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The nearest-neighbor (NN) problem occurs in the literature under many
names, including the best match or the post office problem. The problem
is of significant importance to several areas of computer science, includ-
ing pattern recognition, searching in multimedia data, vector compression,
computational statistics, and data mining. For many of these applications,
including some described in this book, large amounts of data are available.
This makes nearest-neighbor approaches particularly appealing, but on the
other hand it increases the concern regarding the computational complexity
of NN search. Thus it is important to design algorithms for nearest-neighbor
search, as well as for the related classification, regression, and retrieval tasks,
which remain efficient even as the number of points or the dimensionality of
the data grows large. This is a research area on the boundary of a number
of disciplines: computational geometry, algorithmic theory, and the appli-
cation fields such as machine learning. This area is the focus of this book,
which contains contributions from researchers in all of those fields.

Below we define the exact and approximate nearest-neighbor search prob-
lems, and briefly survey a number of popular data structures and algorithms
developed for these problems. We also discuss the relationship between the
nearest-neighbor search and machine learning. Finally, we summarize the
contents of the chapters that follow.

1.1 The Nearest-Neighbor Search Problem

The exact nearest-neighbor search problem in a Euclidean space is defined
as follows:

Definition 1.1 (Nearest neighbor) Given a set P of points in a d-
dimensional space �d, construct a data structure which given any query
point q finds the point in P with the smallest distance to q.

The problem is not fully specified without defining the distance between
an arbitrary pair of points p and q. Typically, it is assumed that this distance
is induced by an ls norm. That is, the distance between p and q is defined
as ‖p − q‖s, where ‖x‖ = (

∑d
i=1 |xi|s)1/s. Other (more general) notions of

distance are possible as well.
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A naive algorithm for this problem is as follows: given a query q, compute
the distance from q to each point in P , and report the point with the
minimum distance. This linear scan approach has query time of Θ(dn).
This is tolerable for small data sets, but is too inefficient for large ones. The
“holy grail” of the research in the area is to design an algorithm for this
problem that achieves sublinear (or even logarithmic) query time.

The nearest-neighbor problem has been extensively investigated in the
field of computational geometry. As a result of this research effort, many
efficient solutions have been discovered for the case when the points lie in a
space of constant dimension. For example, if the points lie in the plane, the
nearest-neighbor problem can be solved with O(logn) time per query, using
only O(n) storage [36, 27]. Similar results can be obtained for other problems
as well. Unfortunately, as the dimension grows, the algorithms become
less and less efficient. More specifically, their space or time requirements
grow exponentially in the dimension. In particular, the nearest-neighbor
problem has a solution with O(dO(1) log n) query time, but using roughly
nO(d) space [11, 29].

At the same time, many data structures that use the optimal O(dn)
space are known (e.g., see the survey [9] for a review of nearest-neighbor
data structures from the database perspective). These data structures often
provide significant speedups on many data sets. At the same time, they are
known to suffer from linear query time for “high enough” dimension (e.g.,
see [9], p. 365).

The lack of success in removing the exponential dependence on the
dimension led many researchers to conjecture that no efficient solutions exist
for this problem when the dimension is sufficiently large (e.g., see [31]).
At the same time, it raised the question: Is it possible to remove the
exponential dependence on d, if we allow the answers to be approximate?
The approximate nearest neighbor search problem is defined as follows.

Definition 1.2 (c-Approximate nearest neighbor) Given a set P of
points in a d-dimensional space �d, construct a data structure which given
any query point q, reports any point within distance at most c times the
distance from q to p, where p is the point in P closest to q.

During recent years, several researchers have shown that indeed in many
cases approximation enables reduction of the dependence on dimension from
exponential to polynomial. A survey of these results can be found in [23].
In addition, there are many approximate nearest-neighbor algorithms that
are more efficient than the exact ones, even though their query time and/or
space usage is still exponential in the dimension. This includes the algo-
rithms given in [3, 5, 12, 26, 10, 20, 1]. The algorithm in [5] has an efficient
implementation (ANN); see [2] for details.

In the following we present an brief overview of three data structures:
kd-trees (and relatives), balltrees, and locality-sensitive hashing (LSH).
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1.1.1 Kd-Trees

The kd-tree [8] is a data structure invented by Jon Bentley in 1975.
Despite its fairly old age, kd-tree and its variants remain probably the
most popular data structures used for searching in multidimensional spaces,
at least in main memory. According to Google Scholar, the paper [8]
that introduced this data structure is one of the most cited papers in
computational geometry, with 734 citations as of June 2005.

Given a set of n points in a d-dimensional space, the kd-tree is constructed
recursively as follows. First, one finds a median of the values of the ith
coordinates of the points (initially, i = 1). That is, a value M is computed,
so that at least 50% of the points have their ith coordinate greater-or-equal
to M , while at least 50% of the points have their ith coordinate smaller
than or equal to M . The value of x is stored, and the set P is partitioned
into PL and PR, where PL contains only the points with their ith coordinate
smaller than or equal to M , and |PR| = |PL|±1. The process is then repeated
recursively on both PL and PR, with i replaced by i + 1 (or 1, if i = d).
When the set of points at a node has size 1, the recursion stops.

The resulting data structure is a binary tree with n leaves, and depth
�log n�. In particular, for d = 1, we get a (standard) balanced binary search
tree. Since a median of n coordinates can be found in O(n) time, the whole
data structure can be constructed in time O(n log n).

For the problem of finding the nearest neighbor in P of a given query q,
several methods exist. The first one was suggested in the original paper.
However, it was quickly superseded by a different procedure, introduced
in [25] (the original procedure was deleted from the journal version of [8]).
The latter search procedure is as follows. The search starts from the root of
the tree, and is recursive. At any point in time, the algorithm maintains the
distance R to the point closest to q encountered so far; initially, R = ∞. At
a leaf node (containing, say, point p′) the algorithm checks if ‖q − p′‖ < R.
If so, R is set to ‖q − p′‖, and p′ is stored as the closest point candidate. In
an internal node, the algorithm proceeds as follows. Let M be the median
value stored at the node, computed with respect to the ith coordinates.
The algorithm checks if the ith coordinate of q is smaller than or equal to
M . If so, the algorithm recurses on the left node; otherwise it recurses on
the right node. After returning from the recursion, the algorithm performs
the “bounds overlap ball” test: it checks whether a ball of radius R around
q contains any point in �d whose ith coordinate is on the opposite side
of M with respect to q. If this is the case, the algorithm recurses on
the yet-unexplored child of the current node. Otherwise, the recursive call
is terminated. At the end, the algorithm reports the final closest-point
candidate.

It was shown in [25] that if the data and the query point are chosen inde-
pendently at random from a random distribution (say from a d-dimensional



4 Introduction

hypercube [0, 1]d), then the procedure terminates in time G(d) logn, for
some function G. However, G(d) is exponential in d, at least for values of d
that are “small” compared to log n; note that the running time is always at
most O(dn). It is easy to construct data sets which achieve this worst-case
running time.

A different search procedure is obtained by modifying the order in which
the nodes are visited. Specifically, several authors [4, 5, 6, 21] proposed to
examine the nodes in the order of their distance to the query point (the exact
definition of this process depends on the implementation). This enables the
algorithm to locate a “close enough” neighbor much faster. For example,
experiments in [4] indicate that this “priority” approach enables finding
very good approximate nearest neighbors up to ten times faster than the
original kd-tree search procedure.

Another bonus of the priority search approach is that one can prove
worst-case guarantees for the running times of the resulting algorithm (for a
somewhat modified data structure, called box-decomposition tree, see [5]).
Further results of this type are given in [17].

1.1.2 Balltrees and Metric Trees

Balltrees, introduced by Omohundro in [34], are complete binary trees,
where the leaves correspond to the data points and each interior (non-leaf)
node corresponds to a ball in the data space. The ball associated with a given
node is required to be the smallest ball that contains the balls associated
with that node’s children. Closely related to balltrees are metric trees [38],
in which a node is constructed by thresholding the distance between the
points it contains and a pivot.

In contrast to kd-trees, the regions associated with sibling nodes in ball-
trees and metric trees may intersect and do not have to cover the entire
space. This may allow a more flexible coverage of the space, reflecting the
structure inherent in the data, and thus make the data structure more effi-
cient for data embedded in high-dimensional spaces. A number of algorithms
have been proposed for fast construction, updating, and searching of these
data structures [34, 38, 32]. For a more detailed description, see section 4.2
in chapter 4.

1.1.3 Locality-Sensitive Hashing (LSH)

LSH, as well as several other algorithms discussed in [23], is randomized.
The randomness is typically used in the construction of the data structure.
Moreover, these algorithms often solve a near-neighbor problem, as opposed
to the nearest-neighbor problem. The former can be viewed as a decision
version of the latter. Formally, the problem definitions are as follows. A
point p is an R-near neighbor of q if the distance from p to q is at most R.



Introduction 5

Definition 1.3 (Randomized c-approximate near-neighbor) Given
a set P of points in a d-dimensional space �d, and parameters R > 0,
δ > 0, construct a data structure which, given any query point q, does the
following with probability 1− δ: if there is an R-near neighbor of q in P , it
reports a cR-near neighbor of q in P .

Definition 1.4 (Randomized near-neighbor reporting) Given a set
P of points in a d-dimensional space �d, and parameters R > 0, δ > 0,
construct a data structure which, given any query point q, reports each
R-near neighbor of q in P with probability 1 − δ.

Note that, in the second definition, the probabilities of reporting different
R-near neighbors might not be independent. Also note that, in both prob-
lems, the value R is known during the preprocessing time. Therefore, by
scaling the coordinates of all points, we can assume that R = 1.

Among the algorithms discussed in [23], the LSH algorithm is probably
the one that has received most attention in the practical context. Its main
idea is to hash the data points using several hash functions so as to ensure
that, for each function, the probability of collision is much higher for points
which are close to each other than for those which are far apart. Then, one
can determine near neighbors by hashing the query point and retrieving
elements stored in buckets containing that point.

The LSH algorithm can be used to solve either the approximate or the
exact near-neighbor problem. It relies on the existence of LSH functions,
defined in the following manner. Consider a family H of hash functions
mapping �d to some universe U .

Definition 1.5 (Locality-sensitive hashing) A family H is called
(r, cr, P1, P2)-sensitive if for any p, q ∈ �d

– if ‖p − q‖ ≤ R then PH[h(q) = h(p)] ≥ P1,

– if ‖p − q‖ ≥ cR then PH[h(q) = h(p)] ≤ P2.

In order for a LSH family to be useful, it has to satisfy P1 > P2.
An LSH family can be utilized as follows. Given a family H of hash

functions with parameters (r, cr, P1, P2) as in the above definition, we
amplify the gap between the “high” probability P1 and the “low” probability
P2 by concatenating several functions. In particular, for k and L specified
later, we choose L functions gj(q) = (h1,j(q), . . . , hk,j(q)), where ht,j(1 ≤ t ≤
k, 1 ≤ j ≤ L) are chosen independently and uniformly at random from H.
During preprocessing, we store each p ∈ P (input point set) in the bucket
gj(p), for j = 1, . . . , L. Since the total number of buckets may be large, we
retain only the nonempty buckets by resorting to hashing the values gj(p).

To process a query q, we search through the buckets g1(q), . . . , gL(q). Two
concrete strategies are possible:
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1. Interrupt search after finding the first L′ points (including duplicates).

2. Continue search until all points from the buckets are retrieved.

It is shown in [24] that the first strategy, with L′ = 3L, enables solving the
randomized c-approximate near-neighbor problem, with parameters R and
δ, for some constant δ < 1. To obtain that guarantee, it suffices to set L to
Θ(nρ), where ρ = ln 1/P1

ln 1/P2
. Note that this implies that the algorithm runs in

time proportional to nρ, which is sublinear in n if P1 > P2.
On the other hand, in practice, the second strategy appears to be more

popular, presumably since it avoids the need to specify the additional
parameter L′. Also, there is no need to specify c, since the algorithm can
solve the exact near neighbor problem, as described in the remainder of this
paragraph. The analysis in [24] can be used to show that the second strategy
enables solving the randomized exact near-neighbor reporting problem for a
given parameter R. The value of δ depends on the choice of the parameters k
and L; alternatively, for each δ one can provide parameters k and L so that
the error probability is smaller than δ. The query time is also dependent
on k and L: it could be as high as Θ(n) in the worst case, but for many
data sets a proper choice of parameters results in a sublinear query time.
See more details in chapter 3.

The quality of LSH functions is characterized by the parameter ρ. It was
shown in [24, 19] that if the distance is measured according to the l1 norm,
then there exists a (R, cR, P1, P2)-sensitive family of functions with ρ = 1/c.
In chapter 3 another family of functions is described which works if the
distances are measured according to the ls norm for s ∈ (0, 2].

1.2 Nearest-Neighbor Methods in Learning and Vision

In the context of machine learning, nearest-neighbor methods are applied to
supervised problems. Suppose one is given a reference set–a set of examples
for which the target concept (a class label, function value, etc.) is known,
and a query, for which such a value is unknown and is to be recovered. The
nearest-neighbor approach consists of finding one or more examples most
similar to the query, and using the labels of those examples to produce the
desired estimate of the query’s label.

This broad description leaves two important questions:

1. What are the criteria of similarity? The answer depends on the under-
lying distance measure as well as on the selection criteria, e.g., the k ex-
amples closest to the query for a fixed k, or the examples closer than a
fixed threshold r. The choices of these criteria are known to have a very
significant influence on the performance on the algorithm.

2. How are the labels from the neighbors to be combined? The simplest
way is to take the majority vote, in classification setup, or the average,
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in regression setup. However, more sophisticated methods, such as locally
weighted regression, have been shown to produce sometimes dramatically
better results.

The following fundamental property of nearest-neighbor classification
has been shown by Cover and Hart in [15]. Let R(n) be the expected
probability of error of the M-category nearest-neighbor classifier for a
training set of n examples. Then the limit R = limn→∞ R(n) is bounded
by R∗ ≤ R ≤ R∗(2 − MR∗/(M − 1)), where R∗ stands for the Bayes risk–
the probability of error of the optimal classifier given the distribution of the
data. A similar result can be shown for the nearest-neighbor regression [13].

Unfortunately, these asymptotic results do not necessarily translate into
similar bounds in practice when training sets of finite size are used. As
has been shown by Cover in [14], the rate of convergence to this limit may
be arbitrarily slow. A significant body of work has been devoted to analy-
sis of nearest-neighbor performance on samples of finite size. Although no
“distribution-free” bounds have been found, it is possible to characterize the
finite sample risk of the nearest-neighbor classifier based on various proper-
ties of the input space and the data distribution (see [18, 35, 37] for some
interesting results). Moreover, despite the lack of theoretical guarantees, it
has often been observed that the nearest-neighbor classifiers perform very
well in practice, and achieve accuracy equivalent to or even better than that
of significantly more complicated methods; see, e.g., the extensive compar-
ative study reported in [16].

Similar success has been seen in the application of nearest-neighbor meth-
ods to a variety of vision tasks, such as shape matching [22, 7] and object
recognition [33, 30, 28]. However, in computer vision the limitations of some
nearest-neighbor search methods have particularly high impact, since the
data here is typically high-dimensional, and in many cases the databases
required to sufficiently represent the visual phenomena are large. On the
other hand, appropriate similarity measures in vision applications are often
more expensive than the Euclidean distance. Furthermore, these measures
may not even be metrics. All this poses a challenge for a practitioner inter-
ested in using an example-based technique in a computer vision problem.
Possible solutions include randomized approximate algorithms, embedding
techniques, and machine learning algorithms for adapting the data struc-
tures for the properties of the data in the given domain. The book describes
some of the recent advances in these directions.
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1.3 Contributions to this book

Theory

The book opens with two contributions from computational geometry.
Chapter 2, by Clarkson, focuses on the formulation of exact nearest-neighbor
search, and studies this problem in metric spaces. In particular, it investi-
gates the various dimensionality properties that make the problem tractable
in practice, and presents theoretical results. Chapter 3, by Andoni, Datar,
Immorlica, Indyk, and Mirrokni, is devoted to a randomized algorithm that
allows approximate as well as exact similarity search in very high dimensions
in time sublinear in the size of the database. The algorithm is an extension
of LSH, described in 1.1.3, to a family of distance metrics beyond the l1
norm.

Learning

The unifying theme of the three chapters in the second part of the book
is exploring the ways to make the nearest-neighbor approach practicable in
machine learning application where the dimensionality of the data, and
the size of the data sets, make the naive methods for nearest-neighbor
search prohibitively expensive. In chapter 4, Liu, Moore, and Gray notice
that in nearest-neighbor classification, what matters for the decision is the
distribution of labels of the query’s neighbors, rather than the neighbors
themselves. They use this observation to develop new algorithms, using
previously introduced balltree data structures, that afford a significant
speedup while maintaining the accuracy of the exact k-nearest-neighbor
classification.

Chapter 5, by Vijayakumar, D’Souza, and Schaal, is devoted to methods
that build a local model of the target function in the vicinity of the query by
finding its neighbors in the reference set. The chapter proposes an approach
that extends such local learning methods to very high-dimensional spaces by
exploiting the low intrinsic dimensionality within a neighborhood. Another
contribution is a new Bayesian regression algorithm. The proposed frame-
work has been shown to be fast and accurate in a number of applications,
including real-time motor control tasks for robots.

Chapter 6, by Athitsos, Alon, Sclaroff, and Kollios addresses the issue that
arises in the context of many applications of nearest-neighbor methods in
learning, be they for classification, regression, or database retrieval. When
computing the distance of interest is expensive, a significant reduction in
search time may be gained if a cheap way exists to evaluate the relative dis-
tances from the query and eliminate the majority of the reference examples
from contention, thus requiring the distance to be explicitly computed only
on a small subset of the database. The approach proposed in this chapter
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is to learn an embedding of the original distance into a Euclidean space, in
which the ranking with respect to the Manhattan metric reflects the ranking
under the original distance. Connecting this chapter to the following ones,
the approach is evaluated on two computer vision tasks: estimating the
articulated pose of human hands and classifying sign language utterances.

Vision

The chapters in the third part of the book describe successful applications
of LSH to vision tasks. Moreover, as some of the chapters show, the basic
LSH framework may be adapted to better fit the properties of the data
space and the task at hand.

In chapter 7, Shakhnarovich, Viola, and Darrell deal with a regression
task: estimating articulated body pose from images of people. The basic
idea here is to learn, using pairs of images with known poses, hash func-
tions sensitive to the distance in the pose space. The resulting method,
parameter-sensitive hashing, allows very fast example-based estimation of
pose using a very large set of labeled examples. Chapter 8, by Grauman
and Darrell, is concerned with database retrieval scenarios where the dis-
tance is known but very expensive to compute: the earth mover’s distance
(EMD) between contours. The authors propose a technique, based on mul-
tiresolution histograms, that embeds the contours into a Euclidean space
of very high dimensions, and replaces EMD with the Manhattan distances
between sparse points in that space, thus allowing application of very fast
approximate search algorithms such as LSH. The experiments on data sets
of handwritten digits and human body contours show that with this embed-
ding, neighbor-based methods remain very accurate while gaining dramatic
speedup.

In contrast to the previous chapters, the task of interest in chapter 9,
by Shimshoni, Georgescu, and Meer, is an unsupervised one: clustering.
Specifically, the authors show how LSH can be used to reduce the complex-
ity of mean-shift clustering, and apply the resulting algorithm to the tasks
of visual texture classification and image segmentation. They also propose
significant modifications in the algorithms for constructing the data struc-
ture used to index the examples: the partitions in the hash tables are data
driven.

Finally, in chapter 10 Frome and Malik present an application of LSH
to another vision task: automatic classification of vehicles from their three-
dimensional range scans. The approach proposed by the authors relies on
LSH to perform fast search in a set of reference objects represented using
shape context–a representation that has been shown to be useful but also
to make distance calculations very costly. This chapter, too, presents a
modification of the basic LSH algorithm: Associative LSH. In this algorithm,
the results returned by LSH for a query are further refined by local search,
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improving the quality of the approximate nearest-neighbor and consequently
affording a gain in classification accuracy.
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