troin ytrain =
numFolds,numlambdas)
1: F <selectBestFeatures(X " ytrain)
2: Prune X' X'test guch that only features in I’ remain
3\ — selectBestShrinkageParameter (X train
Ytrein numFolds,numLambdas)

~ . 2 ~
4: 6 = argmin > (yi —0Tz)" |+ A6]x
6 z; EXtrain
5 }A/ — (éTXtrain)T
6: return Y
Fig. 5. This figure depicts pseudo-code for approximately solving our

application of the k-medoids optimization problem in Equation 3 using
expectation maximization

0.
0.0 0.10.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
False Positive Rate

Fig. 6. This figure shows the ROC of the predictPlayerPerformance() in
Figure 5 evaluated using LOOCYV for predicting whether a player will be in
the top or bottom 50% of performers.

Figure 6 shows the Receiver Operating Characteristic
(ROC) curve for our prediction algorithm predictPlayer-
Performance() (Figure 5) trained using leave-on-out cross-
validation. The model learns information on how to predict
player performance, which results in a 63% True Positive
Rate and a 33% False Positive Rate (AUC = 0.710). Figure
7 shows a bar graph of how often each feature was selected
during LOOCV (Line 1 of Figure 5) by the feature selection
subroutine. We can see from Figure 7 that the proportion of
games quit relative to the total number of games, the number

of unique levels played, and the proportion of unique testing
levels attempted are strong indicators of performance.

An initially surprising result is that players who are pre-
dicted to perform highly also tend to quit a high proportion of
the games they start. This result is in keeping with player types
we found through k-means clustering in Section V, shown in
Figure 3. We find that players who are the best performers tend
to have a higher number of games started, and quit those games
frequently. We speculate that this behavior is consistent with
a player who would rather restart a level from scratch when
a mistake is made rather than continue playing the level. This
quitting behavior could indicate determination in achieving
perfection, whereas a player who continues playing a level
might indicate a state of confusion, indifference, or stubborn-
ness. We note that these results are nuanced: these features
are dependent on the specific machine learning algorithm used
for prediction and feature selection. It is possible that, with a
more or less accurate predictor or a different feature selection
algorithm than used in our implementation in Figure 3, the
feature importance could change.

Finally, we note that we divided the data into two classes
for two reasons. First, we sought to provide an opportunity
for a quantitative comparison with our subsequent analysis in
Section IX, which examines the predictive power of knowing
which sequence of levels a player explored during training.
Second, we sought to learn which features were indicative of
performance from the set of features shown in Figure 7. If
one’s goal were to predict the skill level of a player, then one
could employ the TrueSkill™ metric [23] or other acceptable
metric; however, this was not the case in our investigation.

VIII. PREDICTING PLAYER DISENGAGEMENT

In the data set we collected, participants created 226 unique
player accounts. Of these 226 accounts, only 146 accounts
(65%) played at least one game. After playing only one game,
30 of 146 of those players disengaged, and 20 of the remaining
116 stopped after 2 or 3 games. While having a game that
keeps 65% of people interested long enough to play one game

o

o,

Proportion of

o
%
2
q%:
%

~

)gs
)'G:,n

Nonzero Entries

8,
&
s,

,a::
‘bﬁ

P g'::,.
%

s, %
%@

%
b
NG
25
A
o5
353
Y

S,
2%
4%
%

3
Z
/)'fﬁ

q}@

e

I

®,
)
ﬁjs-'% =5
o
)
o
2
A
“
A

4

N
X

%

b
47
X

5

4

|||||||||||||||||||||||||

Lk B

AP 0

5
7
7
G2,
7,
0. %
ad 02
P
»‘d‘
i3
£¢
5
%
g
o
B
%f'
“
T,
2
i

||||||||||||||||||||||||||||||||

PRI S S S TP S TS b P S S S
DD DL AENEOA NS DN 1818 3B &
P R R R
N ‘ng}\ogb«&‘(%&@%ﬁ.\ ZOLT AT QLI AL DL LU S PP

o 4‘5‘\3& &

O PR

Fig. 7. This figure shows a bar graph depicting how often each feature was found to be informative by the feature selection subroutine (Line 1 of Figure 5).

is a significant improvement over common expectations in
industry, we want 100% of warfighters engaged due to the
serious importance of the subject matter. As such, we develop
a method to identify players who are about to disengage.
With such a tool, we believe educators could know when to
intervene in a student’s education and keep them engaged.

We trained four models: one model each to predict if a
player will disengage after 1 game, after 2-5 games, after 6-15
games, and 16-30 games. We binned the players in this manner
to provide a sufficient number of positive training examples (~
30 examples) for each model. Because we bin the games, we
have to be careful in selecting our features. Consider a scenario
where a player has started three games and we want to know
if the player will quit by the fifth game. All other things being
equal, the variance of features describing the performance of a
player will decrease as the number of games played increases.
As such, if many players quit after only three games, then
the model may learn that a player with low variance in the
number of games played means that the player is more likely
to quit. Similarly, using features describing the raw number
of games played would also tend to cause the model to learn
that players who have played fewer games would be more
likely to quit. Therefore, we must use features that describe
the behavior of the player in a way that does not relay to the
model the number of games played.

We used the following features: the number of games quit,
scenarios played, unique tutorial scenarios played, unique test
scenarios played, the number of games in which the player
repeated a previously-played scenario, the number of replays,
the average scenario score, the average “closest call” (i.e., the
minimum distance between an enemy missile and a players
ship experienced during the scenario; if a player’s ship is hit,
the closest call equals zero), and the average efficiency (i.e.,
players are penalized by the type and number of hard-/soft-kill
weapons used to simulate the financial cost of producing these
weapons). The feature values for each player were normalized
to the total number of games started by that player so that the
neural network would be forced to learn to a model that was
not parameterized by how many games had been played.

We generate our negative examples (i.e., examples of play-
ers who continue playing) by evaluating our features for the
first 1, 5, 15, and 30 games started by players who played
at least that number of games, respectively. To generate our

positive examples (i.e., players who did not continue playing
the game), we evaluate the features for all of the games started
by players who quit after playing one game, 2-5 games, 6-15
games, and 16-30 games, respectively. For example, if a player
started four games, the player would be included as a negative
example in the first model and only the first game would be
used to evaluate the features. This same player who started
four games would then be included as a positive example in
the second model, and all four of the player’s games would
be used to evaluate the features.

We employed a deep neural network to classify whether a
player will quit after playing a certain number of games. We
construct a neural network with an input and output layer and
four hidden layers with twelve, ten, eight, and six neurons
each. The hidden layers used a hyperbolic tangent transfer
function and the output layer used a sigmoid transfer function.
The network was trained using scaled conjugate gradient [31].

We perform leave-one-out cross-validation (LOOCV) to
maximize the quality of the learned network and leverage
the full power of the data set and report the performance
of our models in Figure 8. The neural network is able to
predict if a player will quit after playing only one game with
almost perfect accuracy. Similarly, we are able to identify
approximately 80% of players who will become disengaged
after playing 2-5, 6-16, and 16-30 games with only 20% false
positive rate. This performance comes even though the total
number of training examples decreases by approximately thirty
examples in each subsequent interval.

It is perhaps surprising that the performance of the algorithm
degrades with each consecutive interval. When predicting
whether players would disengage after playing 6-16 games,
the features provided to the algorithm should represent a
more accurate picture of a player’s characteristics versus those
features provided to the algorithm after only a single game.
Yet, our results in Figure 8 seem to indicate otherwise.

Upon inspection, we can offer at least two potential expla-
nations. First, the total amount of data decreases with each
consecutive interval. While the number of positive examples
is held approximately constant as players disengage in earlier
intervals, there are fewer negative examples in later intervals.
Second, predicting whether players drop out in earlier intervals
could simply be easier to predict than players who drop out
in subsequent intervals. For example, a player who will drop

1
09
08

% 07

2 06
% 05
=3

204
3

= 03 s
02 ,~ Disengage After 1 game 02

s 30 Positive Examples e
0.1 // 146 Negative Examples 0.1 //

’ f!isengage_ !-\fter2 -5 games
29 Positive Examples
117 Negative Examples

t]0 01020304050607 0809 1
False positive rate

00 010203040506070809 1
False positive rate
1

1

09 09
08 038
g 07 £ o7
208 206
“§ 05 % 05
204 204
3 o
203 Eo03
02 ,Disengage After 6 - 15 games 02 Disengage After 16 - 30 games
04 7 32 Positive Examples 01 ’ 30 Positive Examples
: // 85 Negative Examples . // 55 Negative Examples

0(J 010203040606070809 1
False positive rate

OU 010203040506070809 1
False positive rate

Fig. 8. This figure depicts the ROC for deep neural networks trained to
identify players who will disengage after 1 (top left), 2-5 (top right), 6-15
(bottom left), and 16-30 (bottom right) games.

out in a later interval may initially act like an engaged player
and drop out later due to a frustrating episode of gameplay.

IX. DATA-DRIVEN, PERSONALIZED LESSON PLANS

Developing a lesson plan for the order of tutorials to be
played to make training as efficient as possible is a challenging
process. In SGD and other games of interest, students are
presented a set of tutorial levels that they can play in any
order and as often as they like. However, an educator might
suspect that the trajectory, or sequence of attempted tutorial
levels, would affect how well the student learns the necessary
skills to be proficient. Constructing a lesson plan requires a
significant effort from educators and domain experts. Instead,
we ask whether we could learn what constitutes an effective
or ineffective lesson plan with a data-driven approach.

One way to model the underlying process of time-series
data (i.e., sequences of tutorial levels) is through a Hidden
Markov Model [4]. A HMM is a 5-tuple Q = (X, T, 7, X, E),
where X is the set of hidden states, T is an | X | x | X | matrix
with T; ; € T being the probability of transitioning from state
X, to state X;, 7 is an |X| x 1 vector describing the a priori
probability of starting in each state, 3 is the set of emissions,
and ' an X x ¥ matrix with E; ; being the probability of
observing emission X in state X;.

We model the process of students playing various levels
in SGD with a Hidden Markov Model where ¥ is the set of
levels to be considered. One must then learn the parameters
(S, T, 7,3, \) that best describes a set of observed emissions
from the students. In our application, we want to learn a model
that describes a good lesson plan and one for a bad lesson
plan. As such, we train two models: one HMM using the
example trajectories of the top 50% of players and one HMM
using the example trajectories of the bottom 50% of players.

Moth
Missile
Tutorial

Hungry
Missile
Tutorial

Custom
Game

Operation
Neptune

Fig. 9. This figure describes how we formulate the problem of learning how
players explore the levels within SGD as a Hidden Markov Model.

We rank players according to their qualifying score for the
March Madness Tournament. Our data set included the twenty-
six players who completed the necessary levels to be ranked.
Figure 9 depicts how we model our problem as an HMM.
These HMMs can be used in one of two ways. First, the model
serves as a non-parametric (not parameterized by the total
number of games) means of predicting whether a new player
will be one of the best or worst players given the sequence of
tutorial games he or she has played. Second, the HMM is a
generative model, meaning that we can generate representative
tutorial sequences that a good or bad player might play. With
this generative model, we can not only suggest lesson plans
for players, we can also customize the lesson plan in real
time to recommend the best tutorial to play next to improve
the players skill. A key benefit of the HMM is that each set
of emissions does not need to be of equal length. Thus, we
do not need to trim or align the sequences of players to have
the same number of and type played scenarios.

Based on examples of the best and worst performing players
in SGD, we trained a model to describe how players navigate
the tutorial levels. Specifically, we trained an HMM using the
Baum-Welch algorithm. The Baum-Welch requires an initial
guess for 7" and ¥. We initialized 7" according to a uniform
distribution, and we initialized ¥ equal to the empirical propor-
tion of observations for each emission uniformly across each
hidden state. In other words, ¥; . = X, 1, Vk is the proportion
of times scenario k was played. We perform LOOCYV. Within
each iteration of the LOOCYV, we perform five-fold cross-
validation to learn the HMM. Within each of the five folds,
we train fifty HMMs with randomly initialized 7" and keep the
one HMM out of the fifty that has the lowest cross-validation
error. We then use the one HMM out of five that performs the
best during this five-fold cross-validation to evaluate the one
example we left out in the current iteration of the LOOCV.
To determine whether a player will be in the top or bottom
50% of performers, we compare the likelihood of the player’s
behavior being governed by the trained HMMs.

A. Results: Predicting the Value of Training Experience

With our HMM, we can now predict whether a player will
be one of the top or bottom performers based not on the
player’s previous scores, but solely based on the sequence
of tutorials he or she has played. We train and test our
approach to determine whether a player will be one of the

1.0

0.9 | R "_’_I/ 1
1 Ve

0.8 s 1

0.7 P

0.6 g s

0.5 %

04 2

0.3 7

0.2 7
01| 7 AUC =0.79

True Positive Rate
\

0.0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
False Positive Rate

Fig. 10. This figure depicts the ROC for an HMM-based algorithm trained
to identify whether a player will be one of the best or worst performers.

0.20 R

0.15

0.10 JI JI

oos | ULILILILILE

000 ':\0 \'b {\'b \% \'b {\'b' {\'b' \ (\
«\) &0 &0 &é ,Q} ,Q) .Q} ,Q) «\} @\\) ‘\0

580 20 2 4F 4 ° 6\\“9\\ ,@\ RN

@0\\“\‘\@@\\‘\@\@@@ o@&\o"\,@’&‘

c§§x~ S L (S o8

N C:"’ o‘b & \3“) *2.3{"

Magnitude

S
QG

Fig. 11. This figure depicts the frequency with which best players (shown in
blue) and worst players (shown in red) played each of the levels in SGD.

top or bottom players according to their ranking on the test
levels. The ROC for our approach is shown in Figure 10. As
shown in this figure, we are able to predict with high accuracy
whether a player will perform well based on the sequence of
scenarios played. The performance of this HMM formulation
is compelling relative to our prior analysis in Section VII. This
analysis shows that the sequence of levels a player explored
was a more powerful predictor of performance than the entire
set of features depicted in Figure 7. Specifically, the HMM-
formulation for the sequence of levels explored achieved an
AUC = 0.79 (Figure 10) whereas the algorithm depicted in
Figure 5 achieved an AUC = 0.71 (Figure 6).

We also report the distribution of played scenarios for the
players in each group in Figure 11. The number of games
played of each scenario for the highest- and lowest-scoring
players are shown in blue and red, respectively. We perform
a two-sample, Y2 goodness-of-fit test to assess the validity
of the null hypothesis that these distributions are the same.
We do not reject the null hypothesis as the o = 0.05 level
(p = 1). In other words, the proportions of time the highest-
and lowest-scoring players spend on each level are statistically
indistinguishable. The implication of this finding is that even
if the best and worst players play each level with similar
frequency, it is the order in which they play those levels that
contributes the most to performance.

B. Generating Lesson Plans

In addition to serving as a useful means to predict how
well a player will perform based on the sequence of levels
he or she played, an HMM can also be used to generate

recommendations for which sequence of levels player could
explore. Specifically, an HMM is a generative model, which
means that it can determine how well a sequence of emissions
fits the model and it can generate a representative sequence
of emissions that is likely to be seen while observing the
process modeled by the HMM. With this capability, we can
both prescribe lesson plans a priori (i.e., before the player ever
starts) and recommend the best (or worst) tutorial scenario to
play next. For example, after a player has played zero, one, or
more scenarios, we can provide a tailored recommendation as
to which tutorial that player should explore next to improve
his or her proficiency. We show an example of a scenario
trajectory generated from HMMs trained on the best- and
worst-performing players below. We note that we forced the
models to start with the first emission as the “Basics Tutorial,”
which is the first tutorial level, to demonstrate the model
differences, and that also we set the length of the trajectory to
ten levels. In future work, we will conduct a human-subject
Sequence Generated

from HMM trained on
Top 50% of Players

Sequence Generated
from HMM trained on
Bottom 50% of Players
1) Basics Tutorial 1) Basics Tutorial
2) Hungry Missile Tutorial 2) Operation Neptune
3) Basics Tutorial 3) Performance Evaluation
Missile Tutorial 4) Operation Neptune

Missile Tutorial 5) Operation Neptune
Missile Tutorial 6) Basics Tutorial
7) Basics Tutorial 7) Moth Missile Tutorial
8) Basics Tutorial 8) Replay
9) Basics Tutorial 9) Hungry Missile Tutorial
10) Hungry Missile Tutorial 10) Hungry Missile Tutorial

Fig. 12. This figure depicts two randomly sampled lesson plans generated
using HMM s trained on sequences of levels completed by the top and bottom
50% of players, respectively.

experiment to test the efficacy of using an HMM to prescribe
which scenarios players should explore and in what order.

X. CONCLUSION

Machine learning and serious gaming is opening up the
possibility of developing automated teaching aids for improv-
ing the training of professionals. In this paper, we demon-
strate a variety of machine learning techniques using serious-
gaming platform developed to train navy professionals tactics
in anti-ship missile defense. We utilize unsupervised learning
techniques to discover what types of player behaviors exist
and what tactics players develop to defeat anti-ship missile
raids. Next, we show how one can employ supervised learning
to identify effective player features and behaviors, identify
players likely to disengage from training, and how to train
a generative model to recommend lesson plans to improve
player performance. We believe this suite of machine learning
techniques could provide educators with helpful insight in their
quest to better educate students. This insight could be used to
construct better lesson plans and tailor guidance for individual
students’ learning styles and behaviors. In future work, we
propose working with educators to test the benefit of using our
suite of machine learning algorithms to better educate students.

XI. ACKNOWLEDGEMENTS

We want to thank Commander Scott Orosz, USA, Retired,
Deputy Director of Electronic Warfare Programs for the US

Navy (PMR-51), for the generous support he has provided us
in our research. We also thank Jessica Stigile for being an
invaluable sounding board. This work was sponsored by ONR
PMR-51. SGD was developed in collaboration with Pipeworks

Inc.

[1]
[2]

[6

=

[7]
[8]

[9

—

(10]

[11]

[12]

[13]

[14

[15]

[16]

[17]

[18]

[19]

[20]

[21]

and MetaTeq Inc. under PMR-51.

REFERENCES

An agent-based recommender system for lesson plan sequencing, 2002.
Ryan SJD Baker and Kalina Yacef. The state of educational data mining
in 2009: A review and future visions. JEDM, 1(1):3-17, 2009.

C. Bauckhage, K. Kersting, R. Sifa, C. Thurau, A. Drachen, and
A. Canossa. How players lose interest in playing a game: An empirical
study based on distributions of total playing times. In CIG, pages 139—
146, Sept 2012.

Leonard E. Baum and Ted Petrie. Statistical inference for probabilistic
functions of finite state markov chains. Ann. Math. Statist., 37(6):1554—
1563, 12 1966.

Joseph E Beck and Jack Mostow. How who should practice: Using
learning decomposition to evaluate the efficacy of different types of
practice for different types of students. In Intelligent tutoring systems,
pages 353-362. Springer, 2008.

Joseph E Beck and Beverly Park Woolf. High-level student modeling
with machine learning. In Intelligent tutoring systems, pages 584-593.
Springer, 2000.

Leo Breiman, Jerome Friedman, Charles J Stone, and Richard A Olshen.
Classification and regression trees. CRC press, 1984.

Ross Brooker, David Kirk, Sandy Braiuka, and Aarjon Bransgrove.
Implementing a game sense approach to teaching junior high school
basketball in a naturalistic setting. European Physical Education Review,
6(1):7-26, 2000.

Eric Butler, Erik Andersen, Adam M Smith, Sumit Gulwani, and Zoran
Popovi¢. Automatic game progression design through analysis of
solution features. In Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems, pages 2407-2416. ACM, 2015.
Eric Butler, Adam M Smith, Yun-En Liu, and Zoran Popovic. A mixed-
initiative tool for designing level progressions in games. In Proceedings
of the 26th annual ACM symposium on User interface software and
technology, pages 377-386. ACM, 2013.

Rodney A. Clifton, David Mandzuk, and Lance W. Roberts. The alien-
ation of undergraduate education students: a case study of a canadian
university. Journal of Education for Teaching, 20(2):179-192, 1994.
Mihaela Cocea, Arnon Hershkovitz, and Ryan S.J.D. Baker. The impact
of off-task and gaming behaviors on learning: immediate or aggregate?
In Proc. AIED, pages 507-514. 10S Press, 2009.

Gerben W Dekker, Mykola Pechenizkiy, and Jan M Vleeshouwers.
Predicting students drop out: A case study. International Working Group
on Educational Data Mining, 2009.

Rollande Deslandes, gide Royer, Pierre Potvin, and Danielle Leclerc.
Patterns of home and school partnership for general and special educa-
tion students at the secondary level. Exceptional Children, 65(4):496—
506, 1999.

John M. Digman. Personality structure: Emergence of the five-factor
model. Annual Review of Psychology, 41(1):417-440, 1990.

Sidney K Dmello, Scotty D Craig, Amy Witherspoon, Bethany Mc-
daniel, and Arthur Graesser. Automatic detection of learners affect from
conversational cues. User modeling and user-adapted interaction, 18(1-
2):45-80, 2008.

A. Drachen, R. Sifa, C. Bauckhage, and C. Thurau. Guns, swords and
data: Clustering of player behavior in computer games in the wild. In
CIG, pages 163-170, Sept 2012.

Arpad E Elo. The rating of chessplayers, past and present. Arco Pub.,
1978.

Corrado Grappiolo, Yun-Gyung Cheong, Julian Togelius, Rilla Khaled,
and Georgios N Yannakakis. Towards player adaptivity in a serious
game for conflict resolution. In Games and Virtual Worlds for Serious
Applications (VS-GAMES), 2011 Third International Conference on,
pages 192-198. IEEE, 2011.

Steven S. Graunke and Sherry A. Woosley. An exploration of the factors
that affect the academic success of college sophomores. College Student
Journal, 39(2):367 — 376, 2005.

David C Griffey and Lynn Dale Housner. Differences between ex-
perienced and inexperienced teachers’ planning decisions, interactions,
student engagement, and instructional climate. Research Quarterly for
Exercise and Sport, 62(2):196-204, 1991.

[22]

(23]

[24]
(25]
[26]

[27]

[28]

[29]

(30]

[31]

[32]

(33]

[34]

[35]

[36]

(37]

[38]
(39]

[40]

[41]

[42]

[43]

[44]
[45]

[46]

(471
(48]

[49]

[50]

Isabelle Guyon and André Elisseeff. An introduction to variable and
feature selection. JMLR, 3:1157-1182, 2003.

Ralf Herbrich, Tom Minka, and Thore Graepel. Trueskill™: a bayesian
skill rating system. In Proceedings of the 19th International Conference
on Neural Information Processing Systems, pages 569-576. MIT Press,
2006.

Anil Jain and Douglas Zongker. Feature selection: Evaluation, applica-
tion, and small sample performance. TPAMI, 19(2):153-158, 1997.
Leonard Kaufman and Peter J Rousseeuw. Finding groups in data: an
introduction to cluster analysis, volume 344. John Wiley & Sons, 2009.
Hyun-Tae Kim and Kyung-Joong Kim. Learning to recommend game
contents for real-time strategy gamers. In CIG, pages 1-8, Aug 2014.
Kenji Kira and Larry A Rendell. A practical approach to feature
selection. In Proc. International Workshop on Machine learning, pages
249-256, 1992.

James et al. MacQueen. Some methods for classification and analysis of
multivariate observations. In Proc. Berkeley symposium on mathematical
statistics and probability, volume 1, pages 281-297. Oakland, CA,
USA., 1967.

T. Mahlmann, A. Drachen, J. Togelius, A. Canossa, and G.N. Yan-
nakakis. Predicting player behavior in tomb raider: Underworld. In
CIG, pages 178-185, Aug 2010.

Craig Mcinnis. Signs of disengagement? In Jrgen Enders and Oliver
Fulton, editors, Higher Education in a Globalising World, volume 1
of Higher Education Dynamics, pages 175-189. Springer Netherlands,
2002.

Martin Fodslette Mgller. A scaled conjugate gradient algorithm for fast
supervised learning. Neural Networks, 6(4):525 — 533, 1993.

Tood K Moon. The expectation-maximization algorithm. Signal
processing magazine, IEEE, 13(6):47-60, 1996.
N. Nygren, J. Denzinger, B. Stephenson, and J. Aycock. User-

preference-based automated level generation for platform games. In
Computational Intelligence and Games, pages 55-62, Aug 2011.

Chris Pedersen, Julian Togelius, and Georgios N Yannakakis. Modeling
player experience in super mario bros. In Computational Intelligence
and Games, 2009. CIG 2009. IEEE Symposium on, pages 132-139.
IEEE, 2009.

Hanchuan Peng, Fuhui Long, and Chris Ding. Feature selection based
on mutual information criteria of max-dependency, max-relevance, and
min-redundancy. Trans. on Pattern Analysis and Machine Intelligence,
27(8):1226-1238, 2005.

M. Pirovano, R. Mainetti, G. Baud-Bovy, PL. Lanzi, and N. A. Borgh-
ese. Self-adaptive games for rehabilitation at home. In CIG, pages
179-186, Sept 2012.

P. Pudil, J. Novoviov, and J. Kittler. Floating search methods in feature
selection. Pattern Recognition Letters, 15(11):1119 — 1125, 1994.

J Ross Quinlan. C4. 5: programs for machine learning. Elsevier, 2014.
Cristébal Romero and Sebastidn Ventura. Educational data mining: a
review of the state of the art. SMCC, 40(6):601-618, 2010.

Cristébal Romero, Sebastidn Ventura, Pedro G Espejo, and César
Hervéds. Data mining algorithms to classify students. In EDM, pages
8-17, 2008.

Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis. Journal of computational and applied
mathematics, 20:53—-65, 1987.

T. Sarratt, D.V. Pynadath, and A. Jhala. Converging to a player model
in monte-carlo tree search. In CIG, pages 1-7, Aug 2014.

N. Shaker, G.N. Yannakakis, and J. Togelius. Feature analysis for
modeling game content quality. In Proc. CIG, pages 126-133, Aug
2011.

RD Thorpe and DJ Bunker. A changing focus in games teaching.
Physical education in schools, 2, 1997.

C. Thurau and C. Bauckhage. Analyzing the evolution of social groups
in world of warcraft. In CIG, pages 170-177, Aug 2010.

Robert Tibshirani. Regression shrinkage and selection via the lasso.
Journal of the Royal Statistical Society. Series B (Methodological), pages
267-288, 1996.

G. van Lankveld, P. Spronck, J. Van den Herik, and A. Arntz. Games
as personality profiling tools. In CIG, pages 197-202, Aug 2011.

Ben George Weber, Michael John, Michael Mateas, and Arnav Jhala.
Modeling player retention in madden nfl 11. In JAAZ 2011.

Peter Werner, Rod Thorpe, and David Bunker. Teaching games for
understanding: Evolution of a model. Journal of Physical Education,
Recreation & Dance, 67(1):28-33, 1996.

Yiming Yang and Jan O Pedersen. A comparative study on feature
selection in text categorization. In /CML, volume 97, pages 412-420,
1997.

