Note: all code and data are provided as courtesy, with no warranty or implication. Use at your own risk!

Slides with LaTeX/PDF: a brief tutorial

Note: this is rather obsolete, and these days I use Beamer with PGF/TikZ for making slides.

Locality Sensitive Hashing (LSH)

For papers on LSH, check Alex Andoni's LSH page.

I have written a fairly simple Matlab toolbox, implementing two versions of LSH: the old one with binary axis-parallel stumps, and the more recent E2LSH scheme with random projections and integer, rather than binary, hash key values.
The toolbox is contained in the archive lshcode.tar.gz, which includes the code and a README file.

The README walks through an example data set; the data (image patches) as well as a few LSH structures build for it as described in the README, are available in lshtst.tar.gz (54.6 MB; fixed 6/26/09).

Synthetic images with Poser for pose estimation and tracking

Here you can find code (Python and a bit of Matlab) for using the Poser software for generating labeled synthetic images of human bodies (as well as detailed stand-alone hand images). This has been used in a number of papers my colleagues and I have written, in particular the ICCV 2003 paper on Parameter-Sensitive Hashing, and subsequent papers at ICCV 2005 and CVPR 2006.

You can download the code and auxiliary files in one archive: PoserPython_GS.tar.gz. The archive contains a number of directories, as described in the Readme.txt file (itself included in the archive).

In addition, you can download a sample of the data used in ICCV'05 and CVPR'06 papers (and in my PhD thesis). These files contain the total of 90,000 examples of pose, rendered in stereo, with ground truth foreground/background mask:

data0003.tar.gz (572 MB), data0003-l.tar.gz (365 MB),
data0007.tar.gz (574 MB), data0007-l.tar.gz (370 MB),
data0012.tar.gz (573 MB), data0012-l.tar.gz (367 MB).
This is three directories, each with 30,000 examples; for each directory, the first file contains one image ("right camera") and the mask, while the second file contains the second image for a stereo pair ("left camera"). See the Readme for details.

I have actually generated about 1,500,000 labeled images based on motion capture data, however making them all available is not possible at the moment due to space limitations on the server. With a bit of effort you can generate your own database like this using the code I provide, along with freely available motion capture sequences from

I am planning to make available the edge direction histogram feature representation for these data some time soon; for now, you can try to compute them using the code in the matlab directory included in the archive.

Back to homepage