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Abstract

The right measure of similarity between examples is important in many areas of
computer science. In particular it is a critical component in example-based learning
methods. Similarity is commonly defined in terms of a conventional distance function,
but such a definition does not necessarily capture the inherent meaning of similarity,
which tends to depend on the underlying task. We develop an algorithmic approach
to learning similarity from examples of what objects are deemed similar according to
the task-specific notion of similarity at hand, as well as optional negative examples.
Our learning algorithm constructs, in a greedy fashion, an encoding of the data. This
encoding can be seen as an embedding into a space, where a weighted Hamming
distance is correlated with the unknown similarity. This allows us to predict when
two previously unseen examples are similar and, importantly, to efficiently search a
very large database for examples similar to a query.

This approach is tested on a set of standard machine learning benchmark prob-
lems. The model of similarity learned with our algorithm provides and improvement
over standard example-based classification and regression. We also apply this frame-
work to problems in computer vision: articulated pose estimation of humans from
single images, articulated tracking in video, and matching image regions subject to
generic visual similarity.

Thesis Supervisor: Trevor J. Darrell
Title: Associate Professor
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Chapter 1

Introduction

The need to automatically decide whether, and/or to what extent, two objects are
similar arises in many areas of computer science. Sometimes it is explicit, for in-
stance in nearest neighbor methods that rely on finding training instances similar
to the input, or in information retrieval applications. In other cases, for instance in
probabilistic models that use dissimilarity computations to derive model parameters,
this need is implicit. The notion of similarity judgment has been also in the focus of a
large body of research in cognitive science. It is known that people can perceive and
judge similarity at different cognitive levels, and that the semantics of such judgments
may depend on the task.

The basic idea explored in this thesis is that the notion of task-specific visual
similarity can be, and should be, learned from examples of what is to be considered
similar for a given task. Specifically, we develop an new approach that learns an
embedding of the data into a metric space where a (possibly weighted) Hamming
distance is highly faithful to the target similarity. A crucial practical advantage of
this approach is that a search for examples similar to a given query is reduced to
a standard search in the metric embedding space and thus may be done extremely
quickly, leveraging an arsenal of randomized algorithms developed for that purpose. In
some of the applications reported here we use our embedding approach in conjunction
with locality sensitive hashing, and achieve state-of-the-art performance in sublinear
time.

We develop a family of algorithms for learning such an embedding. The algo-
rithms offer a trade-off between simplicity and speed of learning on the one hand
and accuracy and flexibility of the learned similarity concept on the other hand. We
then describe two applications of our similarity learning approach in computer vision:
for a regression task of estimating articulated human pose from images and videos,
and for a classification task of matching image regions by visual similarity. To our
knowledge, this is the first example-based solution to these problems that affords a
feasible implementation.

In the context of regression, the novelty of our approach is that it relies on learning
an embedding that directly reflects similarity in the target space. We can use this
embedding to retrieve training examples in which the target function with high prob-
ability has values similar to the value on the input point. We combine the embedding
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with the search algorithm using randomized hashing and with a clustering step that
allows for multi-modal estimation.

This Introduction is organized as follows. Section 1.1 gives defines more formally
the task we are addressing. Section 1.2 outlines the basic ideas in our approach to
learning similarity. The computer vision applications of this approach are briefly de-
scribed in Section 1.3. Finally, Section 1.4 describes the organization of the remainder
of the thesis.

1.1 Modeling equivalence

The central learning problem addressed in this thesis can be formulated as follows.
Let X denote the data space in which the examples are represented. We will define
an equivalence similarity concept as a binary relation S(x,y) → ±1, that specifies
whether two objects x ∈ X and y ∈ X are similar (+1) or not (-1). We will assume,
unless noted otherwise, that this relation is reflexive, i.e. S(x,x) = +1, and symmet-
ric, i.e. S(x,y) = S(y,x). However we will not require S to be transitive, and so it
will not necessarily induce equivalence classes on X .

We develop an approach to learning a model of such similarity relation from
examples of pairs that would be labeled similar, and ones that would be labeled
dissimilar, by S. We also show how, under certain assumptions, such learning can be
done in a scenario in which only positive examples are provided, in addition to some
unlabeled data.

Our objective in learning similarity is dual:

• To develop a similarity classifier, that is, to build an estimator that given a
novel pair of objects in X predicts, as accurately as possible, the label S would
have assigned to it.

• To provide framework for a very efficient similarity search. Given a large
database x1, . . . ,xN of examples and a query x0 we would like to have a method
for retrieving examples in the database that are similar (with respect to S) to
the query, without having to apply the similarity classifier to every possible pair
(x0,xi).

The embedding approach developed in this thesis allows us to achieve both of
these goals in a single learning framework.

1.1.1 Other notions of similarity

Similarity can be defined at two additional levels of “refinement”, which we do not
address here. However we describe these notions of similarity below in order to clarify
the distinction from the problem outlined above.

Ranking One can define a relative similarity: for two pairs of examples, x,y and
z,w one can determine whether or not S(x,y) ≤ S(z,w). In principle such similarity
model defines a binary classification problem on pairs of pairs of examples.
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Distance At the most refined level, S could produce a non-negative real number
for any pair of examples; the smaller this number the more similar the two examples
are. Such a regression mapping X 2 → R+ corresponds to the standard notion of a
distance between pairs. The distance values of course induce a ranking relation, as
well. It may also be possible to obtain a consistent set of distances from ranking, by
methods like multidimensional scaling (Section 2.3.3) but in general the information
available at this level is more rich than the other two.

In this thesis, unless otherwise noted the term “similarity” will refer to equivalence.
At the end of the thesis we will discuss how the approach we develop could be extended
to the ranking notion of similarity. As for learning a real-valued, distance notion of
similarity, we will not pursue it here.

1.1.2 Example-based methods

In some cases, the goal of an application is explicitly to predict the similarity judgment
on two examples x,y ∈ X , under a particular similarity S. This is a classification
problem over the space of pairs X ×X . However, very often in machine learning the
ability to automatically judge similarity of example pairs is important not in itself,
but as part of an example-based method.

The distinction between model-based and example-based classification is often
loose; here we attempt to frame it in terms of the manner in which training examples
are used to predict the label of a new input.

Model-based methods use the training examples to build a model–of the class or of
the target function. More often than not the model is parametric. A common example
is to fit a parametric model of probability density to examples from each class; the
very popular family of classification methods based on principal component analysis
belongs to this kind. Sometimes it is non-parametric, for instance modeling the class-
conditional density with a kernel estimate. The main defining characteristic of a
model-based classification is that the input is not explicitly matched with (compared
to) individual training examples but rather matched to the model. This is true
whether the original training examples are kept around, like in the case of kernel-based
non-parametric model, or are discarded after the model is constructed as in principal
component analysis, or a mix of the two is used, as in a support vector machine
(SVM) [103], where some of the training examples, namely the support vectors, are
retained in addition to a set of parameters learned from the entire training set.

In contrast, in example-based methods classification or regression is based explic-
itly on comparing the input to individual training examples. Widely used example-
based methods include nearest-neighbor classification and locally-weighted regression.
A generic description of such a method is:

1. Store the training (sometimes called reference) data X = {x1, . . . ,xn} and the
associated labels `1, . . . , `n.

2. Given a query x0, find examples xi1 , . . . ,xik in X that are similar to x0.

3. Infer the label of the query `0 from (xi1 , `i1), . . . , (xik , `ik).
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The central computational task in the above description is similarity search:
Given a query x0 ∈ X and a set of examples X = {x1, . . . ,xn}, find xi such that
S(x0,xi) = +1. Technically, this may be equivalent to applying a similarity classifier
on n pairs (x0,xi), i = 1, . . . , n. However, from a practical standpoint such a solution
is unacceptable for large datasets, even with a relatively simple classifier. In order to
make search feasible, it should be possible to complete in time sublinear in n.

We assume that no analytic expression exists for the “true” similarity concept S,
or that no access to such an expression is given to us. Thus we need to construct a
model Ŝ of similarity, which will be used to predict the values of S.

1.1.3 Why learn similarity?

Before we discuss the details of our approach to learning similarity from data, we
briefly discuss some alternatives here, and a more detailed discussion is found in
Chapter 2.

A reasonable approach may be to use a distance as a proxy for the desired simi-
larity, namely,

ŜD(x,y) =

{
+1 if D(x,y) ≤ R,

−1 if D(x,y) > R.
(1.1)

The choice of the distance D, and to some extent of the threshold R, may have
critical impact on the success of such a model. The most commonly used distances
are the Lp metrics, in particular the L1 (or Manhattan) and the L2 (Euclidean)
distances. These distances account for a vast majority of example-based methods
proposed in computer vision when the representation space X is a vector space of
fixed dimension.1 When the representation does not allow a meaningful application
of Lp, the similarity is typically measured in one of two ways. One is to embed the
data into a metric space and proceed using an Lp distance; the other is to apply
a distance measure suitable for X . For instance, when examples are sets of points
in a vector space, a common distance to use is the Hausdorff distance [45] or the
earth mover’s distance [55]. Often one uses an embedding of X into another, usually
higher-dimensional space, in which an Lp metric approximates the complex distance
in the original space [5, 55].

However, it is usually possible to provide examples of similarity values. The
source of such examples depends on the circumstances in which similarity modeling is
required. In some cases, similarity values for example pairs may be provided directly,
either by manual labeling or via an automated data generation or gathering process.
In colloquial terms, this means that a human has a particular concept of similarity
in mind, such as “these two image patches look similar”, or “these two people have a
similar body pose”, that allows him/her to serve as an oracle and provide values of
S(x,y) for some pairs (x,y) ∈ X 2. These values are considered the “ground truth”

and the goal of the similarity modeler is to construct an estimate, Ŝ, that optimizes

1The distances under L1 and L2 will of course differ, however the ranking, and consequently the
set of nearest neighbors, are typically very similar; see, e.g., [52] for a discussion.
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the chosen measure of agreement with S. In other words, the goal is to “uncover”
the similarity judgment S used to assign the training labels.

On the other hand, in the context of example-based methods similarity between
objects in X is in effect a “latent concept”. Each training example x in X is associated
with a label `(x) in a target space Y . Usually, a well-defined similarity SY exists over
Y and can usually be computed analytically. For instance, in a classification scenario
Y is the finite set of class labels, and two labels are similar if they are identical.
In a regression setting Y contains the values of the target function, and similarity
may be defined by two values falling within a certain distance from each other. We
suggest a natural protocol for defining a similarity over X 2: two examples in X are
considered to be similar under S if their labels are similar under SY . This provides us
with a method for inferring values of S from the labels. The basic challenge remains
unchanged: to be able to predict S(x,y) without access to the labels `(x), `(y) and
thus to the ground truth similarity.

A crucial property of similarity is that it can be task-specific: the same two ex-
amples may be judged similar for one purpose and dissimilar for another. This is
illustrated by the following “toy” example. Consider a set of 2D points, with two
different notions of similarity illustrated in Figure 1-1 (analyzed in more detail in
Chapter 3.) Under the first similarity (top row), two points are similar if their Eu-
clidean norms are close (within a given threshold). Under the second, two points
are similar if the angles in their polar coordinates (modulo π) are close. Clearly,
Euclidean norms, Manhattan or Mahalanobis distances are not adequate here. The
proposed algorithm uses a few hundred examples of pairs similar under the relevant
similarity and produces an embedding which recovers the target concept quite well,
as shown on the right.

1.2 Learning embeddings that reflect similarity

In the most basic form, our approach can be summarized as follows. We construct
an embedding of X into an M -dimensional space H, each dimension m of which is
given by a separate function hm:

H : x ∈ X → [α1h1(x), . . . , αMhM(x)], hm(x) ∈ {0, 1}. (1.2)

The value of αm > 0 depends on the specific algorithm, but in all algorithms the
hm are chosen in such a way that the L1 distance

‖H(x)−H(y)‖ =
M∑

m=1

|αmhm(x)− αmhm(y)|.

reflect the underlying similarity. That is, the lower the distance ‖H(x), H(y)‖, the
higher the certainty of S(x,y) = +1. Thus, we follow the paradigm of distance as
proxy for similarity (1.1), however the representation, the distance and the threshold
R are explicitly chosen with the objective of maximizing the prediction accuracy.
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Figure 1-1: Illustration of task-specific similarity modeling on a toy 2D data set.
Left: ground truth showing, for one query (cross), examples similar to it (diamonds).
Examples found by the BoostPro (Chapter 3) algorithm are shown by squares. Right:
similarity regions induced by the query and the embedding learned with BoostPro
(200 bits), for a particular distance. Top row: norm similarity, bottom row: angle
similarity.
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1.2.1 Motivation: hashing and boosting

This approach is inspired by, and to a large extent has evolved from ideas developed
in the last decade in two areas of research: randomized search algorithms in computa-
tional geometry and ensemble methods in machine learning. Here we briefly describe
them, and a more detailed survey can be found in Chapters 2 and 3.

Locality sensitive hashing (LSH) The LSH [65, 52, 31] is a scheme for approxi-
mate similarity search under the Lp metric for p ∈ [0, 2]. It works by indexing the data
in a set of l hash tables with independently constructed randomized hash functions,
each using a key of k bits. Each bit in the hashing key is computed by projecting
the data onto a random vector and thresholding the value. With a suitable setting
of parameters l and k, this hashing scheme finds, for a value R, a ε-R neighbor of x0,
i.e., an example x such that ‖x0 − x‖ ≤ (1 + ε)R. Its lookup time is O

(
n1/(1+ε)

)
,

and arbitrarily high probability of success can be achieved. The building block of
LSH which provides this guarantee is the notion of a locality sensitive hash function,
under which the probability of collision is related to the distance in X . When the Lp

metric over X is used as a proxy for the underlying similarity S, the LSH achieves
our goal as formulated: the union of distinct bits used in the hash keys defines an
embedding in which L1 distance (in this case equivalent to the Hamming distance)
reflects S. A natural question, then, is how to extend the LSH framework to reflect
the distance in the unknown embedding space. Our solution is, essentially, to learn
the locality-sensitive bits and let the bits define the embedding.

Boosting The idea of boosting [99, 23] is to create an ensemble classifier (or regres-
sor) by greedily collecting simple classifiers that improve the ensemble performance.
Each simple classifier only has to be better than chance, hence it is often referred
to as a “weak” classifier. A number of variants of boosting have been published so
far; in Chapter 3 we review the specific boosting algorithms relevant to our work.
The general strategy shared by boosting methods is to assign weights to the training
examples and manipulate these weights in order to steer the iterative greedy selection
process towards improving the desired properties of the ensemble.

The learning approach in this thesis was inspired by these ideas, and has adapted
them for the purpose of constructing a similarity-reflecting embedding. The algo-
rithms outlined below and described in detail in Chapter 3. The order in which they
are presented corresponds to the evolution of the underlying ideas and to trading off
simplicity of learning for representational power of the resulting embeddings.

1.2.2 Similarity sensitive coding

The first algorithm2 is essentially a modification of the original LSH approach in
which the hashing bits correspond to axis-parallel decision stumps. The operating
assumption behind it is that a reasonable approximation to S may be obtained by
calculating the L1 distance in the data space X , when the following “corrections”:

2Published in [105].
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1. Some dimensions of X may be irrelevant for determining S. These dimensions
serve as noise when distance is computed, and are better ignored.

2. For a given dimension, some thresholds (decision stumps) are much more ef-
fective (i.e. similarity-sensitive–see Section 2.4.2) than others. Using these
thresholds in constructing LSH keys will optimize the properties of the hashing
scheme for a given size of the data structure (and thus for a given lookup time.)

3. The determination of the dimensions and thresholds described above is to be
guided by the available training data in the form of similar and dissimilar pairs of
points in X . The training true positive (TP) rate correspond to the percentage
of similar pairs in which both examples (projected on the dimension at hand)
fall on the same side of the threshold. The false positive (FP) rate is evaluated
similarly by looking at the dissimilar pairs.

This leads to the algorithm called similarity sensitive coding (SSC), first presented
in [105] under the name of PSH (parameter-sensitive hashing). For each dimension
of X , SSC evaluates the thresholds and selects the ones with acceptable combination
of TP and FP rate. The criteria of acceptability depend on the precision/recall rates
appropriate for the application at hand, and are formulated as an upper bound on the
FP and a lower bound on the TP rates. The data are then indexed by LSH, which
uses only the selected stumps as hash key bits. This is equivalent to embedding X into
a binary space

HSSC(x) =
[
hSSC

1 (x), . . . , hSSC
M (x)

]
, (1.3)

where each bit hSSC
m (x) is obtained by quantizing a single dimension im in X into a

single bit by thresholding:

hSSC
m (x) =

{
1 if xim ≤ Tm,

0 if xim > Tm.

1.2.3 Boosting the embedding bits

Learning of the decision stumps in SSC is straightforward, and the algorithm has
produced good results in the pose estimation domain [105, 35]. However, SSC leaves
room for a major improvement: it ignores dependencies between the dimensions of
X . The second algorithm of Chapter 3 addresses these issues and employs a boost-
ing algorithm (AdaBoost) which takes the dependencies into account. The boosting
algorithm yields an ensemble classifier,

CAB(x,y) = sgn

[
M∑

m=1

αm

(
hAB

m (x)− 1/2
) (

hAB
m (y)− 1/2

)]
(1.4)

where the single bit functions hAB
m are of the same form as hSSC

m . The resulting
embedding is into a weighted binary space

HAB(x) =
[
α1h

AB
1 , . . . , αMhAB

M

]
. (1.5)
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Interestingly, the L1 (Hamming) distance in this space between HAB(x) and
HAB(y) is proportional to the margin of the AdaBoost classifier,

M∑
m=1

αm

(
hAB

m (x)− 1/2
) (

hAB
m (y)− 1/2

)
.

In practice, this algorithms may outperform SSC for a number of reasons:

• The embedding is less redundant and more directly optimized for the underlying
similarity prediction task.

• The weights produced by AdaBoost allow for an additional “tuning” of the
embedding.

While in principle this is a straightforward application of AdaBoost, a number of
interesting practical problems arise when the algorithm is applied to a large amount of
data. In particular, under the assumption mentioned in Section 2.1.4 that similarity
is a “rare event”, the class distribution is very unbalanced. We discuss this issue in
Chapter 3.

1.2.4 BoostPro: boosting optimized projections

The final algorithm of Chapter 3, called BoostPro, further advances our approach
towards making the embedding more flexible. We leave the realm of axis-parallel
decision stumps, and instead propose to use arbitrary projections of the data. By a
projection we mean any function f : X → R; in all the experiments described in this
thesis we have used polynomial projections,

f(x) =
d∑

j=1

θjx
pj

ij
, pj ∈ {1, 2, . . .}, ij ∈ {1, . . . , dim(X )}.

In contrast to the algorithm outlined in the previous section (where the weak learn-
ers only select the threshold), BoostPro uses a gradient-based optimization procedure
in the weak learners to improve projection coefficients as well as thresholds, given the
current ensemble and the weights on the training data. Furthermore, we introduce
a modification of AdaBoost algorithm for the special case of learning similarity, in
which learning is done from positive examples only.

Figure 1-2 provides a cartoon illustration of the forms of embedding attainable
with each of the algorithms.

1.2.5 Relationship to other similarity learning methods

In Chapter 2 we discuss in some detail the significant body of literature devoted to
related topics. Here we attempt to broadly categorize the prior work and emphasize
its main differences from the learning approach developed in this thesis.
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Figure 1-2: Illustration of embeddings obtained with the learning algorithms. Dotted
lines show 0/1 boundaries for each bit. Letters correspond to weights, numbers in
parenthesis to the order of the bits. Shown in the box is the embedding of the query
point (circle). In (c), the case of linear projections is illustrated; for polynomial
projections of higher order the boundaries would be nonlinear.

Metric learning Much work has been done on learning a metric D on X that
is optimized for the use in a particular learning machine, typically a NN classifier.
The requirement that the distance be a metric (including transitivity and compliance
with triangle inequality) stands as a major difference with our approach. Further-
more, typically the learned metric is constrained to a particular parametric form,
usually described by a quadratic form [118, 53]. Thus the class of similarity con-
cepts attainable by these methods is significantly more limited in comparison to our
embeddings.

Optimal distance learning For certain classification tasks there have been pro-
posed algorithms that learn a distance (as a measure of dissimilarity) which is not nec-
essarily a metric, optimized for a particular task—classification or clustering. Among
recent work in this direction, [79] and [60, 61] are the closest in spirit to ours. How-
ever, the transitivity requirement is retained in these approaches, and it is not clear
how to extend them effectively beyond problems with finite label sets.

Manifold learning Many algorithms have been proposed for learning a low-dimensional
structure in data, under the assumption that the data lie on a (possible non-linear)
manifold: multidimensional scaling (MDS) [27], Isomap [112], local linear embed-
ding [96] and others (see [12] for a unifying perspective on these and other manifold
learning algorithms.) These algorithms usually obtain an embedding of the training
data by manipulating the eigenvectors of the pairwise distance matrix. A related fam-
ily of methods deals with embedding a graph, whose vertices represent examples and
edges are weighted by (dis)similarity, in a space where the similarities are preserved.

In contrast to the manifold learning algorithms, our approach does not make an
implicit assumption regarding structure in the data, nor does it limit the dimension-
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ality of the embedding by the dimensionality of X .3 A more important difference,
however, has to do with extending the embedding to new examples. The MDS and
related algorithms do not yield a mapping function, which could be applied to a pre-
viously unseen example. While some extensions to out-of-sample examples have been
proposed [12, 33], they typically rely on the (Euclidean) distance in X and the ability
to find neighbors efficiently among training data–an undesirably circular dependency
in the context we are considering here.

1.3 Applications in computer vision

1.3.1 Levels of visual similarity

Visual similarity can be defined at a number of perceptual levels, which differ in the
amount of semantic complexity, the dependence on the task at hand, and the potential
stages in the visual pathway at which they may be implemented in biological vision
systems.

Low-level similarity Two image regions (patches) are considered visually similar
if they correspond to similar physical scenes. A simple example of this occurs under
small motions (translation and rotation) of a camera pointed at a given scene: in most
cases, unless there is a discontinuity in appearance due, for examples, to sharp edges,
images of the scene in subsequent frames will be similar. The framework developed
in this thesis will be applied to learn such similarity – specifically, to predict when
two image patches are transformed versions of each other. In essence, the goal is
to obtain transformation-invariant similarity on top of non-invariant representation.
The learning for this kind of similarity can occur with no human supervision: given
a set of natural images, pairs of similar patches can be extracted automatically.

Mid-level similarity On a higher perceptual level (which may be associated with
later stages in the visual pathway) visual elements are deemed similar if they share
some simple semantic property. An example of such similarity that arises in the
object categorization domain is the notion of parts - elements that are repeatable
in a particular visual category, albeit with some appearance variation. This level of
similarity may be important, in particular in an object classification architecture with
multiple feature levels.

High-level similarity On an even higher perceptual level, similarity is defined
primarily by semantics. These properties that make two objects similar are themselves
not visual, but can be inferred (by human perception) from visual information. Two
examples of such task-specific similarity that we consider in this thesis are object
category (do the two objects belong to the same category?) and articulated human

3Although directly comparing dimensionalities is somewhat inappropriate, since our embedding
space is (possibly weighted) binary, as opposed to Euclidean X .
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Figure 1-3: A cartoon of the example-based pose estimation approach. The embed-
ding is learned to reflect similarity of the entire pose.

pose estimation (is the body configuration of the two human figures similar?). Note
that in the latter case, there is an additional level of dependency on the exact task:
two poses that may be judged similar if one only needs to classify a gesture (pointing
versus raising one’s hand) would not be considered similar if the goal is to recover
the 3D location of every body joint with maximal precision.

1.3.2 Example-based pose estimation

Previous model-based approaches have shown that the task of modeling the global re-
lationship between the image and the pose is very difficult. In the proposed approach,
we instead model a simpler concept: similarity between the poses that appear in two
images. This leads to an example-based estimation algorithm: given an image, find in
a large database of images (labeled with the underlying articulated poses) examples
classified as similar to the input. This scheme, illustrated in Figure 1-3, relies on
the performance of the similarity classifier. Its high true positive (TP) rate provides
that with high probability, the unknown pose is close to the poses in the retrieved
examples. On the other hand, the low false positive (FP) rate means that not many
spurious examples will be retrieved.

A preliminary work in this direction, using SSC, has been presented in [105]. In
this thesis we present new experiments with a very large database of poses, obtained
with motion capture system, using BoostPro to learn an embedding of images that
reflects pose similarity.
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1.3.3 Learning visual similarity of image regions

Comparing image regions is a basic task which arises in many computer vision prob-
lems: analysis of stereo, image denoising, scene recognition, object categorization etc.
Recently, methods that operate by comparing image regions have established them-
selves as state-of-the-art in some of these problems. Conceptually, there are usually
four steps in such methods that directly operate on image regions:

1. Interest operator : selecting a set of regions from the given image that are con-
sidered “interesting”. This is an attention mechanism, and a number of such
operators have been proposed. While some appear to be particularly successful
in certain cases [77, 84], the choice of interest operator and even its utility is
still far from obvious [80, 14], and we will remain agnostic regarding this issue.

2. Descriptor The next step is to compute the representation of the selected
patches. Ideally, the representation should capture the features that are impor-
tant to the application that uses the matching method, while being invariant to
features that are unimportant. We will consider two representations, that have
been the subject of much work in the vision community: the shift-invariant
feature transform (SIFT) [77] and the sparse overcomplete codes [89].

3. Matching Once the descriptor for a region is computed, it is matched to the
descriptors of regions in the database (the training data).

4. Inference Depending on the specific task and the method at hand, the results
of the matching across the test image are combined to produce an answer.

The matching step clearly provides a natural grounds for applying our learning
approach. In Chapter 6 we describe an experiment in which we learn to match patches
obtained by transforming an image in certain ways (rotations and mild translations),
and show how whereas standard distance-based similarity models fail, the embedding
learned by our algorithm allows to detect similarity between transformed versions of
the same patches.

1.4 Thesis organization

Chapter 2 provides the background for the thesis research. It describes the prior
work in related areas, with particular emphasis on the two ideas that inspired our
learning approach: locality sensitive hashing and the boosting. Chapter 3 describes
the core machine learning contribution of the thesis–a family of algorithms that pro-
duce similarity-reflecting embeddings of the data. Armed with these algorithms we
develop example-based approaches for two computer vision domains. In Chapter 4
we describe a method for estimating articulated pose of human figure from a single
image, and in Chapter 6 a method for matching image regions based on visual simi-
larity under certain class of transformations. Chapter 7 contains a discussion of the
presented approach, and outlines the most important directions for future work.

29



30



Chapter 2

Background

This chapter presents some background for the research presented in this thesis. We
start with a review, in Sections 2.1 and 2.2, of example-based classification and re-
gression methods, which provides an important context for similarity learning. In
Section 2.3 we discuss prior work on learning distances and similarities, and in Sec-
tion 2.4 we review state-of-the-art algorithms for similarity-based retrieval. The back-
ground for vision applications in the thesis is not covered in this chapter, but rather
presented in Chapters 4, 5 and 6.

2.1 Example-based classification

In a classification problem, the labels belong to a finite set of possible identities :

Y ≡ {1, . . . , C},

and the task consists of assigning a test example to one of the C classes. By far the
most used example-based method is the K nearest neighbors (K-NN) classifier. Its
operation is described in Algorithm 1. Setting K = 1 yields the nearest neighbor
classification rule, perhaps the simplest and the most widely used in practice.

2.1.1 Properties of KNN classifiers

Despite its simplicity, the NN classifier very often achieves good performance, partic-
ularly for large data sets. The result by Cover and Hart [26] establishes a tight upper
bound on the asymptotic risk R∞ of the NN rule for C classes in terms of the Bayes
risk R∗,

R∞ ≤ R∗
(

2− C

C − 1
R∗
)

. (2.1)

Similar bounds can be established for the K-NN classifier, although they are more
involved (see, e.g., [38].)

The bound in (2.1) describes the performance of the rule in the limit on an infinite
amount of data, and has practical significance only in conjunction with a reasonable
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Algorithm 1 Classification with K nearest neighbors (KNN).

Given: Training set X = {x1, . . . ,xN} with labels {y1, . . . , yN}.
Given: A distance measure D : X → R.
Given: An integer 0 < K ≤ N .
Given: Test example x0 ∈ X .
Output: Predicted label ŷ

(KNN)
0 .

1: Let i∗1, . . . , i
∗
K be the indices of the K NN of x0 in X w.r.t. D, i.e.

D(x0,xi∗1
) ≤ . . . ≤ D(x0,xi∗K

)

and
D(x0,xi∗K

) ≤ D(x0,xi) for all i /∈ {i∗1, . . . , i∗K}.

2: For each y ∈ Y let X ′
y = {i∗k | yi∗k

= y, 1 ≤ k ≤ K}
3: Predict ŷ

(KNN)
0 = argmaxy∈Y |X ′

y|, breaking ties randomly.

rate of convergence of the N -sample risk RN to R∞, as N grows large. The finite
sample behavior of the NN rule has been extensively studied and shown to be difficult
to characterize in a general form. Under various assumptions and approximations, the
existing results describe the rates of convergence of RN to R∞ [25, 37]; unfortunately,
it has been shown that such convergence may be arbitrarily slow. Some results exist
regarding the bounds on RN [48, 90], and means of calculating the risk for given data
and distribution parameters [90, 109]. In addition, some analysis of the deviation
RN −R∞ is given in [50].

Despite the lack of guarantees for finite samples, the NN rule has been known to
work well in very many practical cases, and often performs on par with much more
sophisticated classifiers, provided enough training data (see, for instance, [30] for an
extensive comparative study).

A major drawback of the NN rule is its computational complexity. With N exam-
ples in a D-dimensional input space, brute-force exhaustive search requires O (DN)
operations (assuming a single distance calculation costs O(D) operations, and must
be carried out for each reference point). Faster algorithms, which require as little
as O (log N) time, also require O

(
ND/2

)
storage which for high D is prohibitively

large. It is a common conjecture, supported by empirical evidence [18], that exact
NN search algorithms are bound to suffer from this problem, due to the “curse of
dimensionality”. To alleviate this problem, practitioners often turn to approximate
schemes, which trade off some of the accuracy guarantees in retrieval of neighbors for
a significant increase in speed.

2.1.2 Approximate nearest neighbors

An ε-k-th NN of x0 is defined as a training example xiεk
such that

D(x0,xiεk
) ≤ (1 + ε)D(x0,xi∗k

), (2.2)
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where ε > 0 is an approximation parameter. In general, there will be more than one
such candidate point and the particular selection strategy depends on the specific
search algorithm used.

The asymptotic risk of the ε-NN rule can be easily established.1 By the dominated
convergence theorem [], we have

if limN→∞D(x0,xi∗k
) = 0 w.p.1, (2.3)

then limN→∞D(x0,xiεk
) = 0 w.p.1, (2.4)

following from (2.2), where D is the metric in the input space. The limit in (2.3)
is proved, under mild assumptions, in [26], thus yielding the conclusion in (2.4).
From here, one can closely follow the proof in [26] and obtain the R∞ (i.e., the same
asymptotic overall risk as for the exact NN rule) in the limit. As for the finite risk of
the ε-NN classifier, and in particular its deviation from the corresponding risk of the
exact NN, no definitive answers are known yet.

State-of-the-art methods allow finding an ε-NN or ε-R neighbors (see next sec-
tion for definition) in time sublinear in N , and with mild storage requirements. In
section 2.4.2 we describe in detail one such method: the locality sensitive hashing
(LSH).

2.1.3 Near versus nearest

In the algorithms discussed above, the cutoff used in the search procedure is para-
metrized by the rank order K. An alternative criterion is to use a distance cutoff.
Modifying step 1 accordingly leads to the R-near neighbor classifier (Algorithm 2.)
The notion of approximate near neighbor is defined similarly to (2.2): For a given
distance value R and the approximation factor ε, the ε-R neighbor of x0 is defined as
any x for which

D(x0,xε,R) ≤ (1 + ε)R. (2.5)

Algorithm 2 Classification with R-neighbors.

Given: Training set X = {x1, . . . ,xN} with labels {y1, . . . , yN}.
Given: A distance measure D : X → R.
Given: A number R > 0.
Given: Test example x0 ∈ X .
Output: Predicted label ŷ

(RN)
0 .

1: Let i∗1, . . . , i
∗
K be the indices of R-neighbors of x0 in X w.r.t. D, i.e.

D(x0,xi∗k
) < R for k = 1, . . . , K.

2: For each y ∈ Y let X ′
y = {i∗k | yi∗k

= y, 1 ≤ k ≤ K}
3: Predict ŷ

(RN)
0 = argmaxy∈Y |X ′

y|, breaking ties randomly.

1We are not aware of any previous publication of this observation.
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There are important differences between the two algorithms. On the one hand,
the search in K-NN is guaranteed to produce exactly K matches while for a fixed
R the search in R-neighbor may fail to return any matches even with exact search
algorithms, since there may simply be no appropriate matches in the database. The-
oretical analysis of example-based methods based on near-neighbor retrieval appears
to be harder, in particular it is difficult to show any “distribution-free” properties. On
the other hand, setting the cutoff for Algorithm 2 may lead to more robust estimation,
since it prevents cases in which some of the K-NN are too far to usefully contribute
to the local model.2 Overall, the choice of the specific formulation of neighborhood
retrieval is a matter of design and should be decided for the task at hand. In most of
the experiments in this thesis we used the K-NN (i.e., nearest) formulation.

2.1.4 Evaluation of retrieval accuracy

How good is a model Ŝ? Since S defines a classification problem, a standard measure
of accuracy for a classifier Ŝ is the risk

R(Ŝ,S) = E(x,y)∈X 2

[
L
(
Ŝ(x,y),S(x,y)

)]
which depends on the loss matrix L that specifies the penalty for any combination
of true and predicted similarity values. In practice, the expectation above can be
estimated by calculating the average loss on a finite test set.

A more detailed measure is the combination of the precision of Ŝ

pre =
|{(x,y) : S(x,y) = +1 and Ŝ(x,y) = +1}|

|{(x,y) : Ŝ(x,y) = +1}|
(2.6)

(i.e., out of pairs judged similar by Ŝ, how many are really similar under S), and
its recall

rec =
|{(x,y) : S(x,y) = +1 and Ŝ(x,y) = +1}|

|{(x,y) : S(x,y) = +1}|
(2.7)

(out of pairs similar under S, how many are correctly judged similar by Ŝ.) A
closely related terminology3 refers to the true positive, or detection rate TP which is
equal to the recall rate, and the false positive, or false alarm rate

FP =
|{(x,y) : S(x,y) = −1 and Ŝ(x,y) = +1}|

|{(x,y) : S(x,y) = −1}|
. (2.8)

Rather than specifying a single point in the precision/recall space, one can consider
the entire range of the tradeoff between the two. Plotting the TP against FP as a
function of changing parameters of the retrieval algorithm (in this case the threshold

2Although such spurious neighbors may be seen as outliers and could be dealt with by, say, robust
local regression (Section 2.2.)

3This terminology corresponds to the view of similarity learning as a detection task.
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on the distance) yields the receiving-operating characteristic (ROC) curve.

When retrieval of similar examples is the goal in itself, the ROC curve provides
the comprehensive measure of the method’s performance by specifying the range of
the trade-off between precision and recall. Furthermore, the area under ROC curve
(AUC) provides a single number describing the performance. However, if a similarity
model is used as a component in an example-based classification or regression, its
success should be also measured by the accuracy of the resulting prediction: the
average classification error, or the mean estimation error on a test set.

The choice of a loss matrix L as well as the desired precision/recall combination is
typically influenced by the relative frequency of similar and dissimilar pairs in X 2. It
is often the case (and especially so in vision-related domains) that similarity is a “rare
event”: two randomly selected examples from X are much less likely to be similar
than not. This asymmetry has consequences on all aspects of similarity learning. For
instance, L may need to be skewed significantly, in the sense that the penalty for
one “direction” of wrong prediction is much higher than the penalty for the opposite
error. For many learning algorithms this poses a significant challenge. However, we
will describe in Chapter 3 how it can be turned to our advantage.

2.2 Example-based regression

The task of regression consists of predicting, for a query point x0, the value of a real-
valued target function g on a test point x0; the function is conveyed to the learned by
a set of examples x1, . . . ,xN labeled by the value of yi = g(xi), perhaps with some
noise. When no global parametric model of g is available, example-based estimation
is often an appropriate choice.

The simplest example-based approach to regression is to apply the K-NN rule [24],
with the slight modification to account for the estimation goal: the predicted value of
y0 is set to the average of the values in the NN, rather then to the winner of a majority
vote4. This estimation rule corresponds to a piecewise-constant approximation of the
target function g(x), with at most

(
N
K

)
distinct values (one value for every feasible

assignment of K nearest neighbors among the reference points). Similarly to the
K-NN classifier, there are results on the asymptotic behavior of this estimator [24].

The family of local polynomial regression estimators [43] may provide more flex-
ibility in modeling the higher order behavior of the target function g. Under the
assumptions that g is well approximated by a polynomial of degree p within any
small region of X , and that the selected neighbors of the query point x0 fall within
such a small region around it, a polynomial model fit to those neighbors and evaluated
in x0 will produce an accurate estimate of g(x0).

A more robust approach using the local modeling idea is to assign weights to the
neighbors, in accordance with their similarity to the query x0. The closer xi∗i

is to
x0 the more influence should it exert on the ŷ0. This leads to the locally weighted
regression (LWR) idea, an excellent introduction to which is available in [7].

4If Y ∈ Rd, with probability 1 every value will appear exactly once.
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In the presence of noise, the local regression procedure may still be vulnerable to
the misleading influence of outliers introduced by function mismeasurement, labeling
errors or spurious similarity judgments. The robust LWR [21, 22] addresses this by
re-weighting the neighbors based on the residuals of the fitted model and re-fitting
the model with the new weights. This process is repeated for a small number of
iterations, and may considerably improve results on noisy data.

The regression approach outlined above is applicable when the underlying rela-
tionship between the data and the estimated quantity g is a function, that is, when
specifying the x determines a unique value of g(x). In some applications this may
not be the case: multiple values of g correspond to the same value of x. In other
words, there is an ambiguity in g(x). This of course makes the problem of estimat-
ing g ill-posed. There are two possible avenues for addressing this challenge. One
focuses on representation: finding a data space X in which the ambiguity is resolved.
For instance, using multiple silhouettes (Section 5.2) or stereo-based disparity images
(Section 5.3) largely removes the ambiguity in the pose estimation context.

The other avenue is to address the problem at the estimation step. If the represen-
tation at hand does lead to ambiguity, simply ignoring it may cause severe estimation
errors–for instance, in a K-NN regression, if there are two possible values of g(x) and
the labels of the retrieved neighbors are roughly equally distributed among these two
values, näıve K-NN regression will yield a value which is the mean of the two, and
may be quite far from both. Instead, we can introduce a clustering step whose ob-
jective is to detect the occurrence of such ambiguity and separate the distinct values.
The regression procedure (e.g., averaging in the K-NN case) is then applied to each
cluster of the labels. This results in multiple answers rather than a single prediction.
Figure 2-1 illustrates this for the case of linear regression model. The query point
(cross) matches a number of neighbors (circles), that correspond to two “modes” of
the target function g. Clustering them according to the value of g is straightforward,
and the final estimation is carried out separately on each cluster, producing two linear
models shown by dashed lines.

How these answers are used depends on the application at hand. An additional
procedure aimed at resolving the ambiguity may be applied; an example of such
approach is taken in the orientation estimation described in Section 5.2, where we
produce two estimates of orientation that are subsequently refined based on temporal
context. Alternatively, we may “propagate” the multiple answers, and defer the
resolution of the ambiguity until later stages in the decision process, or even report
them as the end result of the estimation.

2.2.1 Regression-induced similarity

The key underlying assumption in most example-based regression methods is that the
target function behaves smoothly enough within any small enough region to be well
modeled by a relatively simple (low order) model in that region. Thus the choice of
the neighborhood is crucial for finite sample cases. This choice is typically tuned by
comparing the prediction accuracy on the training data or, if the amount of available
data allows that, in a cross-validation procedure, for a range of neighborhood-defining
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Figure 2-1: Illustration of the idea of regression disambiguation by clustering the
labels. Cross: query point and its true label; circles: the neighbors; the dashed lines
show the two models fit separately to the two clusters.

parameters: K for K-NN or R for R-neighbors.

Consider however a different notion of similarity: we will define two examples x
and y in X to be similar if the values of the target function g are similar. The latter
similarity is defined in a straightforward manner, depending on the application at
hand, the precision required and the behavior of the function g. When the range Y
of g is a metric space, a natural way to define such similarity is by setting a threshold
r in Y , and defining

Sg,r(x0,x) ,

{
+1 if DY(g(x0), g(x)) ≤ r,

−1 otherwise.
(2.9)

Figure 2-2 illustrates this definition. Note that if r is set so that errors within r can
be reasonably tolerated in the application, and if we can accurately retrieve examples
similar to x0 w.r.t. Sg,r, we should achieve excellent regression results (subject to the
noise level in the training labels.) Of course, the problem is that since the value g(x0)
is not known, the definition in (2.9) is ill-posed and can not be used directly. On the
other hand, we can form a large number of pairs (xi,xj) over the training examples
such that they are similar, or dissimilar, under that definition. This naturally leads
to the problem of learning similarity from examples.
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Figure 2-2: Regression-induced similarity. For a query point (black cross), shown are
the .5-neighbors in X (green circles) and the Sg,.25-neighbors (red squares).

2.3 Learning Distances and Similarity

There exists a large body of literature, both in machine learning and in cognitive
science, devoted to the idea of learning distances or similarities from examples and/or
for a specific task. Below we review the prior work in some detail, pointing out
relevance to the stated problem of learning an equivalence concept and the differences
from our approach.

2.3.1 Metric learning

The most common way to model similarity is to assume that a distance D can serve
as a reasonable “proxy” for the desired similarity S. Many methods assume that D is
a metric, complying with the following three properties:

∀x ∈ X , D(x,x) = 0; (2.10)

∀x1,x2 ∈ X , D(x1,x2) ≥ 0; (2.11)

∀x1,x2,x3 ∈ X , D(x1,x2) +D(x2,x3) ≥ D(x1,x3). (2.12)

Sometimes D is allowed to be a pseudo-metric, i.e. it may violate the triangle
inequality (2.12).

The most common scenario in which this approach has been applied is a classifica-
tion (or equivalently clustering) setup, where the objective is to produce a metric that
minimizes label error with a specific classification or clustering algorithm. Notable
examples of work in this direction include [78, 118, 79, 61, 53]. In these applications,
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in addition to the metric assumptions in (2.10)-(2.12), it is typically assumed that
the target equivalence concept on pairs in X 2 induces equivalence classes in X . The
key reason for that is that the metric-learning methods usually depend on transitivity
of similarity: they assume that if S(x,y) = +1 and S(x, z) = +1 than S(x, z) = +1.

As we stated earlier, we would like to avoid such transitivity assumption. In
particular, this assumption clearly does not hold in the context of regression-induced
similarity defined in Section 2.2.1, such as the pose estimation domain described in
Chapter 4. Neither does it hold in general matching problems, such as the image
patch classification in Chapter 6. If a region in an image is repeatedly shifted by
one pixel 100 times, most of the consecutive regions in the sequence will be visually
similar, however it will hardly be the case for the first and the 100th regions.

Another important difference of our approach is in the class of attainable similarity
measures. Metric learning methods are typically based on a particular parametric
form, often a quadratic form of the data, whereas our approach is non-parametric.

2.3.2 Similarity as classification

A very different family of approaches take advantage of the duality between binary
classification on pairs and similarity. Formulated as a classification problem, the task
of learning similarity may be approached using the standard arsenal of techniques
designed to learn classifiers. A number of such approaches have been proposed in the
area of face analysis, where pairs of faces are to be classified as belonging to the same
or different persons, either in a verification context or as part of a matching-based
recognition. Typically it is done by modeling the differences between the two images
in some parametric form, either probabilistic [85] or energy-based [20]. A different
approach is taken in [69], where the classifier is obtained by boosting local features,
in a way similar to our learning algorithms. However, none of that work is extended
to learning an embedding.

The classification approach to modeling similarity face two major challenges. One
is inherent in the nature of similarity in many domains: the classification task induced
by similarity is typically extremely unbalanced. That is, similarity is a rare event : the
prior probability for two examples to be similar may be very low. Consequently, the
negative class is much larger and, in a sense, more diverse and more difficult to model.
Although some solutions to such situations have been proposed, in particular in the
context of detection of rate events [117, 114] this remains a difficulty for learning
algorithms.

The other challenge is in the realm of practical applications of the learned similar-
ity concept. Most of the classifiers are ill-suited for performing a search in a massive
database; often the only available solution is to explicitly classify all the possible
pairings of the query with the database examples, and that does not scale up.

Conceptually, these approaches are closely related to ours, since our algorithms
described in Chapter 3 do rely on classification techniques. However, we use those as
means to construct an embedding, and the similarity classification itself is done by
means of thresholding a metric distance, an approach that easily scales up to high
dimensions and large databases, in particular using methods reviewed in Section 2.4.
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2.3.3 Embeddings and mappings

Finally, there exists a broad family of algorithms that learn a mapping of the data
into a space where similarity is in some way more explicit. Our approach falls into
this broad category as well, although it differs from the previously developed ones
in important ways. Below we discuss the existing embedding and mapping methods,
which can roughly be divided into two categories.

Multidimensional scaling

Multidimensional scaling (MDS) [27] is a family of techniques aimed at discovering
and extracting low-dimensional structure of the data. The algorithms in this family
expect as their input a set of examples x1, . . . , xN and a (perhaps partial) list of
pairwise dissimilarities δij between xi and xj. The goal is to map the input examples
into a space where Euclidean distance match, as well as possible, the given values of
δ.

Let us denote by f the transformation that such a mapping induces on the dis-
similarities (from the value of δij to the distance between the images of xi and xj.)
In metric MDS, f must be a continuous monotonic function. This form is most rele-
vant to the distance model of similarity mentioned in Section 1.1, but less so to the
boolean similarity case. More relevant is the non-metric MDS (NMDS), in which the
transformation f can be arbitrary, and is only subject to monotonicity constraint:
if δij < δkl then f(δij) ≤ f(δkl), i.e., it only must preserve the rank. Technically,
NMDS may be directly applied to the problem of learning an equivalence similarity,
in which case there are only two ranks since all δij ∈ {−1, 1}. However, NMDS does
not learn an embedding in the sense our algorithms do: it finds the mapping of the
training examples into a lower-dimensional Euclidean space, but does not provide a
way to map a previously unseen example. Another difference is the assumption of low
dimensionality of the embedding space, which is not explicitly present in our work.

In addition to a large set of classical MDS techniques [27], notable methods that
fit this description include, Isomap [112] and local linear embedding [96]. Some re-
cent work aimed at extending these techniques to unseen points is discussed in [12],
along with a unifying perspective on these and other methods. The focus there is,
however, on metric MDS in the context of manifold learning and clustering. In gen-
eral, approaches to extending the embedding in MDS-style methods to new examples
proceed by finding the NN of x0 in X and combining their embeddings (for exam-
ple, averaging) to produce an estimated embedding of x0. In contrast, our approach
avoids such dependence on the original distance in X , that can be detrimental when
there is a significant departure of S from that distance.

Embedding of known distance

Many methods have been developed for constructing a low-distortion embedding of
the original data space into a space where L1 can be used to measure similarity.
They assume that the underlying distance is known, but expensive to compute. The
embedding is used either to approximate the true distance [44, 55, 56] or to apply a
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filter-and-refine approach [42, 5] in which the embedding space is used for fast pruning
of the database followed by exact distance calculations in the original space. Two main
differences of these algorithms from MDS and related methods is that the dimension
of the embedding is usually very high, often many times higher than the dimension
of the input space, and that the construction of the embedding is usually guided by
analytically known properties of the underlying distance rather than learned by the
data. A recent review of other related methods can be found in [62], however many
of them are better categorized as search algorithms rather than learning similarity.

2.4 Algorithms for search and retrieval

In this section we discuss the state of the art in search and retrieval, decoupled from
the problem of learning and representing similarity. All of these algorithms assume
that the dissimilarity is expressed by a distance (almost always a metric, usually
Euclidean or L1. This is generally not the case in the problems we are concerned with
in this thesis, however, we can rely on these methods to allow, after an embedding has
been learned, for efficient search under L1 distance in the embedding space. Indeed
this is one of the main motivations for our embedding approach. The dimension of
our embedding space may be quite high, as we will see in the following chapters, and
a method of choice must handle high-dimensional spaces well.

The most straightforward method is the linear scan, often referred to as brute force
search: inspect all the examples in the database and measure the distance between
them and the query. This is the simplest solution, but for a very large number of
high-dimensional examples it quickly becomes infeasible. We will therefore focus on
methods that allow some speedup relative to the brute force search.

2.4.1 kd-trees

In the kd-tree approach [13, 32], the space X is partitioned by a multidimensional
binary tree. Each vertex represents a (possibly unbounded) region in the space, which
is further partitioned by a hyperplane passing through the vertex and perpendicular
to one of the coordinate axes of X . The partition is done so that the set of points
that belong to the region represented by a vertex is roughly equally divided between
that vertex’s children. Furthermore, the orientation of the partitioning hyperplanes
alternates through the levels in the tree. That is, the first hyperplane is perpendicular
to X1, the two hyperplanes in the second level are perpendicular to X2 and so on,
starting over again with the first dimension at the level dim(X ) + 1.

The standard way of querying the kd-tree is by specifying a region of interest; any
point in the database that falls into that region is to be returned by the lookup. The
search algorithm for kd-tree proceeds by traversing the tree, and only descending
into subtrees whose region of responsibility, corresponding to the partitions set at
construction time, intersects the region of interest.

When dim(X ) is considered a constant, the kd-tree for a data set of size N can
be constructed in O (N log N), using O (N) storage [32]. Its lookup time has been
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shown to be bounded by O
(
N1−1/dim(X )

)
. Unfortunately, this means that kd-trees

do not escape the curse of dimensionality mentioned in Section 2.1.1: for very high
dimensions the worst case performance of kd-tree search may deteriorate towards the
linear scan. Nevertheless, in more than three decades, kd-trees have been successfully
applied to many problems. As a rule of thumb, their average performance is typically
very good for dimensions below 10, and reasonable for dimensions up to 20; however,
for hundreds of dimensions kd-trees are often impractical.

A number of modifications of the kd-tree scheme have been aimed at reducing the
lookup time. For the classification scenario, a method has been proposed in [75] for
NN classification, using a data structure similar to the kd-trees but with overlapping
partitions; the insight of that approach is that in order to predict the majority vote
among the NN it may not be necessary to explicitly retrieve the neighbors themselves.
In a more general setting, a number of modifications have been proposed that change
the order in which the tree is traversed [10] or randomization by early pruning [4].

We now turn to another approach to approximate similarity search, that is prov-
ably efficient even in very high dimensional spaces and that has seen a lot of attention
in the recent years. Besides its utility for the search problems we will encounter, this
approach has provided inspiration to some of the central ideas in this thesis.

2.4.2 Locality sensitive hashing

LSH [65, 52] is a randomized hashing scheme, developed with the primary goal of
ε-R neighbor search. The main building block of LSH is a family of locality sensitive
functions. A family H of functions h : X → {0, 1} is (p1, p2, r, R)-sensitive if, for any
x,y ∈ X ,

Pr
h∼U [H]

(h(x) = h(y) | ‖x− y‖ ≤ r) ≥ p1, (2.13)

Pr
h∼U [H]

(h(x) = h(y) | ‖x− y‖ ≥ R) ≤ p2. (2.14)

The probabilities are over a random choice of h ∈ H; more precisely, the functions
are assumed to be parametrized with a bounded range of parameter values, and the
notation U [H] denotes uniform sampling of those values. A family H is of course
useful only when r < R, and when there is a gap between p1 and p2, i.e. when
p1 > p2. This notion of a gap is very important, and will inspire our approach to
learning similarity.

Algorithm 3 gives a concise description of the LSH construction algorithm for a
particularly simple case, when the distance of interest is L1. The family H in this
case contains axis-parallel stumps, i.e. a value of an h ∈ H is obtained by taking a
single dimension d ∈ {1, . . . , dim(X )} and thresholding it with some T :

hLSH =

{
1 if xd ≤ T,

0 otherwise.
(2.15)

An LSH function g : X → {0, 1}k is formed by independently k function h1, . . . , hk ∈
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H (which in this case means uniform sampling of a dimension d and a threshold T
on that dimension). Applied on an example x ∈ X , it produces a k-bit hash key

g(x) = [h1(x), . . . , hk(x)].

This process is repeated l times and produces l independently constructed hash func-
tions g1, . . . , gl. The available reference (training) data X are indexed by each one of
the l hash functions, producing l hash tables.

Algorithm 3 LSH construction (from [52])

Given: Data set X = [x1,xN ], xi ∈ Rdim(X ).
Given: Number of bits k, number of tables l.
Output: A set of
1: for all j = 1, . . . , l do
2: for all i = 1, . . . , k do
3: Randomly (uniformly) draw d ∈ {1, . . . , dim(X )}.
4: Randomly (uniformly) draw min{x(d)} ≤ v ≤ max{x(d)}.
5: Let hj

i be the function X → {0, 1} defined by

hj
i (x) =

{
1 if x(d) ≤ v,

0 otherwise.

6: The j-th LSH function is gj = [hj
1, . . . , h

j
k].

Once the LSH data structure has been constructed it can be used to perform
a very efficient search for approximate neighbors, in the following way. When a
query x0 arrives, we compute its key for each hash table j, and record the examples
C={xl

1, . . . ,x
l
nl
} resulting from the lookup with that key. In other words, we find the

training examples (if there any) that fell in the same “bucket” of the l-th hash table
to which x0 would fall. These l lookup operations produce a set of candidate matches,
C =

⋃l
j=1 Cj. If this set is empty, the algorithm reports that and stops. Otherwise,

the distances between the candidate matches and x0 are explicitly evaluated, and the
examples that match the search criteria, i.e. that are closer to x0 than (1 + ε)R, are
reported.5 This is illustrated in Figure 2-3.

LSH is considered to fail on a query x0 if there exists at least one R-neighbor of
x0 in X, but the algorithm fails to find any (1 + ε)R-neighbor; any other outcome
it’s a success. It was shown in [65, 52] that the probability of success can be made
arbitrarily high by suitable choice of k and l; at the same time, there is a trade-off
between this probability and the expected running time, which is dominated by the
explicit distance calculations for the candidate set C.

5The roles of r and R seem somewhat arbitrary: one could ostensibly define R to be the desired
distance and r to be R/(1 + ε). However, the actual values are important since they determine p1

and p2. They also define the event of success: if there are no points at distance r but there exists a
point at distance R, the algorithm is not required to find it.
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Figure 2-3: An illustration of LSH lookup. Left and center: two LSH tables with
k = 4 bits based on axis-parallel stumps (assigning zero if a point falls to the left or
below the threshold). The circle shows a query point, with the value of its hash key
in each table. Right: the union of the two buckets is shaded. Points in the candidate
set C shown enlarged; only these candidates are explicitly compared to the query.

The analysis of LSH in [52] is based on the following concept of unary encoding,
which we describe below since it is relevant to our task as well. Suppose that all
components of all the examples in a given data set are integers, and that the values
of dimension d for all examples lie in between 0 and Ud. This does not cause loss of
generality since one can always preprocess any finite data set represented with finite
precision to adhere to these assumptions, by shifting and scaling the data. For each
dimension d of X , we write out Ud bits u1

d, . . . , u
Ud
d , where

uj
d ,

{
0 if x(d) < j,

1 if x(d) >= j.
(2.16)

The unary encoding of x is obtained by concatenating these bits for all the dimensions.
For example, suppose X has two dimensions, and the span of the dimensions is 0, . . . , 4
and 0, . . . , 7 respectively (we are following the assumption above according to which
the values are all integers). Then, the unary encoding for the example [2, 4] will be

[ 1, 1, 0, 0︸ ︷︷ ︸
1st dimension

, 1, 1, 1, 1, 0, 0, 0︸ ︷︷ ︸
2nd dimension

].

The unary code has length
∑

d Ud, and is of course extremely wasteful (see Ta-
ble 3.2 for some examples of unary encoding lengths for real data.) Fortunately, one
does not need to actually compute the code in order to use LSH.

A later version of LSH [31] expands the locality-sensitive family defined in (2.13)
to include arbitrary linear projections (namely, dot products with random vectors in
X ), and uses quantization into more than two values. That is, the line f(x) = x · r,
where r is the random vector defining the projection f , is divided into m regions, and
the hash key is formed by concatenating k numbers from 1 to m, rather than bits.
This version of the scheme, called E2LSH, extends the guarantees of locality-similar
hashing to Lp norms for 1 ≤ p ≤ 2; the basic underlying principles, including the
exploitation of the gap between p1 − p2, remain the same. Besides having appealing
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theoretical properties, LSH has already been successful in practical applications, in
particular in computer vision problems where the ability to do fast lookup in large
databases is crucial. Some examples include [49, 55, 51] and also the work in [105]
and [93], which is part of this thesis.

We can now make a connection between the idea of LSH and the learning frame-
work developed in the next chapter. Each bit in the unary encoding is a feature of the
input, and LSH is randomly selecting a set of kl (not necessarily distinct) features.
This works since that specific family of features is locality-sensitive, with respect to
L1 norm. However, no such guarantee exists for general similarity concepts, that may
not adhere to any metric. Moreover, in general the similarity is not known analyti-
cally, and therefore it is not possible to analytically design an LSH family and prove
its properties. We therefore are interested in a method that would learn a set of
locality-sensitive functions entirely from data.6

Consequently, we will have to change the notion of locality-sensitive set of func-
tions from (2.13) to the following definition of a similarity sensitive family. Let p1, p2

be probability values and S be a similarity (equivalence) concept. A family H of
functions h : X → {0, 1} is (p1, p2,S)-sensitive if, for any h ∈ H,

Pr
x,y∼ p(X )2

(h(x) = h(y) | S(x,y) = +1) ≥ p1, (2.17)

Pr
x,y∼ p(X )2

(h(x) = h(y) | S(x,y) = −1) ≤ p2. (2.18)

An important difference between this definition and (2.13) is in the placement of
qualifiers. In (2.13) it is assumed that the data are fixed, and that the distance of
interest is Lp. In our case, the roles are interchanged: we are interested in finding
deterministic functions that are expected (i.e. have high probability) to be sensitive
to similarity under S for a random input. Thus, the probabilities in (2.17) are taken
with respect to randomly drawn data x,y, and not random functions.

2.5 Summary

In this chapter we have reviewed the main example-based methods for regression
and estimation, in the context of which we develop our learning approach. The
central computational task in these methods is the search in a labeled database for
examples similar to a query. For cases where the similarity underlying this task is well
represented by an analytically defined distance, there exist methods that allow for
efficient solution, exact or approximate. However, the nature of similarity underlying
this task is often defined by the task at hand, lacks known analytical form, and it is
often beneficial to learn it from examples. We have discussed a number of approaches
that have been proposed to this and related problem, some of which have inspired
the work presented in this thesis. In the next chapter we develop a new approach

6As in any learning approach, we of course will also use certain amount of information not
contained in the data per se, such as a hypothesis regarding the suitable parametric form of the
projections.
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that combines some of the ideas behind LSH, similarity classification and learning
embeddings in one learning framework.
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Chapter 3

Learning embeddings that reflect
similarity

This chapter describes a family of algorithms for learning an embedding

H : X → [α1h1(x), . . . , αMhM(x)]

that is faithful to a task-specific similarity. This means that the lower the distance
‖H(x) − H(y)‖ is, the higher is the probability that S(x,y) = +1. Consequently,
there exists a range of values of R such that if S(x,y) = +1 then with high probability
‖H(x)−H(y)‖ < R, and if S(x,y) = −1 then with high probability ‖H(x)−H(y)‖ >
R. For a practical application, such a relationship means that the task of matching a
query to a database may be reduced to the task of search for K nearest neighbors or for
R-neighbors of the query, embedded in H, among the database examples embedded
in the same way.

The order in which the algorithms are presented corresponds to the evolution
of this general approach, which in turn corresponds to the trade-off between the
simplicity and cost of training and the flexibility, and accuracy, of the embedding. The
similarity sensitive coding algorithm in Section 3.2 has evolved from the parameter
sensitive hashing (PSH) published in [105]. It can be seen as an improvement of
the LSH structure for a similarity measure which is not necessarily identical to an
Lp norm in X . The extension using AdaBoost (Section 3.3), published in [93] has
considerably higher training complexity, but may greatly improve the efficiency of the
embedding. However, it is still limited to a certain family of L1-like similarities. This
limitation is reduced by the third algorithm, BoostPro, presented in Section 3.4.

The embedding algorithms are designed to learn from examples of similar and
dissimilar pairs of examples. Moreover, we extend the algorithms, subject to certain
assumptions, to the semi-supervised case when only examples of similar pairs, plus
some unlabeled data points, are available.
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3.1 Preliminaries

The general form of the embedding constructed by our algorithms is

H(x) = [α1h1(x), . . . , αMhM(x)] , (3.1)

where each dimension m is produced by a function hm, parametrized by a projection
f : X → R and a threshold T ∈ R:

h(x; f, T ) =

{
1 if f(x) ≤ T,

0 if f(x) > T.
(3.2)

We will simply write h(x) when the parametrization is clear from context. This
form of H is motivated by two considerations. One is the simplicity of learning: the
“modular” form of H affords simple, greedy algorithms. The other is the computa-
tional complexity of the search: the L1 distance in H is in fact a Hamming distance
(perhaps weighted by αs), and its calculation can be implemented with particular
efficiency.

A function h in (3.2) naturally defines a classifier c : X 2 → {±1} on pairs of exam-
ples. We will refer to such c as simple classifier, and omit writing the parametrization
unless necessary:

c(x,y; f, T ) =

{
+1 if h(x; f, T ) = h(y; f, T ),

−1 otherwise.
(3.3)

3.1.1 Threshold evaluation procedure

The embedding algorithms in this chapter differ in the form of projections f used to
derive the hs, and in the way the hs are chosen. One element they all share is a pro-
cedure for evaluating, for a fixed f , the empirical performance of the simple classifiers
that correspond to a set of thresholds. This procedure is given in Algorithm 4. We
assume that each training pair (xi,1,xi,2) is assigned a non-negative weight wi; when
an algorithm involves no such weights they can be simply assumed to be all equal.

Intuitively, the motivation behind the algorithm is as follows. Our goal is to
estimate, for a given T , the expected true positive rate

TP , Ex,y|S(x,y)=+1 [Pr(h(x) = h(y))] (3.4)

and the true false positive rate

FP , Ex,y|S(x,y)=−1 [Pr(h(x) = h(y))] , (3.5)

with the expectations taken with respect to the joint distribution of example pairs
p(x,y). In the context of retrieval, when we are conceptually considering pairing
the query with every example in the database, this means the product of marginal
distributions p(x)p(y).
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As is normally the case in machine learning, we can only estimate these quantities
from the available examples of similar and dissimilar pairs.1 The straightforward
approach that we will adopt for now, is to estimate TP by the percentage of similar
pairs that are not separated by T , i.e. pairs for which the both values fall on the same
side of T .2 Similarly, FP is estimated by measuring the percentage of dissimilar pairs
not separated by T .

An implicit assumption in this estimation is that the training pairs are distributed
identically and independently according to a probability law that generates the data,
and therefore are equally representative. Instead, it is possible that each pair have a
weight, which may be interpreted as the probability of selecting that pair; such is the
situation in the context of boosting algorithms later in this chapter. The weights are
easily incorporated into our empirical estimation approach: instead of the percentage
of pairs separated by T , we will calculate their cumulative weight.

Algorithm 4 describes in pseudocode an efficient procedure for such estimation of
the TP and FP rates for all feasible thresholds. The technique used to do this in the
single pass is simple: when we form the sorted array of projection values, we record
for each element p = 1, 2 of a pair (x

(1)
i ,x

(2)
i ) the direction di,p to its counterpart

within the array; e.g., if f(x
(1)
i ) > f(x

(1)
i ) then, after sorting by the values of f(x),

x
(1)
i will appear after x

(2)
i . Traversing the array from the lowest to the highest value

we maintain and update the cumulative weights (which is equivalent to counts, when
weights are all equal) of positive and negative pairs separated by the current threshold.
This is illustrated with Figure 3-1 that shows the estimated TP and FP rates for a
set of five similar and five dissimilar pairs.

The set of thresholds to consider is determined by the number of unique values
among the projections of the data: any two thresholds for which no data point is
projected between them are not distinguishable by the algorithm. Therefore, with
N training pairs we have n ≤ 2N + 1 thresholds. The sorting step dominates the
complexity, since after the values vi,p are sorted, all thresholds are evaluated in a
single pass over the sorted 2N records. Thus the running time of the algorithm is
O (N log N).

The first algorithm we propose in this thesis is the similarity sensitive coding
(SSC). It uses the procedure presented above to construct an embedding of the data
into a binary space, selecting the dimensions of the embedding independently based
on the estimated gap.

3.2 Similarity sensitive coding

The idea underlying the SSC algorithm is to construct an embedding similar to the
one achieved in LSH, but to explicitly maximize its sensitivity to the desired similarity

1In a notation shortcut we will henceforth write TP and FP to mean these estimates, rather than
the unknown true values.

2Which side is not important, as long as both values are on the same side; consequently, note
that h is not a classifier, while c is.
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Figure 3-1: Illustration of the operation of Algorithm 4. Similar (top) and dissimilar
(bottom) pairs are connected by dashed lines, and are assumed to all have equal
weights of 1/10. All 21 distinct thresholds are shown; the TP (top) and FP (bottom)
rates are shown only for some. The maximal attainable gap here is .4 (.e.g, with the
ninth threshold from the left).

measure. The implicit assumption here is that the L1 distance in X provides a
reasonable foundation for modeling S, that is in need of the following improvements:

• Some dimensions are more relevant to determining similarity than others, and
thus should affect the distance more heavily.

• For a given dimension, some thresholds are more useful than others.

A pseudocode description for SSC is given in Algorithm 5. Recall the discussion
in Section 2.4.2 on the role of the gap between the TP and FP rates of a binary
function. SSC takes a parameter G that specifies a minimal acceptable value (lower
bound) of this gap, and extracts, for each dimension of the data, all the thresholds
for which the estimated TP-FP gap meets this bound.

An earlier version of this algorithm was published in [105], under the name of
parameter sensitive hashing (PSH). The original name reflected the coupling of rep-
resentation (a bit vector based on a set of axis-parallel stumps) and the LSH-based
search, and also the implicit notion of similarity present only through the specifica-
tion of pose parameters. An additional difference is in the criterion for selecting the
embedding bits: in PSH, the criterion is formulated in terms of bounding the TP
and FP rates separately rather than bounding the gap. Numerous experiments have
confirmed since that the gap-based formulation is not only better justified theoreti-
cally but also superior in practice. Thus, SSC can be seen as a generalization and
improvement of the original PSH algorithm.

In a practical implementation of Algorithm 5, one faces a number of design decision
that may have a dramatic effect on the performance. Below we discuss these issues in
the context of experimental evaluation on the UCI/Delve data sets. The focus here is
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Algorithm 4 ThresholdRate(P, f, W ): Evaluation of projection thresholds given
similarity-labeled examples.

Given: Set of labeled pairs P = {(x(1)
i ,x

(2)
i , li)}N

i=1 ⊂ X 2 × {±1},
where li = S

(
x

(1)
i ,x

(2)
i

)
.

Given: A projection function f : X → R.
Given: Weights W = [w1, . . . , wN ].
Output: Set of triples {〈Tt, TPt, FPt〉}n

t=1, where TPt and FPt are the estimated TP
and FP rates for threshold Tt.

1: Let vi,p := f
(
x

(p)
i

)
for i = 1, . . . , N and p = 1, 2.

2: Let u1 < . . . < un−1 be the n− 1 unique values of {vi,p}.
3: Let ∆j := (uj+1 − uj)/2, for j = 1, . . . , n− 2.
4: Let T1 := u1 −∆1, and Tj+1 := uj + ∆j, for j = 1, . . . , n− 1.
5: for all i = 1, . . . , N do

6: Let di,1 :=

{
+1 if vi,1 ≤ vi,2,

−1 if vi,1 > vi,2.

7: Let di,2 :=

{
+1 if vi,1 > vi,2,

−1 if vi,1 ≤ vi,2.

8: Sort records {〈vi,p, di,p, wi, li〉}i=1,...,N, p=1,2 by the values of vi,p.
9: Normalize wi so that

∑
li=+1 wi = 1,

∑
li=−1 wi = 1.

10: for all j = 1, . . . , t do
11: Let ij := max{i : vi ≤ Tj}
12: TPj := 1−

∑
i≤ij ,li=+1 widi.

13: FPj := 1−
∑

i≤ij ,li=−1 widi.

on questions arising directly in the implementation of SSC. Other important issues,
such as how the similarity labels are obtained, are discussed elsewhere.

3.2.1 Benchmark data sets

Throughout this chapter we will refer to experiments on a number of data sets.
The learning problems associated with these data sets are of the type for which we
expect our algorithms to be particularly useful: regression or classification with a
large number of classes.

The purpose of these experiments is two-fold. One is to illustrate the principles
underlying the new algorithms. The data sets vary in size and difficulty, but most
of them are small enough (both in number of examples and in dimension) to allow a
rather thorough examination of the effect of various settings.

The other purpose is to evaluate the impact of our algorithms outside of the
computer vision domain, on “generic” data sets, familiar to the machine learning
community from their use as benchmarks. From a practitioner’s perspective, this
means evaluating what does one gain, if at all, from using a model of similarity
learned for the task at hand, in comparison to the standard use of distances in the
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Algorithm 5 SSC(P, g): Similarity sensitive coding by selecting thresholds on orig-
inal dimensions.

Given: Set of similarity-labeled pairs P = {(x(1)
i ,x

(2)
i ), li}N

i=1 ⊂ X 2 × {±1},
where li = S

(
x

(1)
i ,x

(2)
i

)
.

Given: Lower bound on TP-FP gap G ∈ (0, 1).
Output: Embedding HSSC : X → {0, 1}M (M to be determined by the algorithm).
1: Let M := 0.
2: Assign equal weights W (i) = 1/N to all N pairs in P .
3: for all d = 1, . . . , dim(X ) do
4: Let f(x) ≡ x(d).
5: Apply ThresholdRate(P, f, W ) to obtain a set of n thresholds {T d

t }n
t=1 and

associated TP and FP rates {TPd
t }, {FPd

t }.
6: for all t = 1, . . . , n do
7: if TPd

t − FPd
t ≥ G then

8: Let M := M + 1.
9: hM(x) , h(x; f, T d

t , 1) {as in (3.2).}
10: Let HSSC , x → [h1(x), . . . , hM(x)]

data space. Depending on the precise goals of an application, this effect can be
measured in terms of ROC curve behavior, or in terms of the regression/classification
error obtained by an example-based method that uses the similarity model.

The data sets are publicly available and come from a variety of domains. Below
we give a brief description of each set; the important statistics are summarized in
Table 3.1. Recall that r (given in the last column of Table 3.1) is the threshold used
to define a label-induced similarity in our experiments, as explained in Section 2.2.1,
on the distance in the labels, such that DY(yi, yj) ≤ r ⇔ S(xi,xj) = +1. For
classification problems, a natural value of r is 0, i.e. two examples are similar if and
only if they belong to the same class.

For regression the choice should be determined by the desired sensitivity of the
estimator and by the effect on the resulting similarity model. In our experiments,
we have set r based on a “rule of thumb” defined by two criteria: choose a value
that does not exceed half of the mean error obtainable by the standard (published)
regression algorithms, and that keeps the proportion of similar pairs out of all pairs
below 10% (these two criteria “pull” the value of r in different directions.) A more
thorough approach would involve optimizing the value of r by cross-validation or
holdout procedure: repeating the entire experiment of learning an embedding and
evaluating the NN estimator on this embedding, for a range of values of r. Such
procedure would likely improve the results.

Auto-MPG Predicting mileage per gallon of fuel from various mechanical charac-
teristics of a vehicle.

52



Name Source Dimension # of examples Task Label span r
MPG [16] 7 392 Regression 37.6 1
CPU [1] 21 8192 Regression 99.0 1
Housing [16] 13 506 Regression 45.0 1
Abalone [16] 7 4177 Regression 28.0 1
Census [1] 8 22784 Regression 5×105 500
Letter [1] 16 20000 Classification 1,. . . 26 0
Isolet [16] 617 3899 Classification 1,. . . 26 0

Table 3.1: Summary of the data sets used in the evaluation.

Machine CPU Regression: predicting time spent by a program in user CPU mode
from process statistics: number of system calls, page faults, I/O etc.

Boston Housing Regression: predicting median value of housing in Boston neigh-
borhoods as a function of various demographic and economic parameters.

Abalone Regression: predicting the age of abalone from physical measurements.

US Census Regression: predicting median price of housing based on neighborhood
statistics.

Letter Classification of written letters from a set of image statistics; 26 classes (one
per letter.)

Isolet Classification of spoken isolated letters (by a number of speakers) from a set
of features of the recorded acoustic signal. There are 26 classes (one per letter.) Only
half of the available 7797 examples were used to speed up experiments.

3.2.2 Performance and analysis of SSC

We have evaluated the performance of SSC on the seven data sets introduced in
Section 3.2.1. The results were obtained using ten-fold cross-validation: each data
set was randomly divided into ten disjoint parts roughly equal in size, and each part
was used as a test set while the remaining 9/10 of the data served as training set. All
the data were encoded using the SSC embedding learned on that training set, and
then the prediction error was measured for the examples in the test set using the L1

distance in the embedding space (with SSC embedding this is the same as Hamming
distance) to determine similarity.

Two parameters have to be set in this process. One is the minimal gap G. We
chose it from a range of values between 0.01 and 0.25 by leave-one-out cross valida-
tion on training data in each experiment. For each data set and in each “fold” of
the ten-fold cross validation, we encode the training data (9/10 of the total data)
using SSC with each gap value under consideration, and compute the mean absolute
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training error of example-based estimation with that encoding. That is, we predict
the value of the label for each training point using its neighbors (but not itself) in
the embedded training set. We then select the gap value which produced the lowest
training error, and use it to compute the testing error in that fold of cross validation.
In our experiments we found that the gap value resulting from this tuning procedure
is very stable, and typically is the same for most of the ten folds in any data set;
these typical values are shown in the second to last column of Table 3.2.

The second parameter is the K (or R) in the eventual regression/classification
algorithm. Virtually all published results on these data sets refer to K-NN algorithms,
hence we also used K-NN, choosing K from a range between 1 and 300 by a procedure
identical to the one for setting g.3

As a baseline, we compare the results obtained with SSC to those obtained with
the standard nearest-neighbor regression estimation, using L1 distance between the
examples as a proxy for similarity. Tables 3.3 and 3.5 show the results of this compar-
ison for regression databases. In terms of the mean absolute error (MAE), there is a
general trend of SSC outperforming the L1. On two datasets the differences between
the means are farther than two standard deviations apart, while for others the differ-
ence is less significant. In terms of the mean squared error, the two methods achieve
qualitatively similar performances. This suggests that the error with SSC is often
smaller than that with L1, but occasionally it becomes very high due to a spurious
match. The performance of SSC on classification data sets, compared to the L1, is
similarly good, as evident from Table 3.4.

As mentioned in Chapter 1, another measure of the performance of a similarity
model is its direct effect on retrieval accuracy. Figures 3-6-3-12 show the plots of the
ROC curves for L1 and SSC on the seven benchmark datasets. In six out of seven
datasets, the curves for SSC (blue, dashed) are clearly above that for L1 (black,
dotted). The average gain in the area under curve (AUC) is between .05 and .1. The
only data set in which no gain was recorded is Isolet. The dimension of that data set
is significantly higher than the dimensions of the remaining six, and we believe that
this fact partially accounts for the difficulty of SSC. There is a very high number
of thresholds in general for this data set (i.e., the length of the unary encoding is
very high, see Table 3.2) and of the thresholds that attain the desired gap value,
in particular. Thus, in training SSC, we randomly selected 4,000 out of more than
250,000 thresholds with the gap above 0.1. That step, dictated by computational
necessity, may have removed significant some useful thresholds from the code and
hampered its retrieval accuracy.

Distribution of the TP-FP gap

An immediate effect of the value of G is on the value M , the number of selected bits.
Setting G too high will result in failure to construct an embedding; setting it too high
will result in an embedding with a huge number of bits, not only not efficient but also

3More precisely, we optimized g and K jointly, by evaluating on the training data a range of K
for each embedding obtained with a particular g, and choosing the “winning” combination for each
of the ten cross-validation folds.
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impractical due to the required storage space. Figure 3-2 shows, for four datasets,
how the number of accepted thresholds (pooled over all dimensions) declines as the
lower bound on the gap increases.

(a) Letter, dimension 4 (b) CPU, dimension 11

(c) Boston housing, dimension 10 (d) Auto-MPG, dimension 3

Figure 3-2: The distribution of TP-FP gap values for four data sets (pooled over all
dimensions.)

Figure 3-3 shows some typical examples of the behavior of TP and FP rates and
the gap between them (for the same cases used in Figure 3-2.) As may be expected,
the general trend is that a threshold with higher TP rate typically will also have
a higher FP. This is because thresholds with high TP rates simply lie close to the
median of the projection (dimension) values, and thus are likely to separate many
pairs–similar and dissimilar. In that way, the selection procedure is guided by the
statistics of the data.

One other observation from Figure 3-3 is that the false positive rates appear to
be bounded from below at around 1/2. We will discuss this phenomenon and its
implications in Section 3.2.4.
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(a) Letter, dimension 4 (b) CPU, dimension 11

(c) Boston housing, dimension 10 (d) Auto-MPG, dimension 3

Figure 3-3: The distribution of TP and FP rates for a single dimension, for four data
sets. Solid (red): TP; dashed (blue): FP; dotted (black): the gap.

3.2.3 The coding perspective on SSC

From a machine learning standpoint, SSC can be seen as a mechanism of directly
selecting features from a very large but finite pool, consisting of all the distinct
functions h (i.e., all the bits in the unary encoding of the data). In terms customary
in machine learning literature, this is a filter selector: the criteria for selecting or
rejecting a feature are based on the feature’s parameters–the performance of the
associated simple classifier. That is in contrast to wrapper selection, whereby the
features are evaluated by “plugging them in” to the classifier.4

The embedding HSSC can be also interpreted as encoding examples in X with an
M -bit code, which is constructed with the objective to retain maximum information
relevant to similarity between examples. (A similar interpretation of similarity fea-

4The greedy algorithm presented in Section 3.3 is an example of a wrapper feature selection.
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Data set Optimized Nominal Unary M (gap G) Compression
MPG 39 152 4672 371 ± 7 .1 0.9206
CPU 220 625 7136969 6864 ± 308 .15 0.9990
Housing 91 385 4612045 673 ± 57 .15 0.9999
Abalone 64 224 12640 3007 ± 25 .1 0.7621
Census 107 256 58564303 3438 ± 1481 .1 0.9999
Letter 64 128 240 37 ± 0 .1 0.8458
Isolet 6844 19744 5096373 178116 ± 6948 .15 0.9651

Table 3.2: Comparison of the SSC length M to original representation. Optimized:
number of bits necessary to encode the unique values. Nominal: number of bits
necessary to encode N × dim(X ) values in a N -point data set with no compression.
Unary: length of unary encoding after conversion of the data to integers (see foot-
note 5). Compression: the percentage of the unary encoding bits effectively eliminated
by SSC.

tures has been discussed in [97], in the context of binary classification problems.) It is
interesting to compare M to the length of the original representation. In terms of the
“nominal” number of dimensions, M is typically higher(as evident in Table 3.2) than
dim(X ). However, the effective representation that SSC is implicitly compressing
is the unary encoding (see discussion in Section 2.4.2.) With respect to the unary
encoding,5 SSC is achieving considerable compression, as shown in the right column
of Table 3.2. The numbers refer to the percentage of unary encoding bits that are left
out of the SSC encoding (i.e., 90% compression means 90% reduction in encoding
length.) The selection procedure in SSC can therefore be seen as a dimensionality
reduction in the unary encoding space, with the objective to preserve the dimensions
most relevant to similarity judgments.

Besides examining the number of bits in the code, of course, we must also look at
the redundancy. It should come as no surprise that the code obtained with SSC is
terribly redundant. Figure 3-4 visualizes the covariance matrices for the SSC bits for
three of the data sets (these are typical covariance matrices), with red corresponding
to higher values. One source for this redundancy is trivial: if two thresholds T1 and
T2 are close (relative to the span of f(x)), the values of h(x; f, T1) and h(x; f, T2)
will be highly correlated. A less trivial source of correlation is the structure in the
data, which may include various dependencies between values and carry on to the
thresholded projections.

3.2.4 Semi-supervised learning

In Section 3.2.2 we noted that the false positive rate of the stumps in our experiments
appears to be bounded from below by 1/2. This has the following explanation. Sup-
pose that similarity is a very rare event, in the sense that for two random examples

5Recall that for integers, the length of the unary encoding is simply the span of the values. For a
set of values v1, . . . , vn some of which are non-integers, it was calculated as max{vi} · 1/ mini,j{|vi−
vj |}.
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(a) CPU (b) Letter (c) Housing

Figure 3-4: Covariances of the SSC bits for three of the data sets. Red values are
high, blue values are low. The large blocks correspond to the original dimensions of
the data; the peaks of covariance values are around the medians of projections. Refer
to Tables 3.1 and 3.2 for details about the data sets and the embeddings.

drawn from the domain at hand, the probability of them being similar is low. This is
certainly the case for many interesting applications in computer vision. For instance,
two randomly selected images of people are unlikely to contain similar articulated
poses, and two regions randomly extracted from natural images are unlikely to be
visually similar.6 This is in fact the case in the UCI/Delve data sets used in our ex-
periments; the average similarity rate (the probability of a random pair to be similar)
ranges from 0.03 to 0.1 (with the exception of Abalone for which it is 0.3.)

Let us consider the distribution of the values of f(x) for similar and dissimilar
pairs of examples in X . The underlying assumption of our approach is that, if f is
a “useful” projection, there is a structure in the distribution of these values, namely,
that similar pairs tend to have similar values of f . On the other hand, under our
assumption that the similarity rate is significantly lower than 1/2, the set of all
dissimilar pairs is close to simply the set of all pairs in X 2. That means that

p(f(x1), f(x2) | S(x1,x2) = −1) ≈ p(f(x1), f(x2)) = p(f(x1))p(f(x2)), (3.6)

i.e. the joint distribution of the pairs of projections (f(x), f(y)) for S(x,y) = −1 is
close to the unconditional joint distribution over all pairs.7 (The second equality is
due to the assumption that examples are provided to us i.i.d.)

We can then model the process that generates negative examples for similarity
learning by the following trivial procedure: take a random pair of examples and label
it as dissimilar. This of course will produce some noise in the labels - at the rate
equal to similarity rate of the data set. In fact the natural procedure to create a set

6This may not be true if the notion of similarity is defined coarsely, e.g. if any two people standing
upright are considered in similar pose. But we will assume that the similarity is sufficiently fine, as
seems to be the case in most interesting problems.

7It should be clear that we are referring to distribution of f(x), not that of x.
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of dissimilar pairs, and the one we used in all the experiments reported in this thesis,
is in fact almost as described above, with the additional pass to remove any spurious
similar pairs.

The consequence of (3.6) is that, for a low similarity rate ρ, the FP rate of a
feature h(x; f, T ) is bounded from below by a value close to 1/2. The following proof
has been given in [70], and is augmented here to take into account the correction by ρ.
Suppose that we draw a random pair of examples (x1,x2) from the data distribution
p(x) and project them using f . Let πT be the probability mass of f(x) below the
threshold T :

πT = Pr(f(x) ≤ T )

Since the randomly constructed pair (x1,x2) is assumed to be dissimilar, a “bad”
event, from the perspective of classifying similarity, occurs when f(x1) and f(x2)
are on the same side of T on the line f(x). The probability of such an event is
π2

T +(1−πT )2. By definition of ρ the random pair (x1,x2) is dissimilar with probability
1− ρ; therefore, the expected FP rate of h(x; f, T ) is

FP(f, T ) = (1− ρ)
(
π2

T + (1− πT )2
)
. (3.7)

Note that πT (cdf of a scalar random variable) can be easily and robustly estimated
from the data, even with a relatively modest number of examples. This means that
in order to estimate the FP rate of a threshold, we do not need explicit examples
of dissimilar pairs if we have access to a set of unlabeled (single, not paired) data
points. We will refer to such a setup as semi-supervised.8 The threshold evaluation
procedure in Algorithm 4 is easily modified for the semi-supervised case, as described
in Algorithm 6.

In the remainder of this thesis, we will consider both supervised and semi-supervised
setup when discussing the embedding algorithms.

3.2.5 Limitations of SSC

In the experiments described above, we have seen that SSC is able to improve over
the “off-the-shelf” distance measure, both in terms of the prediction accuracy with
example-based methods that rely on it and in terms of the accuracy of similarity
detection, as expressed in the ROC curves. However, we also have pointed to a
number of problems with the embeddings constructed with SSC. These problems are
rooted in two main sources:

Constrained geometry SSC provides a refinement on the L1 distance better
tuned to the target similarity, but the reliance on axis-parallel projections limits
the resulting similarity concept to the class of hyper-rectangles in the unary encoding
space.

8This may seem somewhat different from the common use of the term “semi-supervised” to mean
that only part of the available data is labeled. To reconcile that with our use, consider that with N
examples, we essentially operate on the set of N(N − 1)/2 pairs, only a small fraction of which are
labeled (all positive), and the rest are given implicitly with no labels.
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Algorithm 6 Semi-supervised procedure for evaluating threshold. See Section 3.2.4
for details.
Given: Data set X = [x1, . . . ,xN ] ⊂ X .

Given: Set of similar pairs P+ = {
(
x

(1)
i ,x

(2)
i

)
}Np

i=1} ⊂ X 2.

Given: Projection function f : X → R
Given: Weights on pairs W = [w1, . . . , wNp ], such that

∑
i wi = 1.

Given: Weights on points S = [s1, . . . , sN ], such that
∑

j sj = 1.
Output: Set of triples {〈Tt, TPt, FPt〉}n

t=1, where TPi and FPi are the estimated TP
and FP rates for threshold T .

1: Let u1 < . . . < un−1 be the unique values of f{xi}N
i=1.

2: Set thresholds T1 < . . . < Tn based on {ui}, like in Algorithm 4.
3: for all i = 1, . . . , N do
4: Obtain list of records {〈vi,p, di,p, wi〉}i=1,...,Np, p=1,2 sorted by vi,p, like in Algo-

rithm 4, but using only similar pairs in P+

5: for all j = 1, . . . , n do
6: Let ij := max{i : vi ≤ Tj}
7: TPj := 1−

∑
i≤ij

widi.

8: Let πj =
∑

i: f(xi)≤Tj
si.

9: FPj := π2
j + (1− πj)

2.

Ignoring dependencies Treating features h individually leads to redundancy in
the embedding, sometimes at the cost of performance. Although some ad-hoc methods
for alleviating this (such as checking for correlation with already selected thresholds)
may help, we would like to have a more direct method to limit unnecessary depen-
dencies and to optimize the entire embedding rather than individual dimensions.

These issues are addressed in the improved versions of this basic similarity embed-
ding algorithm, which we present next. The first of them enhances SSC by replacing
independent selection of embedding bits with a greedy, sequential optimization pro-
cedure based on boosting.

3.3 Ensemble embedding with AdaBoost

Recall that for each thresholded projection h (3.2) there is a dual classifier of example
pairs c (3.3). Let us now consider the M -bit SSC embedding H = [h1, . . . , hM ],
and suppose that for some x,y ∈ X the distance ‖H(x) − H(y)‖ = R. Since each
embedding dimension contributes either 0 or 1 to the distance, this means that values
at exactly R positions in the two embeddings are different. Consequently, exactly R
associated classifiers would assign Ŝ(x,y) = −1. Generally, we can write

‖H(x)−H(y)‖ =
M

2
−

M∑
m=1

1

2
cm(x,y), (3.8)

so that the distance assumes values between 0 and M .
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In the more general form, the contribution of a thresholded projection hm to the
distance is weighted and is either 0 or αm. This corresponds to assigning a vote of
αm/2 to the classifier cm in (3.8). Together, the M thresholded projections form the
similarity classifier

C(x,y) = sgn

(
M∑

m=1

αmcm(x,y)

)
. (3.9)

This is an ensemble classifier.9 A feasible strategy for constructing an embedding H
is therefore to construct an ensemble C coupled with the threshold τ by a procedure
that minimizes the empirical risk on the training pairs. We will follow this strategy
and use the boosting approach [99, 23]. Boosting is essentially a procedure for greedy
assembly of C in a way that reduces the training error. It has also been shown to yield
excellent generalization performance. Before we describe how the boosting framework
can be applied in our task, we review it in the next section.

3.3.1 Boosting

We will follow the generalized view of AdaBoost, given in [100], since it will simplify
the transition to improved versions of our algorithm. Let X = x1, . . . ,xN be the N
training examples labeled by l1, . . . , lN ∈ {±1}. In boosting it is assumed that there
exists a weak learner that can, given a set of labeled training examples and a distri-
bution (set of non-negative weights that sum to one) W , obtain a weak hypothesis
c(x) whose training error on X, weighted by W , is better than chance (1/2). The
goal of boosting is to construct an ensemble classifier

H(x) = sgn

(
M∑

m=1

αmcm(x)

)
, (3.10)

that minimizes training error. Note that (3.10) implicitly assumes thresholding at zero
(i.e. classifying by a weighted majority). A different threshold may be introduced
post-training and set to reach the desirable ROC point.10

Finding the ensemble that attains the global minimum of training error is com-
putationally infeasible. Instead, AdaBoost gives an iterative greedy algorithm that
adds weak classifiers cm with an appropriate vote αm one at a time. Throughout
the iterations AdaBoost maintains a distribution W ; we will denote by Wm(i) the
weight on the i-th example before iteration m. The distribution is updated so that,
intuitively, examples classified correctly in an iteration have their weight reduced,
and those misclassified have their weight increased (thus “steering” the weak learner
towards themselves by increasing the cost of further misclassifying them).

The magnitude of change in iteration m is determined by the vote αm; the update

9Instead of thresholding the sum of votes at zero in (3.9), a different value of the threshold may
be introduced by adding a “dummy” classifier which always outputs, say, +1, and setting its vote
to the desired threshold value.

10Or, alternatively, by including a fixed-output weak classifier in the ensemble, similarly to the
“bias” input cell in neural networks.
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rule in AdaBoost is

Wm+1(i) := Wm(i) exp(−αmlmcm(xi)) / ZAB
m , (3.11)

with division by the normalization constant

ZAB
m ,

N∑
i=1

Wm(i) exp(−αmlmcm(xi)) (3.12)

ensuring that Wm+1 remains a distribution in the sense defined above.
In addition to ZAB

m , another key quantity in the analysis of boosting is the weighted
correlation of labels with predictions

rAB
m ,

N∑
i=1

Wm(i)licm(xi). (3.13)

It can be shown [100] that a reasonable objective of the weak learner at iteration m
is to maximize rAB

m . Furthermore, the training error of H after m iterations can be
shown to be bounded from above by

∏m
t=1 ZAB

t ; minimizing ZAB
m in each iteration is

therefore a reasonable objective of the greedy algorithm. Once the weak classifier cm

has been selected, ZAB
m is affected only by αm, so that this objective is translated to

setting α appropriately. When the range of cm is [−1, +1], the rule

αm :=
1

2
log

1 + rAB
m

1− rAB
m

(3.14)

can be shown to achieve that goal of minimizing ZAB
m [100]. In a more general frame-

work, the optimal α can be found by numerical optimization of (an easy procedure
since Z can be shown to be convex and have a unique minimum.)

3.3.2 Supervised boosted SSC

Algorithm 7 is a straightforward application of AdaBoost to the problem of classifying
pairs for similarity. Namely, the training examples in our case are pairs, and the weak
classifiers here are thresholded projections that assign a positive or negative labels to
a pair. The true label li of a pair (x

(1)
i ,x

(2)
i ) correspond to the underlying similarity

S(x
(1)
i ,x

(2)
i ).

To calculate the objective in iteration m, we collect the positive terms in (3.13),
TPj

d + W n − FPj
d, and the negative terms −(FPj

d + W p − TPj
d); summation of these

yields the expression in step 7 of Algorithm 7. The calculation of αm in step 9 is done
by minimizing the ZAB

m , following the bisection search procedure suggested in [100].11

11Briefly, we start with an initial guess for an interval that contains the optimal α, and evaluate
the derivative ∂Zm/∂αm at the endpoints as well as in the middle; since the derivative does not
change the sign, and we are looking for its single zero-crossing, we then repeat, recursively, on the
half of the interval that has opposing signs of ∂Zm/∂αm at its endpoints.
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Algorithm 7 Boosted SSC (supervised). Note: this is a direct application of the
AdaBoost algorithm.

Given: A set of pairs P{x(1)
i ,x

(2)
i }N

i=1, labeled by li = S(x
(1)
i ,x

(2)
i ).

Output: A set of functions hm : X → {0, αm}, m = 1, . . . ,M .
1: Set initial set of weights W1, w1(i) = 1/N .
2: for all m = 1, . . . ,M do
3: Let W p :=

∑
i:li=+1 Wm(i), W n :=

∑
i:li=−1 Wm(i).

4: for all d = 1, . . . , dim(X ) do
5: Let fd(x) ≡ x(d).

6: For each feasible threshold T j
d on fd, j = 1, . . . , nd, compute TPj

d and FPj
d

using ThresholdRate(P, fd, Wm).

7: Let r
(AB)
m (T j

d ) := 2(TPj
d − FPj

d) + W n −W p.

8: Select Tm := argmaxd,j r
(AB)
m (T j

d ).
9: Set αm to minimize Zm(α) (see text).

10: If αm ≤ 0, stop.
11: Update weights according to (3.11)

The boosted version differs from the original SSC algorithm in a number of
ways. First, it replaces the exhaustive collection of features with large TP-FP gap
in SSC by an optimization step that selects, at iteration m, a single feature maxi-
mizing rm. Second, it incorporates the votes αm, so that the embedding it produces
is H(x) = [α1h1(x), . . . , αmhm(x)]. As a result, the embedding space becomes a
weighted Hamming space: the L1 distances there are measured by

‖H(x)−H(y)‖ =
M∑

m=1

αm|hm(x)− hm(y)|

It is interesting to note the interaction of the type of weak learner we have chosen
and the specific nature of the task. The objective rm of the weak learner, expressed in
(3.13), can be decomposed into two terms. One term,

∑
i:li=+1 Wm(i)cm(xi) penalizes

any positive pair divided by hm. The influence of this term “pulls” the thresholds,
for any projection f , away from the median of that projection, since that reduces the
probability of crossing any positive pairs.

The second term −
∑

i:li=−1 Wm(i)cm(xi) penalizes the negative pairs that are not
divided, and its influence is exactly opposite: it encourages thresholds as close to
the median as possible, since then minimal number of negative pairs are misclassified
(and that still is about one half). This situation is different from typical classification
tasks, where the classes “work together” to optimize the decision boundaries. In
addition, the examples in the negative class are significantly more difficult to classify
consistently: a positive pair is likely to be repeatedly labeled correctly by the weak
classifiers, while a negative pair is likely to get misclassified with high probability in
any given iteration.12 The training error rates on the two classes in a typical run of

12Yet another insight into this behavior can be obtained by realizing that it is trivial to produce
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the algorithm reflect this: the training error on the similar pairs rapidly goes down
and usually reaches zero after relatively few iterations, while the training rate on
the negative examples goes up and eventually reaches 1. This makes it important to
find the correct threshold on the Hamming distance in H, based on the ROC curve
obtained on training data (or, if possible, on a held out validation set).

Nevertheless, this algorithm may be successfully used for complicated problems
such as the task of learning similarity of human silhouettes, as described in Chapter 5.

3.3.3 Boosting in a semi-supervised setup

When only examples of similar pairs are specified in addition to the unlabeled data,
as describe in Section 3.2.4, the boosting algorithm needs a modification, which is
described in this section.

We maintain a distribution Wm(i) for i = 1, . . . , Np where Np is the number of
positive pairs. Wm plays essentially the same role as it did in AdaBoost, and is
updated in the usual way, except that the normalization constant Zm is set to make∑

i Wm+1(i) = 1/2.
We also maintain a second distribution Sm(j) on the unlabeled examples xj, j =

1, . . . , N . Before we present the update rule for Sj, let us consider the role played by
the unlabeled examples. Intuitively, an example xj serves as a representative of all
the possible pairs (xj,y) that can be constructed. As we have seen in Section 3.2.4, if
the similarity rate is low we may assume that most of these pairs are dissimilar, and at
least half (usually much more) of these pairs will be misclassified by any cm(x,y; f, T ).
That number as we have seen depends on the probability mass πm = Pr(f(x) ≤ T ).
Specifically, the probability of a random pair formed with xj to be misclassified by a
threshold T on a projection f is

Pj , h(xj; f, T )πm + (1− h(xj; f, T ))(1− πm). (3.15)

The expected value returned by the classifier cm on a pair formed with xj is
therefore

Pj · (+1) + (1− Pj) · (−1) = 2Pj − 1.

Consequently, we change the definition of rm from (3.13):

rm ,
Np∑
i=1

Wm(i)cm(x
(1)
i ,x

(2)
i ) −

N∑
j=1

Sm(j)Ey [cm(xj,y)]

=

Np∑
i=1

Wm(i)cm(x
(1)
i ,x

(2)
i ) −

N∑
j=1

Sm(2Pj − 1).

(3.16)

The update rule for Sj changes accordingly; instead of having a deterministically

a threshold that will classify all positive training examples correctly, but as we have shown it is
impossible to do much better than chance on the negative examples.
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computed value of cm in the exponent, we use the expected value, which yields

Sm+1(j) := Sm(j) · exp (αm(2Pj − 1)) / Zs (3.17)

with the normalization constant Zs =
∑

j Sm(j) exp(αm(2Pj − 1)). This implies that

• When f(xj) falls on the side of the threshold with small probability mass, its
weight goes down.

• When f(xj) falls on the side with large probability mass, its weight goes up.
Intuitively this encourages the algorithm to choose next threshold which will
place this example on the “good” side (with small probability mass).

• If πi is 1/2, the weights do not change (that is the “ideal threshold”).

3.4 BoostPro: boosting general projections

The learning framework presented above has been thus far limited to selection and
combination of features from a finite set: axis-parallel stumps (we have shown that
this is equivalent to selection of bit features from the unary encoding). This makes the
learning simple, but at the same time may limit the power of the resulting encoding.

The following “toy” example clearly demonstrates the limits imposed by a com-
mitment to axis-parallel features. Consider the 2D Euclidean space, in which we have
two similarity concepts. The first concept, SA, the angle similarity, is determined
by the slopes of straight lines passing through the origin and the points; if the angle
between the two lines is less than 5 degrees, the two points are similar. The second
concept SN , the norm similarity,relies on the Euclidean norm of the points (i.e., their
distance from the origin): if the L2 norms of two points differ by less than 1/4, they
are considered similar under SN . Figure 3-5 illustrates this, by showing, for a fixed
reference data set and two query points denoted by circles, the set of reference points
similar to the queries under each of the two concepts. The figure also shows the sim-
ilarity region: the set of all points on the 2D plane that would be judged similar to a
query. While empirical performance of a similarity model is determined in terms of
the precision/recall measured on a particular data set, its generalization performance
may be evaluated by measuring the overlap between the correct similarity region and
the region estimated under the model.

The performance of L1 distance as a proxy for either of the two similarities is
quite poor, not surprisingly. In particular, the threshold on the distance necessary to
achieve reasonable precision corresponds to an ROC point with a very low recall. It
seems obvious that no subset of the features inherently limited to axis-parallel stumps
will do much better in this case.

In hindsight (given what we know about the target similarities in each case), the
best solution is of course to simply extract the parameter which directly affects the
similarity. This would mean simply converting the Euclidean coordinated to polar
coordinates and using the phase (modulo π) and magnitude as an embedding of the
data for, respectively, SA and SN . Of course, normally we do not have such knowledge
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(a) Angle similarity SA (b) Norm similarity SN

Figure 3-5: Toy 2D data set, with examples of angle similarity and norm similarity.
SA(x,y) ∼ |atan(x) − atan(y)|, and SN(x,y) ∼ |‖x‖ − ‖vy‖|. Circles: examples
similar, under each of the two concepts, to the query shown by the cross. Shaded
area: the similarity region (see text.)

of the functional form of the target S, and so we must rely on a learning algorithm
with a rather generic set of features that will allow us to reasonably approximate it.

3.4.1 Embedding with generic projections

We are now extending the family of the projection functions used to form the embed-
ding. We will consider all generalized linear projections of the form

f(x; θ) ,
D∑

j=1

θjφj(x). (3.18)

This still leaves the choice of φ unspecified. In this thesis, we will limit our attention
to polynomial projections, in which

φj(x) = x(d1
j ) · · ·x(d

oj
j )

, (3.19)

that is, each term φj in (3.18) is a product of oj components of x (not necessarily
distinct). In our experiments, we have used projection with oj bounded either by 1
(linear projections) or 2 (quadratic projections).

This is a fairly broad family (that of course includes the axis-parallel projections
used so far), and the framework developed in this section does not necessarily assume
any further constraints. The specific choice of the projections is a matter of design,
and should probably be guided by two considerations. One is domain knowledge–
for instance, in our toy example it is pretty clear that quadratic projections should
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be appropriate for the task. The second consideration is computational resources:
since learning with such projections involves optimization, increasing the number of
parameters will increase the time required to learn an embedding.

3.4.2 The weak learner of projections

Until now the weak learner in boosting was essentially ranking all the features based
on the current weights on the examples. Transition to an infinite set of projections
requires a weak learner capable of searching the space of features in order to optimize
the objective function in a current iteration of boosting. Below we define a differ-
entiable objective function aimed at maximizing rm, and describe a gradient ascent
procedure for that function.

In order to have a differentiable objective, we need a differentiable expression
for the classifier. Therefore, we replace the “hard” step functions in (3.2) with a
differentiable approximation via the logistic function:

h̃(x; f, T ) ,
1

1 + exp (γ(f(x)− T ))
. (3.20)

This introduces the parameter γ, the value of which can affect the behavior of the
learning algorithm.13 We suggest the following heuristic to set a reasonable γ:

γ =
log((1− .999)/.999)

min (|mini{f(xi)− T}|, |maxi{f(xi)− T}|)
,

which means that the lowest value of h̃ on the available data is at most 0.001, and
the highest value is at least 0.999.14

We also change the definition of the classifier associated with h̃ from (3.3) to

c̃(x,y) , 4 (h(x)− 1/2) (h(y)− 1/2) . (3.21)

Note that the response of so defined c̃ is a continuous variable in the range [−1, 1],
that can be thought of as a confidence rated prediction: if both f(x) and f(y) are
far from the threshold on different sides, then c̃(x,y) will be close to +1, and if they
are very close to the threshold the response will be close to zero.

To calculate the gradient, we need to compute the partial derivatives of the ob-
jective function with respect to the projection parameters θ1, . . . , θD, T . Below we do
that for two cases: the fully supervised case and the semi-supervised one.

13In principle the same role of determining the shape of h̃ can be played by the parameters θj ,
however we found that using γ, in particular for data with vastly different ranges for different
dimensions, improves both the numerical stability and the speed of convergence of the learning.

14In principle the objective may be explicitly optimized with respect to the value of γ as well,
however we have not pursued that direction.
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Fully supervised case

To simplify notation, let us denote the parameter with respect to which we differ-
entiate by θ. Recall that when total N of positive and negative pairs are available,
labeled by li, the objective function is given by

r̃m ,
N∑

i=1

Wm(i)lic̃(x
(1)
i ,x

(2)
i ). (3.22)

The partial derivative of (3.22) is

∂

∂θ
r̃m =

N∑
i=1

Wm(i)li
∂

∂θ
c̃(x

(1)
i ,x

(2)
i ). (3.23)

Now, from definition of c̃

∂

∂θ
c̃(x

(1)
i ,x

(2)
i ) = 4

[
∂

∂θ
h̃(x

(1)
i )

(
h(x

(2)
i )− 1

2

)
+

∂

∂θ
h̃(x

(2)
i )

(
h(x

(1)
i )− 1

2

)
.

]
(3.24)

Next, we can take the derivative of the soft threshold h̃. Denoting fT (x) ≡ f(x)−T
for simplicity, we get

∂

∂θ
h̃(x) =

γ exp(−γfT (x))

(1 + exp(−γfT (x)))2

∂

∂θ
fT (x). (3.25)

Finally, we can take the derivative of the projection. For the coefficients θq,
q = 1, . . . , D this will yield

∂

∂θq

fT (x) = φD(x), (3.26)

and the derivative with respect to the threshold is simply -1. Plugging the equa-
tions (3.24)-(3.26) back into (3.23) produces the partial derivative of r̃m w.r.t. the
projection parameter θ, and allows us to perform gradient ascent using standard
numerical methods.15

Semi-supervised case

The main difference of the semi-supervised case from the supervised one is that we
need to take the derivative of the second part of (3.16) containing the expected
responses of c̃. Unfortunately, we can no longer use Pj to estimate that expectation
since any point on the line f(x) will produce a different response of c̃ when paired
with f(xi). Thus, we resort to explicitly estimating the expectation, which is given

15One can also calculate the Hessian to allow for a more efficient search with Newton-Raphson
method, but we have not pursued that.
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Data set L1 SSC BoostPro
MPG 2.7368 ± 0.4429 2.2376 ± 0.3900 1.9286 ± 0.1941
CPU 4.1969 ± 0.2189 2.1503 ± 0.1500 2.0890 ± 0.1198
Housing 3.4641 ± 0.2568 2.4748 ± 0.5166 2.4985 ± 0.5272
Abalone 1.4582 ± 0.0557 1.4700 ± 0.0606 1.4994 ± 0.0496
Census 24705.0481 ± 988.2865 22480.2135 ± 1588.8343 18379.6952 ± 540.5984

Table 3.3: Test accuracy of constant robust locally-weighted regression. Shown are
the mean values ± std. deviation of mean absolute error (MAE) for 10-fold cross-
validation.)

Data set L1 SSC BoostPro
Letter 0.0449 ± 0.0050 0.0426 ± 0.0065 0.0501 ± 0.0061
Isolet 0.1265 ± 0.1713 ± 0.0215 0.0993 ± 0.0237

Table 3.4: Test accuracy of K-NN classification with SSC vs L1 similarity (mean ±
std. deviation for 10-fold cross-validation.)

by the integral

Ey [c̃(x,y)] =

∫ ∞

−∞
h̃(x− 1/2)h̃(y − 1/2)p(y)dy. (3.27)

We estimate this integral by taking the sum over the available examples. Thus, the
expression for r̃m becomes

r̃m =

Np∑
i=1

Wm(i)c̃(x
(1)
i ,x

(2)
i ) −

N∑
j=1

Sj
4

N − 1

∑
b6=j

(
h(xj)−

1

2

)(
h(xb)−

1

2

)
. (3.28)

Taking the derivative of (3.28) involves assembling Np terms given in (3.24) (for
the positive pairs) and N(N − 1) terms for the unlabeled examples. If computation
time is of concern and the quadratic dependence on N is infeasible, the latter term
may be further approximated by sampling a constant number of xb’s at, say, fixed
percentiles of the distribution of f(x).

3.4.3 Results

Synthetic 2D data

For each of the two similarity tasks introduced in the beginning of Section 3.4, the
algorithm constructed an embedding with M = 200 dimensions based on Np = 1000
positive examples (and no negative examples), using projections quadratic in x1 and
x2. Figure 3-13 shows examples of the learned weak classifiers. The plotted regions
correspond to h; the value of the classifiers c for any two examples is obtained by
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Data Set L1 SSC BoostPro
MPG 13.9436 ± 5.1276 10.0813 ± 3.8950 7.4905 ± 2.5907
CPU 37.9810 ± 5.2729 18.2912 ± 4.2757 9.0846 ± 0.9953
Housing 26.5211 ± 6.8080 14.3476 ± 9.1516 13.8436 ± 8.4188
Abalone 4.7816 ± 0.5180 4.8519 ± 0.4712 4.7602 ± 0.4384
Census 2.493×109 ± 3.3×108 2.237×109 ± 3.2×108 1.566×109 ± 2.4×108

Table 3.5: Test accuracy of constant robust locally-weighted regression on regression
benchmark data from UCI/Delve. Shown are the mean ± std. deviation of mean
squared error (MSE) over 10-fold cross validation. Results for SVM are from [83]; see
text for discussion.

Data set Error Method Source
MPG 7.11 SVM [83]
CPU 28.14 Regression Trees [113]
Housing 9.6 SVM [83]
Abalone 4.31 Neural Network [83]
Census 1.5×109 Regression Trees [113]
Letter 0.0195 ECOC with AdaBoost [28]
Isolet 0.0372 SVM [73]

Table 3.6: The best of the available results of other methods published for a simi-
lar experimental setup. The error shown is MSE for the regression sets and mean
classification error for the classification sets.

placing them on the figure and comparing the colors at their location. Thus, the
pairs of red crosses would be classified as dissimilar (by the weak classifier alone!)
while the pairs of circles would be classified as similar. The typical shape of h (origin-
centered disks for norm, and “bow-tie” shapes for angle) effectively corresponds to
a quantization of the underlying polar coordinate used to define similarity, although
the values of those coordinates were withheld during learning. Figure 3-14 shows
retrieval results; the lighter regions in the data space correspond to a L1-ball of
radius R = 20 in H around the query (shown by cross). The ROC curves for the
similarity retrieval/classification are shown in Figure 3-15. We also evaluated the
DistBoost algorithm from [60] on these two problems. Note that the comparison
is somewhat “unfair” since DistBoost assumes that the similarity corresponds to
equivalence classes on X . Nevertheless, DistBoost performed reasonably well, in
particular for low values of recall. Overall, on these synthetic data our embedding
approach is clearly superior to both DistBoost and the L1 distance, which performs
only slightly better than chance (as expected).

Real data sets

Tables 3.3, 3.5 and 3.4 summarize the results of an experimental comparison of
BoostPro with other similarity models as a tool in example-based regression and
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(a) Mean absolute error (b) ROC curve

Figure 3-6: Results on Auto-MPG data set. Left: box plot of test mean absolute error
of example-based regression using, from left to right, L1 distance in X , SSC embed-
ding and BoostPro embedding. The plots show distribution of results in ten-fold
cross validation. Right: test ROC curves for the ten folds of the cross-validation.
Black (dotted): L1 in X ; Blue (dashed): SSC; red (solid): BoostPro.

(a) Mean absolute error (b) ROC curve

Figure 3-7: Results on Machine CPU. See legend for Figure 3-6.

classification on the seven real data sets. In all data sets the projections used by
BoostPro were linear projections with two terms, in other words, each dimension
of the embedding is a thresholded linear combination of two coordinates of the input.
The performance in terms of mean error is also summarized graphically in Figures 3-
6-3-12; these figures show the distribution of mean errors as well as the ROC curves
for the three similarity measures on seven data sets.

Selecting the terms in the projection in BoostPro requires some care. With two-
dimensional projections it may be possible (if dim(X ) is low enough), in principle,
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(a) Mean absolute error (b) ROC curve

Figure 3-8: Results on Boston Housing. See legend for Figure 3-6.

(a) Mean absolute error (b) ROC curve

Figure 3-9: Results on Abalone. See legend for Figure 3-6.

to exhaustively consider all dim(X )(dim(X ) − 1)/2 combinations, perform gradient
descent on each and select the optimal one. However, it is extremely expensive (at
every step of the gradient descent we need to compute the gradient, which requires a
pass over all the training data.) In addition, while this may speed up the reduction
in training error, there is no requirement to find the best weak classifier in a given
iteration–just to find a weak classifier better than chance. Therefore, instead of
such exhaustive search we consider with a fixed number (typically 100) randomly
constructed term combinations, set the projection parameters θ to randomly selected
numbers, find the local maximum of rm by starting the gradient ascent at each of
these projections, and select the one that attains the highest rm. Note that this is an
inherently parallelizable procedure, since the gradient ascent proceeds independently
from every initialization point. We take advantage of this and use a parallelized
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(a) Mean absolute error (b) ROC curve

Figure 3-10: Results on US Census. See legend for Figure 3-6.

(a) Mean classification error (b) ROC curve

Figure 3-11: Results on Letter. Plots on the left show classification error distributions;
otherwise, see legend for Figure 3-6.

implementation. However, we believe that the under-exploration of the space of
projections is the main cause for the failure of BoostPro to improve over the other
similarity models.

Nevertheless, in most cases, BoostPro outperforms other similarity models ro-
bustly, as measured by the means and standard deviations of mean errors in cross
validation. The main conclusion from these experiments is that for a practitioner
of example-based estimation methods, it is often beneficial to model the similarity
rather than apply the default L1-based neighbor search in X . In some cases there is
no improvement, however; we suspect that these are the cases in which the L1 is an
appropriate proxy for similarity. The following “hybrid” approach provides perhaps
the safest means of optimizing the performance of a similarity model: using a held-out
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(a) Mean classification error (b) ROC curve

Figure 3-12: Results on Isolet. See legend for Figure 3-11.

Figure 3-13: Typical weak classifiers (thresholded projections) learned for the angle
(top three) and norm (bottom three) similarity on the synthetic 2D data. The darker
shade corresponds to the area where h = +1. Crosses and circles show pairs that
would be classified by the projection as similar and dissimilar, respectively.

test set (or in a cross-validation setting) evaluate the estimation error using each of
the three similarity models, and select the one with the best performance.

In order to place these results in the context of state-of-the-art results, we can also
compare our results to the best results published in the machine learning literature
for the data sets in question, as summarized in Table 3.6.16 For each data set, we have

16Due to a large variety of techniques and experimental designs used in such evaluations, such
comparisons should be considered carefully. We attempted to locate the most relevant results with
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Figure 3-14: Synthetic data: example similarity regions. Light areas correspond to x
such that ‖H(x)−H(q)‖H ≤ R, with the query q shown by the red cross and R = 20
set for 0.5 recall. The dots show the training data. Top: angle similarity, Bottom:
norm similarity.
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(a) Angle
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(b) Norm

Figure 3-15: ROC curves for the retrieval experiments with angle and norm similar-
ities (see Figure 3-5. Diagonal: chance. Dotted: L1. Dashed: DistBoost. Solid: the
embedding learned with semi-supervised BoostPro.

respect to the specific set of experiments reported here.
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(a) MPG
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(b) Housing
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(c) Abalone

Figure 3-16: Results on three of the UCI data sets. Comparison of L1, DistBoost
and semi-supervised BoostPro. Diagonal: chance. Dotted: L1. Dashed: DistBoost.
Solid: the embedding learned with semi-supervised BoostPro.

Data set MPG CPU Housing Abalone Census Letter Isolet
M 180 ± 20 115 ± 48 210 ± 28 43 ± 8 49 ± 10 133 ± 13 121 ± 52

Table 3.7: Lengths of embedding learned with BoostPro on UCI/Delve data; mean
± std. deviation in 10-fold cross validation.
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cited the best result, along with the method with which it was achieved and the source.
As can be seen, for some data sets (regression) the simple constant, i.e. zeroth-order,
robust locally-weighted regression (introduced in Section 2.2) with a BoostPro-
learned embedding performs on a par with the best published results, while for other
data sets (primarily classification) its performance appears to be inferior.

Note that our embedding offers a critical advantage over SVM or similar classifi-
cation machines, when the task of similarity retrieval is relevant. This advantage is
in our ability to directly approach this task as a distance-based neighbor retrieval in
the embedding space, and to use LSH for a sublinear time search.

The main consequence of this ability is the computational gain. When the simi-
larity notion is inherently related to class labels, SVM could be in principle applied
to classify the query example and then retrieve all database examples that have the
same class label. Since SVM are known to often retain a significant proportion of
the data as support vectors, and since the computational cost of applying an SVM is
directly proportional to the number of support vectors, this often will be much more
expensive than the fast search with LSH.

When the relevant similarity notion can not be linked to a classification problem,
SVM or similar mechanisms are simply not directly applicable to the retrieval task.
One possibility to overcome this is to train an SVM classifier of similarity, i.e. a
classifier that operates on pairs of examples. That, however, would require to apply an
SVM, which is often an expensive operation itself, for all pairs formed by connecting
the query and each of the database examples. This is clearly prohibitively expensive
even with medium-size databases, and completely infeasible for databases of the type
we will discuss in the next chapters, with millions of examples. This is in stark contrast
to the cost of retrieval with our method, that combines the learned representation in
the embedding space with the fast search using LSH, making retrieval in near-real
time easily implemented for these very large databases.

BoostPro also shows an improvement over SSCon most data sets, at the same
time greatly reducing the embedding size; Table 3.7 shows the average values of M
for BoostPro(these values are essentially determined by the stopping criteria of
AdaBoost, that stops when it can not find, within a reasonable time, a weak classifier
with non-zero rm.) Compare these numbers to those in Table 3.2.

Semi-supervised scenario

Figure 3-16 shows a result of comparing the semi-supervised version of BoostPro to
DistBoost (and L1) on three of the UCI data sets: Abalone, Housing and Auto-
MPG. The ROC curves shown are for a single partition of the data, using 40%
for testing. On these three data sets, the advantage of our embedding method is
still noticeable, although it is less pronounced, since both DistBoost and L1 perform
better than for synthetic data. In all the five data sets, the expected similarity rate
ρ (e.g., the probability that random two examples are similar) is between 0.05 and
0.3. Nevertheless, the positive-only version of the algorithm based on the assumption
that this rate is low, performs well.

We have also investigated the effect of the ground truth similarity rate on the
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Figure 3-17: Effect of similarity rate on the performance of the semi-supervised
BoostPro, on synthetic norm similarity data. The ROC curves are shown for the
retrieval task on 1000 test points, using 600 unlabeled points and 2,000 similar pairs,
with M=100.

performance of the semi-supervised version of BoostPro. Norm similarity in the
2D “toy” data set is determined by setting a threshold on the difference between
Euclidean norms of the two points in question; varying this threshold corresponds to
modifying the similarity rate (if the threshold is low, ρ is low). We have evaluated
the retrieval performance of the algorithm for a range of values of ρ between 0.02 and
0.55. Figure 3-17 shows the ROC plots for eight values of ρ, obtained by applying
the semi-supervised BoostPro. The FP rate was estimated as per equation 3.7,
that is, using the probability mass estimate for a threshold and the correction term
for the known ρ. From the results it is apparent that the algorithm is very robust,
in the sense that the semi-supervised version achieves identical (good) results for ρ
up to 0.3; the curve for 0.4 is noticeably inferior, and for 0.55 the curve deteriorates
much further. This is consistent with our observation that for values of ρ up to 0.3
in the UCI/Delve data sets, the performance of semi-supervised algorithm does not
suffer from replacing actual negative examples with the expectations over all pairs,
corrected for the known (or estimated) ρ.
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3.5 Discussion

We have developed a family of algorithms for learning an embedding from the original
input space X to an embedding space H. The objective of these algorithms is to to
optimize the performance of L1 distance in the embedding space as a proxy for the
unknown similarity S, which is conveyed by a set of examples of positive pairs (similar
under S) and, possibly, negative pairs, perhaps along with some unlabeled example
in X .

The following summarizes the main properties of each algorithm.

Similarity Sensitive Coding (SSC) The algorithm takes pairs labeled by similar-
ity, and produces a binary embedding space H, typically of very high dimension.
The embedding is learned by independently collecting thresholded projections
of the data.

Boosted SSC This algorithm addresses the redundancy in SSCby collecting the
embedding dimensions greedily, rather than independently. It also introduces
weighting on the dimensions of H.

BoostPro This algorithm differs from the Boosted SSCin that the dimensions of the
embedding are no longer limited to axis-parallel stumps. We have introduced a
continuous approximation for the thresholded projection paradigm in which a
gradient ascent optimization becomes possible.

Semi-supervised learning For each of these three algorithms we have presented a
semi-supervised version which only requires pairs similar under S, in addition
to a set of unlabeled individual examples in X .

As part of the discussion in this chapter we have applied some of the new algo-
rithms to a number of real-world data sets from public data repositories, and observed
very good performance, both in terms of the ROC curve of similarity detection and in
terms of the prediction accuracy for regression and classification tasks. In the follow-
ing chapters we will see how the proposed framework can be applied to challenging
problems in machine vision.
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Chapter 4

Articulated Pose Estimation

In this chapter we describe a new approach to estimation of articulated pose of hu-
mans from single monocular images. Our approach is example-based: it reduces the
problem of recovering the pose to a database search under L1 in the embedding space,
which is carried out extremely fast using LSH. The embedding is constructed based
on edge direction histograms, using the algorithms presented in Chapter 3. Underly-
ing this construction is the definition of a similarity concept under which two images
of people are similar if the underlying poses are, and learning an embedding that is
sensitive to that similarity.

We start with describing the problem domain and presenting our approach to it
in a nutshell in Section 4.1, and cover some related work in Section 4.2. Section 4.3
gives the details of the representation and the learning problems defined for the task.
Experimental results in two estimation tasks are described in Sections 4.4 and 4.5. In
Chapter 5 we discuss the integration of our approach to single-frame pose estimation
into a tracking framework.

4.1 The problem domain

The articulated pose estimation problem is formulated as follows. We are given an
image which contains a human body.1 We also have an articulation model–a model of
the body that describes the current 3D body configuration in terms of a set of limbs
and rotational joints that connect them into a tree structure.

This model is illustrated in Figure 4-1. The image on the left is not a photograph of
a real person but a synthetically generated image of a humanoid model obtained with
a computer graphics program Poser [29]. This image corresponds to the articulated
model in the left part of the figure. The model is shown by plotting 2D projections
of 20 key joints (crosses) and the lines connecting them, that roughly correspond to
limbs. This model may be described by 60 numbers, namely the (X, Y, Z) coordinates
of the joints (an alternative form of describing the model would be in terms of articu-
lated angles, which we will discuss later.) In fact, there are hundreds of parameters in

1The presented framework can be applied to any articulated body, but estimating pose of humans
is by far the most important task of this sort.
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(a) Image of a body (b) Corresponding articulated model

Figure 4-1: A (synthetic) image of a person and the corresponding articulated model.
The goal of pose estimation is to derive the representation from the image on the left.
Crosses show key joints, labeled with abbreviations. l/r: left/right, t: big toe, a:
ankle, k: knee, h: hipbone, s: shoulder, e: elbow, w: wrist. Additional parts are the
base of the neck nk, the base of the skull th and the top of the skull (not labeled).

addition to these 60 numbers that affect the resulting image: the articulated pose of
additional body parts not accounted for by this coarse model, such as fingers; shape
of the actual body parts (the model, so to speak, describes the “bones”, but not the
flesh); facial expression; hair style; clothing; illumination etc. Added to that could
be the parameters that describe the scene, the objects in the background etc. The
goal of a computer graphics program like Poser is to start with these parameters
and produce a realistic image, that is, to go from the right half of Figure 4-1 to the
left half. The goal of computer vision is the opposite. In the context of articulated
pose estimation this goal is to start from the left half (the image), and recover the
relevant parameters (the right half) of the representation that “generated” the im-
age, while ignoring the nuisance parameters–all those additional aspects of the visual
scene listed above. When the image is actually synthetically generated the success
of this task is easy to measure, since we have access to the ground truth. For real
images such evaluation is more difficult. When measurements of the underlying pose
are available, for example obtained using a motion capture device at the same time
as the images are taken, this may be done in a precise fashion.2 In other cases this
may be subjective, or it may depend on the success of a “downstream” application
that relies on the estimated pose (we discuss some applications in the next section
and in Chapter 5.)

2However, special caution is required to make sure the motion capture setup, e.g. special clothing
or visible sensors, is not used by the estimation algorithm to “cheat”.
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4.2 Background on pose estimation

There exists a large body of literature on the estimation of the pose of articulated
bodies. We only focus here on work most related to our approach. It should also
be noted that much more attention has been given to the task of articulated tracking
of humans: recovering the sequences of articulated poses from a video showing a
moving person. This task is usually approached in a qualitatively different way from
single-frame pose estimation. In particular, tracking algorithms (with almost no
exceptions) rely on the assumption of manual initialization. While the tracking setup
is in some ways more challenging than the single-frame one, it also allows access to
provides valuable cues from motion that are not available in a static task. This may
allow, in particular, to disambiguate certain situations which are very difficult or even
impossible to disambiguate with a single frame. We will not discuss tracking here,
but in Chapter 5 we will describe tracking algorithms that integrate our approach
to single-frame pose estimation with a tracking setup, allowing us to relax or even
abandon the initialization assumption.

Providing automatic initialization (and re-initialization throughout the sequence)
for tracking is among the most important applications of single frame pose estima-
tion. In fact, having a perfect pose estimator would eliminate the need for specialized
tracking algorithms, since the accurate pose recovery would simply be done in every
frame. Of course, this is not possible since single-frame estimation is ill-posed: in
many “interesting” activities there is a great deal of occlusion of some body parts by
others, there is often ambiguity related to symmetry, mirror reflections etc. Neverthe-
less the ability to recover pose from a single image is crucial for successful tracking.
We discuss this in more detail in Chapter 5.

Much of the work has relied on deterministic methods guided on the known geom-
etry of the articulated body. In [111] 3D pose is recovered from the 2D projections of
a number of known feature points on an articulated body. Other efficient algorithms
for matching articulated patterns are given in [45, 94, 88]. All of these approaches
assume that detectors are available for specific feature locations, and that a global
model of the articulation is available. Another family of approaches can somewhat
relax these assumptions, at the cost of relying on the availability of multiple views [58].

Other techniques are based on statistical learning approaches. In [87] pose esti-
mation is reduced to contour shape matching using shape context features. In [95],
the mapping of a silhouette to 3D pose is learned using multi-view training data.
These techniques were successful, but they were restricted to contour features and
generally unable to use appearance within a silhouette. Some methods explicitly work
with silhouettes only [40, 2] but those, due to a rather impoverished representation
that greatly increases ambiguity, are usually restricted to a specific type of activity
(walking is particularly popular.)

In [6] a hand image is matched to a large database of rendered forms, using a
sophisticated similarity measure on image features. This work is most similar to
ours and in part inspired our approach to pose estimation. However, the complexity
of nearest neighbor search makes this approach difficult to apply to the very large
numbers of examples needed for general articulated pose estimation with image-based
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distance metrics.

Finally, we should emphasize that the task of pose estimation we are considering
is decoupled from the tasks of detection and localization, i.e., determining whether
an image contains a person and finding the specific portion of the image occupied by
the person. There are a number of methods for carrying out those tasks, and we will
assume that localization is solved by an external algorithm. Specific arrangements
for obtaining this information in our experiments is described in Sections 4.4 and
Section 4.5.

4.3 Example-based pose estimation

We approach pose estimation as a regression task, and develop an example-based
approach to solving it. As described in Section 2.2.1, we can define a similarity
concept Sp corresponding to pose similarity. We assume that we have access to a
large and representative3 database of images labeled with the corresponding poses.
Then, the pose in a query image x0 can be estimated in by the following two steps:

• Find in the database some examples of poses similar to the unknown pose in
x0.

• Using the retrieved examples, infer the pose in x0.

This fairly vague recipe is detailed in the sections below.

4.3.1 Pose-sensitive similarity

Suppose that a pose is represented by a parameter vector θ (we discuss some param-
eterizations below). Let x1 and x2 be two images depicting people whose articulated
poses are, respectively, θ1 and θ2. Then, we define

Sp,R(x1,x2) = +1 ⇔ Dθ(θ1, θ2) ≤ R. (4.1)

This is a generic similarity “template”, and the precise definition depends on two
parameters: the distance Dθ used to compare poses, and the appropriate threshold R
on that distance. The threshold could be set in two ways. The first is by finding R
which meets some perceptual criteria: if Dθ(θ1, θ2) ≤ R, then human observers will
generally agree that the two poses “look similar”, or are similar for the purpose of a
particular application. Our approach to learning similarity from examples, developed
in Chapter 3, is perfectly suited for such a definition since all it requires is a set of
examples of similar pairs–which in this case may be supplied by human observers. A
second method of setting R is by means of validation tuning with a specific estimation

3In the sense that for a random pose drawn from the distribution of poses, there is, with high
probability, an example with a similar pose, under the relevant definition of similarity discussed in
this section.

84



algorithm. That is, if the goal is to recover pose as precisely as possible,4 and the
estimation algorithm relies on similarity defined in (4.1), then we may look for R that
minimizes the final error.

As for Dθ, there are two avenues for defining it, and the choice depends on the rep-
resentation of the articulated model. A common representation, common in computer
graphics and animation, is by joint angles [93]. Consider a directed graph representa-
tion of an articulated tree, where each node corresponds to a joint (we use the term
joint loosely to refer to any rigid point in the model, so that, for instance, the top
of the skull is also considered a “joint”.) Edges leaving the node correspond to the
limbs connected to that joint, and they connect it to the joints on the other side of
the limb. Then the entire configuration of the model in 3D is given by a set of 3D
rotation parameters in each joint plus the global position and orientation of the root,
which is usually at the hip joint. This representation is convenient to describe articu-
lation, and especially to parametrize articulated motion. Also, it describes the body
articulation independently of the sizes of actual limbs. However it makes defining
distances quite cumbersome. For instance, a 20 degree change in an angle may affect
the global position of body parts very little if it is in a finger, or very much if it is in
the hip.

For this representation, we use the mean cosine deviation distance Dcos:

Dcos(θ1, θ2) =
m∑

i=1

(
1− cos(θi

1 − θi
2)
)

(4.2)

The second representation is in terms of 3D joint locations [57]. If there are L
joints in the model, then the pose θi is fully described by θi = [θ1

i , . . . , θ
L
i ], where the

location of the j-th joint is given by θj = [θj
x,i, θ

j
y,i, θ

j
z,i]

T ∈ R3. This representation is
somewhat redundant, since there are strong constraints on the relative locations of
neighboring limbs, however it is very explicit and thus convenient for manipulating
and comparing poses.

For this representation, we define the maximum deviation distance DD by the
maximum L1 distance between any two corresponding joints in 3D:

DD(θ1, θ2) = max
1≤j≤L

∑
d∈x,y,z

|θj
d,1 − θj

d,2|. (4.3)

In accordance with the approach we have outlined above, we will learn an embed-
ding of the images space into a new space H, such that for two images x1,x2 and
the corresponding poses θ1, θ2, ‖H(x1) − H(x2)‖ is, with high probability, low if
DD(θ1, θ2) ≤ R.

4Note that this is rarely the real goal of an application; for instance, in an activity recognition
scenario, or for understanding gestures, an error of a few degrees or a few centimeters relative to the
“ground truth” is rarely a problem.
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A
B

Figure 4-2: Illustration of the edge direction histogram (EDH) representation. Col-
ors correspond to detected edge orientation red=0, green=π/4, purple=π/2 and
blue=3π/4.

4.3.2 Image representation

Before we approach the learning task, we need to design the representation of the
input space X . The simplest decision would be to simply use the pixels of the image.
However it is clearly not very helpful, due to a large effect of the nuisance parameters
(color and illumination in particular) on the pixel intensities, and we would benefit
from a representation that is more invariant to nuisance parameters while capturing
information useful for inferring pose. In this chapter we will use the representation
by multi-scale edge direction histograms (EDH) [68], often used in image analysis and
retrieval, but until now it has not, to our knowledge, been used for pose analysis.

In order to compute EDH, we apply an edge detector of choice (we have used
the Sobel detector [54]) to obtain an edge map, i.e. a binary image in which the
value of a pixel is 1 if a detected edge passes through it. Next, each detected edge
pixel is classified into one or more of four direction bins: π/8, 3π/8, 5π/8, 7π/8. This
is done by applying a local gradient operator at each of the four orientations, and
thresholding the response. Then, the histograms of direction bins are computed
within sliding square windows of varying sizes (scales) placed at multiple locations
in the image; the scales and the location grid are parameters to be set. This yields
four integer values (the counts for the four direction bins) for each scale and location.
The resulting multi-scale EDH is obtained by concatenating these values in a fixed
order. Figure 4-2 illustrates the EDH representation; each of subwindows A and B
contributes four numbers, calculated by counting edge pixels of four colors within the
subwindow.5

Assuming, as we do, that the person localization task is solved for us and the image
is centered on the bounding box of the body, a reasonable measure of similarity to
apply to this representation is the L1 distance, since a particular bin in the histogram
corresponds to a roughly fixed location on the body. It is interesting to note the
connection of this distance to the Hausdorff and Chamfer distances often used to

5Some pixels, in particular the ones at edge intersections, may have multiple colors, i.e. multiple
orientations, assigned to them.
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compare silhouettes or edge images [11]. A related distance is the Earth-Mover’s
distance[55].

Another interesting connection is to shape contexts [11], that have been used for
pose estimation among other tasks [86, 87]

4.3.3 Obtaining labeled data

Our approach relies on the availability of a large database of images labeled with poses.
Such a database may be constructed either by means of computer graphics package,
such as Poser. or by recording data from human subjects. The synthetic generation
is an appealing option since it is extremely cheap, can provide an arbitrarily large
number of examples, and makes it easy to include as much variability in the data as
desired (subject to model limitations of the software.) Importantly, it also provides
accurate ground truth of the pose for every image. The resulting images can be quite
realistic in terms of pose appearance (see Figures 4-3 and 4-6 for some examples).

Alternatively, such a database could also be created by recording images of real
people in a variety of poses, along with the poses themselves measured by one of
the available methods for that (usually based on instrumenting the actor with some
sort of sensors.) However, this may be extremely expensive, labor-intensive and time-
consuming. This may be possible for a constrained set of poses, for instance associated
with a particular task or activity. If the goal is to have a very large database highly
representative of the general pose space, this approach is probably infeasible, and
even more so if we also want to include a significant variation in nuisance parameters
in the data. One potential advantage of such a database, of course, is that the real
training images may, in some sense, look more “like” the real test images the system
would encounter. However in our opinion the state-of-the-art in computer graphics,
as exemplified by Poser, removes this concern since the synthetic images are close
in quality to the real ones, at least for the single-frame pose estimation purposes.6

A more important advantage of a human-based database is in the realistic nature of
the poses it contains, both in terms of the distribution and in terms of attainable
configurations.

Fortunately, there is a way to have the best of both worlds. A set of poses
can be recorded with a motion capture setup, and then used to create a large set
of synthetic images by changing the viewpoint, slightly perturbing the poses, and
randomly assigning the nuisance parameters. This is the approach taken to obtain
the training data used in experiments described in Section 4.5 and in Chapter 5.

4.4 Estimating upper body pose

The experiments described in this section7 deal with estimating only a partial pose,
namely that of the upper body. The joints model specifies the location of shoulders,
elbows and wrists. It is assumed that the person in the image is visible from about

6This may not yet be the case for synthetic rendering of motion!
7This section is based on the work published in [105]
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Figure 4-3: Example training images for upper body pose estimation

the knee level up and is standing in an upright posture. The orientation (yaw) of the
body is not constrained, and may vary between the two profile views, ±90o.

4.4.1 Training data

The database of poses contains 500,000 images obtained by sampling uniformly at
random the space of articulation angles, applying a feasibility correction algorithm
of Poser (to prevent configurations which are either anatomically impossible or
physically impossible, e.g. surface intersections), and rendering a 180×200 pixel image
with randomly assigned nuisance parameters: illumination (obtained by modeling 4
random light sources), hair style, clothing, and hand configuration. As stated above,
we assume that the body has been segmented from background, scaled, and centered
in the image. Thus no background detail was generated, so the figures are on a
uniform background. Figure 4-3 shows some examples.

4.4.2 The learning setup

The EDH representation was constructed with windows of sizes 8, 16 and 32, with each
window sliding through locations spaced by half its size, yielding 11,728 histogram
bins per image. With two bytes to represent each histogram bin, this requires above
11 Gigabytes to record the EDH for the full database.

Pose similarity was defined by setting a threshold of 0.5 on the Dcos between poses.
This value was chosen by inspection, as it corresponded to a good cutoff between
perceptually similar and dissimilar pairs of poses. Not surprisingly, similarity in this
domain is a rare event; the similarity rate ρ defined in Section 3.2.4, measured on a
million random pairs constructed over the training data, was only 0.0005.

Using the EDH representation as the input space X , we constructed a training
set for SSC: 100,000 positive examples and 1,000,000 negative examples. The larger
number of the negative examples was motivated by the unbalanced nature of the
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Model k = 7 k = 12 k = 50
k-NN 0.882 (0.39) 0.844 (0.36) 0.814 (0.31)

Linear 0.957 (0.47) 0.968 (0.49) 1.284 (0.69)

const LWR 0.882 (0.39) 0.843 (0.36) 0.810 (0.31)

linear LWR 0.885 (0.40) 0.843 (0.36) 0.808 (0.31)

robust const LWR 0.930 (0.49) 0.825 (0.41) 0.755 (0.32)

robust linear LWR 1.029 (0.56) 0.883 (0.46) 0.738 (0.33)

Table 4.1: Mean estimation error for 1000 synthetic test images, in terms of Dcos.
Standard deviation shown in parentheses. Not shown are the baseline error of 1-
NN, 1.614 (0.88), and of the exact 1-NN based on L1 in X , 1.659. LWR stands for
locally-weighted regression, see Section 2.2.

problem, discussed in Chapter 3.
We evaluated a number of TP-FP gap values on a small validation set, and set

the lower bound on the gap g to 0.25. With that gap bound, SSC selected 213
dimensions. Thus, the size of the database could be reduced, with the most eco-
nomical data storage, from 11 Gigabytes to less than 14 Megabytes (recall that the
dimensions produced by SSC are bit valued.) This data structure was then indexed
by LSH, with l=80 tables and k = 19 bits per hash key. Note that the application
of algorithm 3 (p. 2.4.2) is particularly simple on the bit-valued embedding H since
each dimension only has one possible threshold. Thus the application of SSC with
subsequent indexing by LSH may be seen as simply learning of an appropriate family
of LSH functions.

We also tested the semi-supervised version of SSC described in Chapter 3. As
expected for the low similarity rate in this case, the results were very similar to the
results with the fully supervised version: we obtained 221 dimensions, with 97% over-
lap with the dimensions learned with the supervised algorithm. Thus we get essen-
tially identical results with more than 10 times reduction in learning time (since
the semi-supervised algorithm uses only 1/11 of the training examples used in the
fully-supervised one.)

4.4.3 Results

To quantitatively evaluate the algorithm’s performance, we tested it on 1000 synthetic
images, generated from the same model, so that the ground truth is available. Table
4.1 summarized the results with different methods of fitting a local model; ’linear’
refers to a non-weighted linear model fit to the neighborhood. The average size of
the candidate set C found by LSH (i.e. the union of the buckets in the hash tables)
was 5300 examples, about 1% of the data. We found that in almost all cases, the
true nearest neighbors under DH were among the candidates, which means that we
do not pay significant cost for the speedup obtained with LSH.

The locally-weighted regression (LWR) [7] model was tested with zeroth-order, or
constant, model (i.e., weighted average of the neighbors) and first-order, or linear,
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Figure 4-4: Examples of upper body pose estimation (Section 4.4). Top row: input
images. Middle row: top matches with LSH on the SSC embedding. Bottom row:
robust constant LWR estimate based on 12 NN. Note that the images in the bottom
row are not in the training database - these are rendered only to illustrate the pose
estimate obtained by LWR.

model (i.e., weighted linear fit.) The robust LWR [22] re-weighted the neighbors in 5
iterations. The purpose of robust LWR, as explained in Section 2.2, is to reduce the
influence of the outliers (examples with high residual under the current model fit) by
iteratively decreasing their weights.

The results confirm some intuitive expectations. As the number of approximate
neighbors used to construct the local model increases, the non-weighted model suffers
from outliers, while the LWR model improves; the gain is especially high for the
robust LWR. Since higher-order models require more examples for a good fit, the
order-1 LWR only becomes better for large neighborhood sizes. Overall, these results
show consistent advantage to LWR. Note that the robust linear LWR with 50 NN is
on average more than twice better than the baseline 1-NN estimator.

We also tested the algorithm on 800 images of a real person; images were processed
by a simple segmentation and alignment program, using a statistical color model of
the static background and thresholding by intensity change. Figure 4-4 shows a few
examples of pose estimation on real images. Note that the results in the bottom
row are not images from the database, but a visualization of the pose estimated with
robust linear LWR on 12-NN found by LSH; we used a Gaussian kernel with the
bandwidth set to the dX distance to the 12-th neighbor. In some cases (e.g. leftmost
column in Figure 4-5), there is a dramatic improvement versus the estimate based on
the single NN. The number of candidates examined by LSH was significantly lower
than for the synthetic images - about 2000, or less than .5% of the database. This
is expected since the real images differ from the synthetic ones in many subtle ways.
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Figure 4-5: More examples, including typical “errors”; see legend of Figure 4-4. Note
the gross error in the leftmost column, corrected by LWR. Examples in the right two
columns are among the ones with most severe error in the test set.

It takes an unoptimized Matlab program less than 2 seconds to produce the pose
estimate. This is a dramatic improvement over searching the entire database for the
exact NN under L1 in the embedding space, which takes more than 5 minutes per
query, and in most cases produces the same top matches as the LSH. Note that exact
search under L1 distance in X (EDH) would take a number of days, in particular due
to the enormous size of the database mentioned above.

Lacking ground truth for these images, we relied on visual inspection of the pose
for evaluation. For about 2/3 of the examples the pose estimate was judged accurate;
Figures 4-4 and 4-5 show a number of examples of typical estimates. On the remaining
examples it was deemed inaccurate, on some examples the error was quite significant.
Figures 4-4 and 4-5 show a number of examples, including two definite failures. Note
that in some cases the approximate nearest neighbor is a poor pose estimate, while
robust LWR yields a much better fit.

Nevertheless this system clearly can be improved. We can identify three sources
of failure. One, not directly related to the learning and estimation procedures, is
imperfect segmentation and alignment. The other potential reason is the suboptimal
set of dimensions found by SSC (perhaps due to a poor choice of the gap bound); we
suspect that 213 dimensions in the embedding is not rich enough a representation.
The third problem is related to the limitations of the synthetic training set, in terms
of coverage and representativeness of the problem domain. The experiment reported
in the next section addressed some of these issues.
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Figure 4-6: Examples of images in the motion capture-based repository of full body
pose used in the experiments in Section 4.5.

4.5 Estimating full body pose

In this experiment we estimate full body pose, with the articulated model containing
60 parameters (this is the model illustrated in Figure 4-1(b).)

4.5.1 Training data

To improve the quality of the database we used the motion capture sequence freely
available from [41]. The database contains over 600 sequences recorded from a variety
of activities from everyday life (walking, greeting, brushing teeth), athletics (soccer,
martial arts), etc. We collected 550,000 unique poses (with DD between any two
poses, as defined in (4.3), at least 1cm) and rendered a 240×320 pixel image from
each pose at three random yaws, yielding a repository of 1,650,000 images labeled
with the ground truth pose. The figure in each image is rendered at a random 2D
location within the virtual scene, with up to 1m translation, in order to represent
variability and with the intent to make the resulting estimator invariant to moderate
translations (the 2D location is considered a nuisance parameter.) Figure 4-6 shows
some examples of the images in this repository.

From each image we extracted the bounding box of the silhouette (using the fact
that these synthetically generated images have known segmentation and thus the
silhouette mask is available), and computed the EDH representation as described
above, yielding 13,076 bins in a histogram.

4.5.2 Learning setup and results

We selected 60,000 images from the repository, constrained to upright postures. From
these, we formed 20,000 positive pairs, subject to the similarity defined as in (4.1)
with DD as the pose distance and r = 3cm.

We then applied a semi-supervised version of BoostPro, using linear projections
over two dimensions. That is, each dimension of the embedding is obtained by taking
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Figure 4-7: Testing on synthetic input. Column 1: test images. Columns 2-4: top 3
matches in H.

two random dimensions of the EDH, and optimized as described in Section 3.4.2, and
the projections are combined by the semi-supervised boosting algorithm introduced
in Section 3.4.1. In this way we constructed a 1,000-dimensional embedding H.

To get a better understanding of the relationship between independently selecting
the dimensions of H with SSC and applying a greedy ensemble learning algorithm
in BoostPro, we also measured the TP-FP gap of the selected dimensions. As may
be expected, some of the selected features, when considered alone, have very low
gap values (as low as .02), nevertheless, they are selected by the boosting since their
weighted gap, or equivalently the value of the objective rm is high.

Figures 4-7 and 4-8 show examples of retrieval by exact NN search in the em-
bedding space H. A more thorough evaluation of the error is reported in the next
chapter, where we discuss integration of our pose estimation approach into a tracking
framework.

4.6 Discussion

We have presented an example-based approach to articulated pose estimation from
a single image. Its main difference from the previously proposed methods is that
it does not attempt to build a global model of pose-image relationship, which is
notoriously difficult. Instead, we use a large synthetic database to directly learn to
detect when the poses underlying two images are similar, and, at the same time,
construct an embedding into a space where that similarity is modeled by low L1

distance between embedded images. The embedding framework and the resulting
ability to retrieve similar poses by a simple L1 search combined with the power of
LSH give this approach a critical advantage: the solution to the complex problem
of pose estimation becomes very simple and very fast. To our knowledge, no other
single-frame pose estimation method that achieves similarly accurate estimates has a
comparable speed. These properties make this pose estimation approach well suited
as a component in articulated tracking algorithms. In the next chapter we describe
two systems in which this is taken advantage of.
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Figure 4-8: Results on real input. Column 1: test images. Columns 2-4: top 3
matches in H
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Chapter 5

Articulated Tracking

This chapter describes two state-of-the-art probabilistic articulated tracking systems
that rely on the pose estimation framework presented in Chapter 4. What distin-
guishes these systems from most other approaches to tracking is the use they make
of task-specific similarity models, and specifically of the embeddings learned to fa-
cilitate detection of and search for similarity under these models. The similarity
embeddings are an essential component of the systems from which they derive the
ability to establish and evaluate hypotheses more efficiently.

In Section 5.1 we give a brief introduction to articulated tracking and discuss the
role played by single-frame pose estimation. The first system, described in Section 5.2,
is aimed at motion-driven swing dancing animation. That is a joint work with L. Ren,
J. Hodgins, P. Viola and H. Pfister, published in [93]. Our contribution in that work
has focused on the design of an example-based approach, based on similarity learning,
to evaluating the hypotheses arising in the context of tracking constrained motion
with a discrete dynamics model. The second system, that offers a new approach
to the task of general articulated tracking, is a joint work with D. Demirdjian, L.
Taycher, K. Grauman and T. Darrell. It was published in [35], and is described here
in Section 5.3. In contrast to the first system, here our similarity learning framework
is responsible for generating hypotheses based on estimated similarity between stored
examples and the current observation.

5.1 Articulated tracking

The task of articulated tracking is to recover a sequence of articulated poses from
a video (sequence of images) showing a moving articulated object, in most cases a
human. The definition of pose, and the desired form of the output for each frame
remain the same as in the static pose estimation task introduced in the previous
chapter. What makes the tracking task qualitatively different is the presumed depen-
dencies between consecutive poses. Tracking algorithms attempt to take advantage of
such dependencies by framing the problem as that of probabilistic, usually Bayesian,
inference. Consequently, the tracking task is often reformulated as estimating, at
every frame, the posterior distribution of the pose parameters given the observations
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so far.

5.1.1 Probabilistic tracking framework

Let θ(t) be the articulated pose at time t, and x(t) the observation recorded at that
time–that is, an image, or a set of images received by a multi-camera system. We
will denote x(1,...,t) the entire sequence of observations recorded up to, and including,
time t. A standard step in probabilistic training is to model the dynamics of the
motion by a distribution p(θ(t+1)|θ(1), . . . , θ(t)). Usually folded into this model is the
assumption that the current pose is independent of the pose in most of the previous
frames, given the last few ones, so that the prior distribution of the pose given the
“history” is

p(θ(t+1)|θ(1), . . . , θ(t)) = p(θ(t+1)|θ(t−τ), . . . , θ(t)). (5.1)

The relationship between the observation and the image is modeled by the likeli-
hood function p(xt|θ(t)). The posterior distribution of the pose in the current frame,
given all the observations so far, can be written as

p(θ(t+1)|x(1), . . . ,x(t+1)) ∝ p(x(t+1)|θ(t+1))

×
∫

θ(t−τ),...,θ(t)

p(θ(t+1)|θ(t−τ), . . . , θ(t))p(θ(t−τ), . . . , θ(t)|x(1), . . . ,x(t)),
(5.2)

using the Bayes rule to invert the likelihood and normalized to integrate to unity.
The first factor in the integrand in (5.2) is computed according to the dynamics
model (5.1); the second factor is expanded, recursively, using the same equation. An
important consequence of this approach is that it is necessary to have an estimate
for some initial frames in the sequence (or a reliable narrow estimate of the posterior
in those frames) known. Providing such initialization is one of the main roles played
by single-frame pose estimation, which is not dependent on the past estimates and
observations.

In practical applications of tracking it is usually necessary to commit to a specific
point estimate, that is, to produce a set of deterministic values of the model param-
eters. The commonly used principal way to form such an estimate in a probabilistic
framework is to compute the maximum a-posteriori (MAP) value of the pose, that
is, one that maximizes (5.2).

5.1.2 Models of dynamics

The form of the prior depends on the assumptions about the dynamics in the system,
and on the “depth of the horizon” τ .

Continuous models

One popular model is the Gaussian diffusion model under which τ = 1, and the prior
is p(θ(t+1)|θ(t)) = N (θ(t);0,Σ). This essentially means that the model constrains
the magnitude of the motion. This is the model used in the system described in
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Section 5.3. More complex models that use higher values of τ may be able to model
higher order properties of the motion such as velocity or acceleration. Such models are
either analytical, implementing linear filtering mechanism like the Kalman filter and
its variants [110], or non-parametric and learned from the data [72]. In these models
the information about the past is entirely contained in the prior distribution. The
prior distribution may be represented in a parametric form, or in a semi-parametric
form, that is, by a set of samples [66]. The latter approach leads to the particle
filtering framework, among the most popular ones in articulated tracking.

Discrete models

In some applications, the motion is highly structured, in the sense that only a finite,
and relatively small, number of transitions are considered possible from any given
pose. Furthermore, the number of attainable qualitatively different poses is also
finite.1 This is usually the case with activities that follow certain well-defined rules,
like many sports or dancing. Under these constraints, it is possible to write down the
dynamics model by explicitly enumerating the possible poses as nodes of a graph, and
possible pose transitions as directed edges in this graph, weighted by the probability
of the transition. This leads to the motion graph [72], the model used in the system
described in Section 5.2.

5.1.3 Likelihood and similarity

The form of the likelihood term in (5.2) is typically determined by a generative model
of image given pose. In most algorithms, maximizing the likelihood is achieved by
a gradient-based optimization, in which the model is iteratively used to predict an
observation, and the mismatch between the prediction and the actually observed
data is used to improve the model. Two major problems with this approach are
its computational complexity (likelihood computations are often the computational
bottleneck of a tracking algorithm) and the dependence on the starting location [108].

In the context of motion graph tracking, computing the likelihood is reduced to
evaluating the match between the input frame and a finite set of hypotheses, namely
all the poses θti in the notation of (5.3). In other words, this is an instance of the
similarity detection problem formulated in Section 1.1, and we will approach it using
the tools developed in Chapter 3.

The likelihood model in the systems described in this chapter is example-based:
likelihood is evaluated implicitly, by comparing the input frame to stored examples
for which the pose is known:

p(θi|x(t)) ∼ Spose(x
(t),xi).

More precisely, the likelihood is assumed to be high for poses whose associated obser-
vations are similar to the current observation. This is made possible by applying the
similarity learning framework developed in Chapter 3. The assumption underlying

1That is, the number of poses qualitative different up to some tolerance.
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this approach is that examples similar to the input under Spose correspond, with high
probability, to peaks of the likelihood.

5.2 Case I: Motion-driven animation

This section describes a system for motion-driven animation in the domain of swing
dancing. The application here is to allow a user to perform a swing dance in front of
a multi-camera system, parse the motion into an admissible sequence of swing steps,
and render it on the screen along with a matching action by a “virtual partner”.
The details of the entire system are available in [93]; here we will be focusing on the
motion parsing task, which is essentially an articulated tracking task constrained to
a specific dictionary of poses defined by the rules of swing dance.2

5.2.1 The setup and training data

The visual input to the system consists of three silhouettes extracted3 from synchro-
nized, calibrated consumer-grade digital cameras, mounted so that the fields of view
overlap over a working area of approximately 8’×24’. These are concatenated to form
a single three-view observation x. The 62 parameters of the articulated model θ can
be divided into the pose parameters ξ, describing the configuration of the limbs in
the articulated tree (as joint angles in person-centered coordinate system), and the
parameters specifying the orientation and location of the entire articulate tree in the
world coordinate system. The orientation β can be encoded by a single number, the
yaw angle, as we can assume that a swing dancer’s body is generally in an upright
posture. Specifying location involves additional two degrees of freedom λ for the co-
ordinates on the ground plane where the center of mass is projected. In the remainder
of this section we will refer to ξ as pose, to make this distinction clear.

The dynamics of the swing dance are modeled by a motion graph, constructed from
5,120 frames of motion capture data recorded with a professional dancer. Transitions
are modeled using the distance between poses and ignoring the global orientation and
location. In addition to these transitions, a small number of transitions are added
manually to ensure compliance of the graph with the choreographic rules of swing.

The graph constructed in this way encodes a rather rigid constraint on the move-
ment speed; if the user moves significantly slower or faster than the dancer in the
motion capture recording session, no transitions will match his or her motion. To
alleviate that, the motion graph is augmented by adding a few nodes on each edge
to allow for slower motion and extra edges (from each node to its grandchildren and
grand-grandchildren in the graph) to allow for faster motion.

2The contribution to [93] by the thesis author was primarily in this component.
3The silhouette is extracted by applying a simple color-based foreground/background segmenta-

tion model, finding the bounding box of the foreground pixels and resizing it to 60×60 pixels.
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Tracking with motion graph

The prior distribution (5.1) corresponding to the motion graph is a discrete probability
mass function, assigning values according to the weights on the out-going edges from
θ(t) and putting zero weights on absent edges. Consequently, the posterior is also
discrete and can be described by listing all the paths θ(1) . . . , θ(t) in the graph. For
computational reasons, it is possible to maintain only paths of certain maximal buffer
length b (to avoid combinatorial explosion of the number of paths.) Furthermore,
depending on the application we may afford to maintain a small look-ahead buffer,
that is, we can defer inferring the pose in frame t until we have seen the frame t+ a.4

Suppose that at the time t + a we maintain nt paths

{θ(t−b)
i , . . . , θ

(t+a)
i }nt

i=1.

The expression for the posterior is

p(θ(t)|x(1), . . . ,x(t+a)) ∝ p(x(t)|θ(t))

×
na∑
i=1

p(θ(t)|θ(t−b), . . . , θ(t−1), θ(t+1), . . . , θ(t+a))p(θ(t−τ), . . . , θ(t)|x(1), . . . ,x(t)),

(5.3)

5.2.2 Two-stage architecture

In principle, one could attempt to build a similarity classifier which would be invariant
to the external parameters of the model (location and yaw). However, this makes for
a very complex problem, since the appearance of the silhouettes depends greatly
both on yaw and on the pose and, albeit to a much lesser extent, on the location.
Instead, we will follow a divide-and-conquer approach which breaks the estimation
into a two-stage process.

At the first stage, the yaw of an observation is estimated and quantized into one of
fixed yaw “bins”. At the second stage, the pose of the observation is estimated using
a similarity model that “specializes” on a particular yaw bin.5 Each of these stages
deals with an input subspace in which severe variations of appearance are largely
accounted for by the relevant parameters to be recovered. Below we describe the role
played by similarity detectors in the design of both stages.

The training data

As mentioned in the previous chapter, an example-based approach requires a repre-
sentative database of pose-labeled observations. The human data itself in this case is

4The resulting dynamic model could in principle be modeled as a hidden Markov model, however
estimation in this framework is not practical due to the complexity of the state space together with
the requirements from the application: it has to be real-time and, importantly, have no “jitter” in
the resulting animation.

5This architecture resembles the mixture of experts architecture[67], with the yaw classifier acting
as a gating function.
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representative of the relevant body configurations, but is not inclusive of all possible
angles and locations in the working space (the latter affects the input significantly
due to perspective distortion in the cameras). Thus, a database in this case is built
following the same paradigm as in Section 4.5: by using human motion capture data
described above to generate a larger set of synthetic examples.

For each recorded frame of the human data, an artificial set of silhouettes is
rendered, using a computer graphics package, for every combination of 36 yaw bins
and five fixed locations. Each yaw bin c is associated with the angle cπ/36, and
covers all yaw values cπ/36− π/72 ≤ β ≤ cπ/36 + π/72; the five locations are in the
center and four corners of the work area. This procedure yields a database of 921,600
example observations (triple silhouettes).

These observations are represented in the space similar to the EDH (see Chapter 4)
but more appropriate for binary silhouette data: the concatenated set of responses
of box filters. These filters can be visualized, as in Figure 5-1, by boxes placed over
an image region and divided into black and white segments. The value of a filter
is computed by subtracting the sum of the pixel values within the black portions
of the box from the sum of the pixels within the white portions. These filters were
introduced in [115] in a similar context, where the set of responses of such filters was
used as a feature space for ensemble face detectors. It was also shown in [115] that
each response can be computed very efficiently using the integral image transform (in
which the value in each position is the sum of the pixels above and to the left from
it.) We used three types of such filters, all seen on Figure 5-1: a two-part (vertical
or horizontal), a three-part (vertical or horizontal), and a four-part “checkerboard”.
Filters of each type are slid, at multiple scales, through the image similarly to the
multi-scale EDH. The resulting representation for a 180×60 observation contains more
than 200,000 values.

Pose-invariant yaw classification

We treat the problem of estimating the yaw as a regression problem where the range
of the target function is the discrete set of yaw bin centers cπ/36. The precision (bin
width) of ten degrees was chosen by examining its potential effect on the second stage
of the process–the pose classification. We have observed that, on the one hand, finer
divisions of the yaw range do not seem to significantly reduce appearance variation
between images rendered for the same body pose for angles within the same bin, and
on the other hand, coarser divisions seem to significantly increase such variation.

Once formulated as a regression with a set precision threshold, this problem natu-
rally fits the framework outlined in Section 2.2.1. We therefore define a yaw-sensitive
similarity between two images Syaw to be +1 if the underlying yaws fall in the same
bin–ignoring the pose and the location! Examples of a similar and of a dissimilar pair
under Syaw are shown in Figures 5-2 and 5-1.

Using this definition we form a training set of similar and dissimilar pairs, and
apply the Boosted SSC algorithm. To make sure the training examples are rep-
resentative of the poses while keeping them of manageable size, we apply k-means
clustering [38] to find 50 centers of pose clusters. We then construct each of the 4,000
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Figure 5-1: Some of the projections (filters) learned by Boosted SSC for yaw simi-
larity. Top row: positive examples. Bottom row: negative examples. A projection
corresponding to a box filter is computed by subtracting the sum of pixels under the
rark regions of the box from the sum of pixels under the white regions. From [93].
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Figure 5-2: Positive (left pair) and negative (right pair) training examples for yaw
similarity; pose and location are ignored in determining Syaw. From [93].

positive examples by choosing a random bin, selecting two of the cluster centers, and
selecting a random location (out of five possible) for each. 6,000 negative examples
are formed by a similar process, pairing cluster centers across bins. Increasing the
number of training examples beyond 10,000 is impractical (recall that with the fi-
nite number of projections, as in this case, each iteration of Boosted SSC involves
examination of the value of each projection on each pair.)

We have also set up an additional set of labeled pairs (300,000 positive and
37,000,000 negative), not used in training, to serve as validation set. Testing on
this set reveals that 10,000 examples may not be sufficient to cover the space ade-
quately. Therefore, we follow the resampling approach [106]. We maintain a much
larger set that serve as a “pool” of training examples (800,000 positive and 2,000,000
negative). Every 40 iterations of boosting, we resample a 10,000-example training set
of pairs by the following procedure:

1. The response yi =
∑

m αmcm(x
(1)
i ,x

(2)
i )of the current ensemble classifier is com-

puted for each example pair in the pool.

2. Each example is assigned a weight exp(−liyi).

3. The weights are normalized to form a distribution.

4. A new 4,000+6,000-strong training set is sampled according to that distribution;
the AdaBoost distribution is set to uniform.
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(a) Yaw similarity classifier (b) Pose similarity classifier

Figure 5-3: Test errors for yaw (top) and pose (bottom) similarity classifiers, as a
function of the number of features collected by AdaBoost. From [93].

Note that the computational cost of this algorithm is quite high, even with this
relatively small fraction of examples explicitly examined. Fortunately, most of the
steps in each iteration, including the resampling steps, can be trivially parallelized,
by dividing the data and the features among processes. Most of the computation is
done in parallel, and only modest amount of inter-process communication is required
at each iteration to combine the error estimates, select the winning weak classifier and
distribute the updated parameters such as α to each process. We have implemented
such a parallelized version of the algorithm, and ran it on a Beowulf cluster, using
between 80 and 120 processes.

Figure 5-3(a) shows the behavior of the error on the validation set as boosting
proceeds. As can be seen, the error is steadily decreasing until it levels off, and the
algorithm is stopped after 260 iterations. We thus have obtained a weighted 260-bit
encoding that corresponds to Syaw. the estimation of the yaw for a new observation
follows the paradigm presented in Section 2.2.1, using a 20-NN classifier with L1

distance in the embedding space. Due to the real time speed requirement of the
application, we use LSH (Section 2.4.2) to perform the search for neighbors. To deal
with potential failures due to mirror symmetry of the silhouettes, the actual estimate
during tracking is made more robust by the following procedure:

1. Instead of taking a simple majority vote, we build a histogram of the labels
(yaw values) of the 20 NN and smooth is with a low-pass filter.

2. Two highest peaks in the histogram are located.

3. We form a set of four candidates from those peaks and their mirror reflection
(by adding π to each).
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(b) Yaw similarity classifier

Figure 5-4: 5-4(a): performance of the yaw estimator on a real video sequence of
swing dancer. Solid: ground truth from motion capture; dashed: estimate. 5-4(b):
effect of error in yaw on the resulting pose similarity classifier. The correct yaw in
this case is zero. From [93].

4. Out of these four candidates, we choose the one closest to the estimated yaw in
the previous frame.

Figure 5-4(a) shows an example performance of the final yaw estimator on a real
video recorded simultaneously with the motion capture. For 73% of the frames in
this sequence, the error in yaw estimate is below 10 degrees - i.e., a correct yaw
bin assignment under our definition of sensitivity. In 92.5%, the error is below 20
degrees, and in 98% below 30 degrees. To understand how tolerable are errors of
different magnitude, we tested the effect of incorrect yaw estimation on the accu-
racy of the resulting pose similarity classifiers (we describe learning these classifiers
below). The results for the case of zero degrees yaw, shown in Figure 5-4(b), im-
ply that errors of up to 30 degrees do not cause significant increase in the error of
pose similarity classifier. We believe that this is explained by the relatively smooth
transitions between the appearances of the same pose in neighboring yaw bins. It is
interesting to consider the difference between false negative and false positive rates:
the latter is significantly higher, in particular for yaw estimates with large error, since
the responses of the similarity classifier in that regime become more random, and as
we have noted in Chapter 3 it is “easier” to misclassify a dissimilar pair by a random
set of projections/thresholds.

Yaw-specific pose estimation

For each yaw bin β, we learn a classifier of the pose similarity Sβ
pose defined according

to (4.1), with Dθ being the L2 in the pose parameter space. The learning proce-
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Figure 5-5: Positive (left pair) and negative (right pair) training examples for pose
similarity for a fixed yaw. From [93].

dure closely follows the one described above for the yaw similarity learning, with the
following differences:

• For positive examples, all the 5,120 poses, rather than 50 cluster centers, are
used, since the similarity rate for the pose is significantly lower than for yaw,
and the total number of potential positive pairs is much lower. For negative
examples, we use clustering in the way described above.

• There are 3,000 positive and 5,000 negative examples in the training set, and
200,000/10,000,000 examples in the resampling pool.

• Resampling occurs every 80 iterations.

• The number of boosting iterations is 320.

As can be seen in Figure 5-3(b), the behavior of the error of a typical pose simi-
larity classifier follows the same trend as for the yaw classifier. However, the absolute
level of the error is much lower. This reveals that the difficulty of the yaw estimation
task significantly exceeds that of the pose classifier. We relate that to two factors.
One is the larger visual diversity among the examples seen by the yaw similarity
classifier, versus any of the 36 pose similarity classifiers. The other factor is the much
smaller, in absolute numbers, set of potential positive examples in the case of pose
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estimation; as a result, it is possible to represent those better in the training set pro-
vided to the learning algorithm, whereas in the case of yaw classifier we must resort
to clustering as a pre-processing step.

Once the pose similarity classifiers are learned, we could follow the same approach
as with yaw estimation, i.e. convert the classifier to an embedding, and build a NN-
based regression mechanism using the L1 in the embedding space. However, recall
that under the motion graph model we need, for frame t, to consider a finite number of
examples - the nodes θ

(t)
1 , . . . , θ

(t)
nt in terms of Equation 5.3. The number of currently

maintained paths nt is typically small due to relatively low branching factor of the
motion graph. Therefore, we can afford to use the similarity classifier explicitly!
In other words, we can form nt pairs of observations (x(t),x

(t)
i ) and compute the

response6
∑M

m=1 αmcm(x(t),x
(t)
i ).

5.2.3 Performance

The system described in this section has been successfully tested on a number of real
video sequences. To obtain a quantitative measure of error, an evaluation was done on
one such sequence for which motion capture data, recorded simultaneously with the
video, was available. On that sequence, performance of our system was compared to
the performance of a system using a commonly used set of features–Hu moments [63].
Hu moments are based on seven moment invariants of a binary shape 9the silhouette
in this case). The purpose of this evaluation was to try to ascertain the effect of
learning similarity and of using the box filter representation.

Figure 5-6 shows the histogram of error differences ; the superior performance of
the learned similarity representation over Hu moments is clear. In 86% percent of
the frames, the error with Hu moments exceeded the error of our system. The effect
of the learned embedding (or equivalently the learned distance measure) is further
illustrated in Figure 5-7. The figure shows some typical examples of poses retrieved
by the nearest neighbor search with respect to the ground truth, the embedding
distance, and the distance in Hu moment space (the results shown were obtained
with no temporal information to emphasize the effect of the space/distance on the
retrieval.) The average per frame Dθ error of the embedding NN was 44cm, compared
to 25cm with the “hindsight” NN (finding the best match knowing the correct ground
truth value) and to 76cm with Hu moments.

Finally, in addition to measuring the accuracy of pose estimation on a per-frame
basis, extensive evaluation was done to compare the quality of the resulting animation
to that obtained with state-of-the-art methods in the field; see [93] for details.

6We found that ignoring the weights αm speeds up the computation, which is then reduced to
calculating Hamming distance, with no significant effect on the results.
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Figure 5-6: Histogram of differences between the Dθ error of 1-NN in Hu moments
and the 1-NN error in the learned similarity embedding; positive values mean smaller
error for our system. Obtained on one real dance sequences with measured ground
truth. From [93].
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Figure 5-7: Representative examples of pose retrieval accuracy with various methods.
Each row corresponds to one frame. Columns, from left to right: Ground truth; best
match in the database by brute search; best match in the embedding space; best
match with Hu moments. Numbers: L2 error in the pose space. From [93].
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5.3 Case II: General pose tracking with likelihood

modes

If the goal of the tracking application is not restricted to a specific domain with con-
strained and structured motion, continuous models of dynamics are more appropriate.
The system described in this section implements such a model. It is however unusual
in that it avoids the problem shared by many state-of-the-art tracking algorithms:
being led astray by an inaccurate prior. This is achieved by using a weak prior,
and using similarity search in an embedding space to obtain the peaks of the likeli-
hood function directly from the observation. Since such search can be implemented
extremely fast using LSH, the resulting tracking system is also very fast.

5.3.1 Pose similarity as likelihood sampling

As mentioned in Section 5.1.3, we adopt the assumption that the examples closest to
the current observation in the similarity embedding space are, with high probability,
close to peaks of the likelihood. More precisely, we assume that at least one example
among those returned by a K-NN search in the embedding space will correspond to
each high peak in the likelihood.

Following this assumption, we can think of searching a large database of labeled
images under a learned pose similarity as a very fast evaluation and sampling of
approximate likelihood. The examples not returned by the search (i.e., the vast
majority of the database) are considered to have been pruned away by this procedure,
which is taken to mean that their likelihood is low. The returned examples are treated
as candidates for high likelihood. However, since the search is approximate, we do
not directly use these examples in estimation, but rather use them as starting points
for local optimization.

The likelihood optimization in our system uses the Iterative Closest Point (ICP)
algorithm [15] to find a local optimum of the match between a set of points on the
surface constructed for the articulated model and a corresponding set of points on the
estimated surface of the observed body (the latter is obtained by applying a standard
stereo matching algorithm.)

5.3.2 Tracking with likelihood modes

The main motivation behind the algorithm described here is to avoid a typical failure
mode of tracking algorithms that rely on the prior: being led astray and losing track
due to inaccurate, and overly confident, prior. One reason for using a strong prior is
that it provides a starting point for an optimization step in which the model is im-
proved with the objective to increase the likelihood (and thus the posterior), typically
by means of an iterative gradient ascent algorithm. This strategy often is reasonable,
however it may fail in cases of occlusion, unusually fast or slow motion, and simply
when the tracker made significant mistakes in the previous few frames. Applying
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Figure 5-8: Schematic illustration of the estimation flow in ELMO. The temporal
prior is obtained by multiplying the posterior from the previous frame by a high-
bandwidth Gaussian. From [35].

strong prior model in such cases results in a bad starting point for the gradient de-
scent, which may have critical effect on the quality of the eventual result [108].

The operation of our tracking algorithm (called ELMO: Tracking with Likelihood
MOdes) is schematically shown in Figure 5-8. At every frame, we maintain a para-
metric estimate of the pose posterior in the previous frame in the form of a mixture
of Q Gaussians. A temporal prior is obtained from this estimate by multiplying the
posterior by a high-bandwidth Gaussian window, in accordance with the diffusion
dynamics model.

Given the new observation, we compute its embedding into a space H and retrieve
the poses corresponding to K top matches in H. As mentioned above, our assumption
is that the poses associated with the retrieved examples have, with high probability,
high likelihood given the current observation. Each of these K candidate poses is
then used as a starting point for an ICP search to find the adjacent local maximum
of the explicit likelihood. Once these modes of the likelihood are found, we multiply
them by the prior obtained, as mentioned above, by smoothing the posterior from
the previous frame. The result is the estimate of the posterior in the current frame.

5.3.3 Implementation and performance

In our system we use the concatenated multi-scale edge direction histogram (EDH)
as the feature space, as described in the previous chapter. Using a combination of
color background model with stereo volume information we extract a bounding box
of the silhouette and normalize it to 200×200 pixels. With 3 scales (8, 16 and 32
pixels) and with location step size of half the scale, the EDH yields N = 13, 076
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bins. Applying SSC , and specifying the minimum TP-FP gap of .1, we obtained
M = 3547 embedding dimensions.

Having encoded the data (described in Section 4.5) according to the learned em-
bedding, we constructed LSH with l = 50 hash tables with k = 18 bit keys. At the
run time, we retrieve for every frame K = 50 training examples and use their poses
to initialize the ICP.

Using six synthetic sequences generated based on human motion capture data,
obtained from [41], we compared the performance of ELMO to that of two alternative
algorithms: the state-of-the-art Condensation particle filtering approach [36], with
1,000 particles, and the ICP differential tracker [34]. We also measured the per-
frame error resulting from retrieving the NN under the SSC embedding directly. The
sequences are rendered with significant perspective distortion, relatively wide range
of motions, much self-occlusion and are therefore challenging for a tracking algorithm.

The summary of the results of this comparison appears in Figure 5-9. As can
be seen, the average error with ELMO is the lowest. Figure 5-10 shows the per-
frame account for segments from two of the synthetic sequences. The error with
ELMO is the lowest in most of the frames. The performance of Condensation was
the worst among the tracking algorithms (and only better than the per-frame static
estimation with SSC that ignores dynamics). It is possible that with additional
particles Condensation would improve its performance. However, with 1,000 particles
it is already two orders of magnitude slower than the other methods.

It is also interesting to note that although the average performance of the single-
frame pose estimation with SSC is inferior to that of proper tracking algorithms, it
fares relatively well, with the error being less than a standard deviation above the
average errors of Condensation and ICP trackers. Looking at the sequence data we
can see that in fact there are segments in which it does better than those algorithms.
This provides some insight into the success of ELMO: relying on the robust single-
frame estimator allows it to recover from some severe errors, since at most after a
few frames the matches found with LSH in the embedding space become again close
to the likelihood peaks. This is also related to an additional advantage not explicit
in these figures: ELMO does not need manual initialization, instead using the NN
search from the very first frame.

In addition to the tests with synthetic data, where exact error evaluation is pos-
sible, we evaluated the performance of ELMO on a number of real video sequences.
Figures 5-11 and 5-12 show a few frames from two of such sequences. Notably, the
frame rate in these sequences was only four frames per second, creating significant
inter-frame pose differences. With tracking algorithms strongly depending on the
prior, this would normally pose much difficulty. However, ELMOdeals with this
gracefully.

5.4 Discussion

In both of the tracking systems described in this chapter, an example-based pose
estimation algorithm is a crucial component. In the swing dance animation system it
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Figure 5-9: Average and standard deviation of the ground truth error obtained using
Condensation, SSC (PSH, in terms of [35]), ICP, and ELMO on six sequences of
1000 images each. ELMO outperforms the Condensation, ICP and SSC algorithms.
The average error per joint for ELMO is less than 5 cm. From [35].

allows for efficient evaluation of multiple hypotheses. In ELMO, it provides a means
of automatic initialization and re-initialization, and in combination with the weak
temporal model for the prior makes the tracker qualitatively less vulnerable to losing
track.

Two key properties of our similarity learning approach that make it possible are
the classifier/embedding duality, that enables us to reduce the problem of evaluating
a large hypothesis space to the problem of search in a database for neighbors under
the L1 distance, and the setup for learning the similarity specific to the task at hand.
The latter, as exemplified in the swing animation system described in this chapter,
allows us to break down complex estimation problems into much simpler ones, leading
to a winning divide-and-conquer architecture.
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Figure 5-10: Tracking results on two of the six test sequences (for better clarity, only
segments of the sequences are shown). The graphs report the ground truth error (vs.
frame number) corresponding to Condensation, SSC, ICP and ELMO. (a) Fighting
sequence, (b) Karate sequence. The error corresponding to the ELMO algorithm is
almost always the smallest. From [35].
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Figure 5-11: Tracking results extracted from the dance sequence. From [35].

Figure 5-12: Tracking results extracted from the whiteboard sequence. From [35].
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Chapter 6

Learning Image Patch Similarity

The ability to compare image regions (patches) has been the basis of many approaches
to core computer vision problems, including object, texture and scene categorization.
Developing representations for image patches has also been in the focus of much work.
However, the question of appropriate similarity measure between patches has largely
remained unattended.

In this chapter we focus on a specific case study: learning similarity of natural
image patches under arbitrary rotation and minor shift. Figure 6-1 shows a few
examples of groups of patches that are similar to each other. Such a definition may
not be broad enough, that is, some patches that do not fit this description still may
be considered similar in the context of a given task. For instance, if the goal is
to categorize an object, rather than recognize a specific instance, patches that look
visually dissimilar at this low lever may still correspond to semantically matching
parts.1 However, we believe that for many reasonable tasks that involve matching
patches, the underlying definition of similarity must include this limited case.

Rather than developing a new representation that is invariant to the transfor-
mation in question, we will consider two popular representations of patches: sparse
overcomplete code and scale-invariant feature transform (SIFT). Specifically, we will
investigate how the tools developed in this thesis can be used to improve matching
with these representations.

Section 6.1 provides some background on algorithms that use patch matching, and
reviews approaches to measuring patch similarity. We define the target similarity con-
cept in Section 6.2, and the patch descriptors used in the experiments are introduced
in Section 6.3. We then describe, in Section 6.4.2 an experimental evaluation that
demonstrates an improvement in matching with both of the descriptor types by using
a similarity-driven embedding learned with BoostPro.

1Note that the framework presented in this chapter can be extended to learn such a similarity as
well, as long as examples are provided.
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6.1 Background

The main context in which comparing image patches has emerged in computer vision
is that of high-level vision tasks, that can be described as scene understanding. This
includes:

Object recognition This means finding a specific object: a face of a certain person,
a shoe of a particular make, a magazine etc.

Object categorization and object class detection Rather than looking for a spe-
cific instance of an object, the interest here is in all objects that belong to a
certain class, for an appropriate definition of the latter: any face, any car, etc.

Entire image classification Sometimes the goal is not to localize, or determine
the presence of, an object but rather to assign the entire image to a certain
class. For instance, location recognition and texture classification belong to
this category of tasks.

Broadly speaking, approaches to these tasks can be divided into three groups with
regards to how they represent image information. The first group consists of methods
that rely on global features. This may include methods that collect a histogram of
measurements over an entire image [82, 101], or shape matching techniques that
directly model an entire shape in a parametric form [104, 74].

The second group consists of methods that operate on local image features, but
do not directly operate on image patches. This includes methods that compute his-
tograms of measurements over a limited region, be it measurements of shape [11, 55]
or filter responses [115, 101].

Finally, the third group, of most relevance here, directly operates on image patches.
Most of the methods in this group involve, in addition to matching the patches, a
geometrical reasoning component. This component may involve a full model of joint
location of parts as in constellation models [46, 71], or a more loose set of constraints
like in random field models [91], or fragment-based approaches [3, 9]. Some methods
that have been proposed avoid modeling geometry altogether [107].

It should be emphasized that in addition to recognition and classification, other
tasks may benefit from patch matching paradigm. Notable examples are fragments-
based segmentation [17] and wide-baseline stereo reconstruction [81].

6.1.1 Patch similarity measures

The question of measuring similarity between patches has not received very much
attention in the computer vision literature. Usually, a standard distance measure is
adopted for whatever representation is used.
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Pixel-based distance

The simplest similarity measure consists of directly comparing the pixel values of the
two regions, e.g. by means of the L1 distance

D(x1,x2) =
∑

d

|x1(d) − x2(d)|.

This is rarely a useful measure, since it is extremely sensitive to minor transforma-
tions, both in geometry (shifts and rotations) and in imaging conditions (lighting or
noise).

Correlation

Normalized correlation between patches x1 and x2 is defined as

NC(x1,x2) =

∑
d

(
x1(d) − x̄1

) (
x2(d) − x̄2

)
σ1σ2

,

where x̄i and σi are the mean and standard deviation of pixels in xi. Because of
the factoring in of the means it is much more robust than the pixel-wise distance.
Normalized correlation has been used extensively in fragment-based recognition [3, 9],
where it is assumed that viewing conditions are fixed, or alternatively that there
exist examples from all viewing conditions–in other words, not matching a patch to
a version of itself rotated by 90 degrees is acceptable. We would like to avoid such an
assumption.

Descriptor distance

Another popular method is to compute a descriptor of each patch, and then simply
apply a distance measure on the two descriptors. Most commonly the descriptors
are vectors in a metric space of fixed dimensions and the distance of choice is L1.
Matching with SIFT descriptors, discussed in detail in Section 6.3.2 is perhaps the
most popular example of such an approach [76]. Another popular descriptor is the
shape context [11], often used when shape is believed to be the crucial component of
the recognition system. Shape contexts are based on the local histogram of contour
points in the vicinity of the selected location. The distance of choice for shape contexts
is typically χ2.

Probabilistic matching

A different approach is taken by some of the methods that instead of measuring
distance between representations patches, evaluate directly the probability that the
two patches belong to the same class. This is usually limited to models in which a
fixed number of patch classes, called parts, are combined in some framework. A well
known example of this kind is the family of constellation models [19, 46].
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Figure 6-1: Examples of similar patches from whitened images. Each column contains
rotated and shifted versions of the same original patch, so that by definition patches
in each column are similar.

6.1.2 Interest operators

An important aspect of any patch-based technique is the method for selecting the
patches that are subsequently evaluated for similarity–both in the test image and
in labeled training images. This issue is often coupled with that of descriptors and
similarity, since the invariance in the descriptor is induced by providing it with an
estimate of the transformation of the patch with respect to some canonical reference
frame, for instance, the angle necessary to align the main axis of a region with the
vertical axis, or the size of a region.

There is a large number of interest operators, and extensive evaluation has been
undertaken in a number of cases [102, 77, 71, 84]. On the other hand, the role of these
operators (and the role of the keypoint concept, in general) in object recognition is still
somewhat controversial: recent results in [9, 14, 80] show that excellent performance
can be achieved without using keypoints or interest operators at all. In general, we
would like to remain agnostic on this issue, and focus on the analysis of descriptors and
their role in similarity matching. When necessary (namely, with SIFT descriptors) we
will assume that an appropriate detector has been applied, and therefore will make
available the basic information that would normally be provided by such a detector
(location and scale of the patch).

6.2 Defining and labeling visual similarity

For the purposes of the study in this chapter, we consider two patches to be similar
if they could be obtained by taking an image and then rotating (and/or shifting by
a small amount) the imaging device and taking an image again–and extracting the
patches from the same image location. Equivalently, the two patches are similar if
there exists a transformation, consisting of a shift by between zero to two pixels,
followed by an arbitrary in-plane rotation, that makes the two patches be identical,
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up to pixel-level aliasing and possible boundary effects due to shift.2

In terms of image representation, this definition of similarity resembles the low-
level invariance believed to exist in the lateral geniculate nucleus (LGN) and higher
areas in the primate visual cortex [39, 64]. It also matches an intuitive notion of
visual similarity that is related to semantics of the visual world: two patches are
similar if they correspond to the same element of a physical scene. This leads to
the idea underlying the slow-feature analysis technique for unsupervised learning of
spatio-temporal coding, and in particular invariance to transformations, in the visual
cortex [116]. In SFA, a stimulus to the learning algorithm is constructed by simulating
a “natural movie”–a sequence of inputs obtained by moving a receptive field slowly
(i.e., by applying only mild transformations to obtain the next frame) in the image.
The objective of the algorithm is, in effect, to learn features that are efficient in
encoding such sequences.

We take this idea and apply it to the task of labeling similar image patches. For
a given image patch in a natural image, any number of patches similar to it may be
transforming the receptive field according to the desired similarity. So, if we want to
ignore the rotation, images obtained by rotating the receptive field at a fixed location
can serve as examples of similar pairs. If shifts by up to a certain number of pixels
are to be ignored, any two shifts within those bounds will produce image similar to
each other, etc.

Figure 6-1 shows a few examples of sets of similar patches generated by the pro-
cedure outlined above. Patches in each column are versions of one patch (top row),
rotated by a random angle or shifted in random direction by 2 pixels.

This notion of similarity adheres to the definition of equivalence given in Chap-
ter 1. Also, as mentioned in Chapter 2, this notion of equivalence does not translate
to a transitive equivalence relation in the patch space: taking a shifted patch and
shifting it again will, again, create a similar pair, but the third patch may no longer
be similar to the first one.

6.3 Patch descriptors

We will be focusing on two descriptors that have very different properties and were
designed under very different objectives. The first one, the coefficients of a sparse
overcomplete code, corresponds to a generative model of the patch, and is by design
not invariant to transformations. The second, SIFT, is a constructed with a discrim-
inative task in mind, specifically to be invariant under shift and rotation (when used
in conjunction with an interest operator).

2Note that we work with patches shape like a disk (up to the pixelation aliasing artifacts) rather
than a more common rectangle. This is to diminish the artifacts introduced in the corners by rotating
a rectangular patch.
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Figure 6-2: Descriptors for the patches in the third column from left in Figure 6-1.
Left: SIFT descriptors. Right: coefficients of a sparse overcomplete code.
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6.3.1 Sparse overcomplete code

A large body of work has been focused on construction of codes for natural images
that would posses the key properties of the V1 cell populations, namely orientation
selective and localized receptive fields. It has been shown in a number of studies [89,
64] that these properties emerge as a result of a learning procedure whose objective is
to maximize the fidelity of reconstruction along with maximum sparseness of response.
The latter is believed to be an important principle of sensory coding in the brain,
related to the statistical properties of natural visual scenes[47].

Specifically, a sparse overcomplete code defines a generative model of the patch
as a linear combination of C basis functions, that are themselves patches of the same
dimension:

x =
C∑

c=1

acφc = Φa. (6.1)

The general objective of constructing this code is, naturally, to reduce the reconstruc-
tion error, which is measured by the energy in the residual. Under that objective
alone, if we fix the basis functions, the optimal decomposition of a patch x, in terms
of the coefficients a = [a1, . . . , aC ]T could be found as

a∗ = argmin
a

‖x−Φa‖. (6.2)

However, two key properties of the codes we are discussing here are overcompleteness
and sparseness. The former means that the number C of basis function is higher than
the dimension of x. The latter means that a majority of coefficient have very low
absolute value for any given patch. As a consequence of overcompleteness, (6.2) will
generally not have a unique solution. This is where the sparseness property becomes
important: the optimization criterion is augmented by a penalty term, that drives
the coefficients to zero. This can be written [89] as

a∗ = argmin
a

‖x−Φa‖ + λ

C∑
c=1

S(ac), (6.3)

where S(ac) is an appropriate cost function that penalizes values away from zero. The
specific form of this function is a matter of design; it should be noted that a choice of
S corresponds to imposing a statistical model on the distribution of the coefficients
(prior). For instance, the cost function

S(a) = log(1 + a2)

used in our experiments (following [89]) can be shown to correspond to the Cauchy
prior.

It is important to distinguish this coding scheme from coding with non-overcomplete
representations. The main difference is that there is no closed-form solution to the
optimization, and it has to approached with an iterative optimization algorithm per-
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forming gradient descent on the cost function. The algorithm, suggested in [89], starts
with a random basis; a number of random patches are extracted from the training
images, and the optimal coefficients with respect to the current basis are computed
by means of gradient descent on (6.3). Given these coefficients, the basis functions
are updated, with the objective to decrease the residual. The update rule is

∆φc = ηac (x−Φa) ,

where η is the learning rate. The process is repeated iteratively, until no further
significant changes in Φ are recorded.

Such codes have been successful in low-level vision tasks, such as image de-
noising [98]. Some properties of this representations make it potentially appealing
for recognition purposes: Sparseness makes the code likely to provide good discrim-
inative power [8, 92, 3], and high reconstruction fidelity means that they encoding
will likely retain relevant information from the original image patch. A key question
though is how to compare two patches encoded in this fashion.

The right column in Figure 6-2 shows the coefficient vectors for four similar patches
(that appear in the third column from the left in Figure 6-1.) One immediate obser-
vation from the figure is that there is a significant variation in the codes; this suggests
that the näıve use of L1 between the coefficient vectors a may not be a good choice
of similarity measure between patches.

The instability of the sparse overcomplete code is in fact a direct consequence of
its key properties. Consider a particular patch, for which optimizing the coefficients
in (6.2) makes a coefficient ac to have a high absolute value. If the same patch is
shifted by one pixel, the basis function φc will probably still account for some of the
patch appearance reasonably well. However, there likely (due to the overcompleteness
of the code) will be another basis function φj which will account for the shifted patch
even better. Furthermore, the sparseness constraint will encourage the absolute values
of both ac and aj to decrease. As a result, it will be more optimal from the perspective
of reducing the cost function value to “keep” φj and suppress φc for the shifted patch.
This explains the typical pattern in which even a small variation in the patch may
cause significant changes in the code, and the resulting effect on similarity between
transformed patches.

6.3.2 SIFT

The SIFT descriptor [77] is based on a histogram of oriented gradients within the
region it describes. It is computed for a known location, scale and orientation in
the image (provided by an interest operator). The descriptor is computed in the
following way (the parameters given here are the ones used in our experiments, and
can be varied when implementing the algorithm):

• The calculations are based on the appropriate level in the Difference-of-Gaussian
pyramid, rather than on the original image. This induces scale-invariance.

• The orientation and magnitude of the intensity gradient are computed on a
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Figure 6-3: Examples of whitened images (four out of 100) used to train and test
patch similarity measures.

fixed 16× 16 grid in the vicinity of the target location. The values are weighed
by a high-bandwidth Gaussian window centered at the location.

• A smoothed histogram of gradient orientations is computed for each subregion of
4×4 grid locations. With 8 bins in the histogram, this yields a 128-dimensional
descriptor.

Note that the invariance to scale, rotation and translation with this descriptor are
subject to an accurate estimation by an interest operator. The main source of the
robustness of a SIFT descriptor is in their reliance on histograms and on gradients.
As a result, it is not sensitive to absolute changes in intensity and to minor shifts. A
detailed analysis of its stability is given in [77]; the experiments presented below can
be seen as an additional verification of these properties of SIFT.

6.4 Experiments

In our experiments we used a collection of 100 natural images taken from the Hemera
database [59]. These images contain natural and man-made scenes, indoors and
outdoors.
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6.4.1 Collecting descriptors

Sparse overcomplete code coefficients

We used a code learned on a set of 250 natural images, not used in the descriptor
evaluation. The images were whitened as described in [89], to flatten the power
spectrum; this whitening appears to be critical to ensure proper convergence of the
code learning algorithm. Figure 6-3 shows a few examples of the training images.
The learned code consists of 1,100 basis function, for a disk-like patch of diameter 27
pixels. The total number of pixels in a patch is 529, so that the code is more than
twice overcomplete. Figure 6-4 shows a representative sample of the basis function
in the code. Most of the emerging basis functions correspond to localized oriented
filters,3 a typical result consistent with numerous reports in the literature.

The set of patches used in the experiments was generated by the following pro-
cedure. For each image, we selected 100 locations, subject to a minimal variance
criterion: the intensity variance within a patch centered at a selected location should
be at least equal to the variance within the image. For each location (r, c) we:

• Draw four random angles between 0 and 360o, and for each angle extract a
patch centered at (r, c) and rotate it by each of the angles; this produces four
patches.

• Extract (with no rotation) patches centered at (c − 2, r − 2), (c − 2, r + 2),
(c + 2, r − 2) and (c + 2, r + 2). This produces another four patches.

This results in a total of 80,000 patches: 100 images×100 locations×8 similar
patches associated with each location. For each patch we calculate the coefficients of
the sparse code by applying the optimization in (6.3). The right column in Figure 6-2
shows four examples of the resulting 1,100-dimensional descriptors for a set of similar
patches in Figure 6-1.

SIFT descriptors

To collect SIFT descriptors for the same patches represented by the sparse codes,
we use the original (unwhitened) images. For each of the 80,000 collected patches,
we define a keypoint at the location of that patch and with the scale corresponding
to the diameter of the patch. We do not, however, “disclose” the rotation, and the
descriptor is computed assuming the rotation is zero degrees.

The 128-dimensional descriptors were computed using the code from the Visual
Geometry Group at Oxford.4 The left column in Figure 6-2 shows the SIFT descrip-
tors for the same patches as the codes on the right.

3Note that in general, since there is no closed-form solution for a, it is not possible to infer the
filter corresponding to a basis function φ directly from φ, but rather one needs to estimate it on a
sample of natural stimuli.

4http://www.robots.ox.ac.uk/∼vgg/software/
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Figure 6-4: Example basis function for the sparse overcomplete code used in the
experiments. 225 out of 1100 basis functions are shown. Patch size is 529 pixels (an
approximate disk with diameter 27).

6.4.2 Embedding the descriptors for similarity

Under the similarity notion defined above, we can construct 280,000 similar and more
than 3× 109 dissimilar pairs out of the 80,000 patches. We randomly selected 6,000
similar and 10,000 dissimilar pairs for training, and five times as many distinct pairs
for testing. All the results shown in this section were computed on the testing pairs.5

The embeddings for both SIFT and sparse codes were learned by running Boost-
Pro on the training pairs, using linear ten-term projections (linear combinations of
10 dimensions.)6 Since the space of the combinations is very large, we initialized the

5The baseline similarity measures which do not involve any learning have, of course, identical
performance on the training and testing data.

6We experimented with smaller numbers of terms, however the results, measured on an indepen-
dent validation set, were significantly worse. We believe this is due to the fact that with a random
pair of dimensions, if they are “useless”, not much can be done by the gradient ascent, whereas
with ten dimensions, there is higher likelihood that at least some are useful, and the projection
coefficients are updated accordingly.
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Similarity Pixels L1 on a L1 on H(a) SIFT H(SIFT)
AUC 0.6049 0.5651 0.6847 0.8794 0.9633

Table 6.1: Area under ROC for similarity measures compared in our evaluation.

Figure 6-5: ROC curves with sparse overcomplete codes. Dotted: L1 distance on
pixels. Dashed: L1 distance on code coefficients. Solid: L1 in BoostPro embedding.

gradient descent from 100 random projections in every iteration of boosting, and se-
lected the best among the finishing points of the 100 gradient ascent chains. In both
cases, the boosting was run for 100 iterations, thus producing one hundred embedding
dimensions–a dimensionality reduction for both descriptors, particularly significant
for the sparse codes! However, one should keep in mind that this is not a new rep-
resentation of reduced dimension that retains all useful properties of the original
one; the purpose of the embedding is explicitly to facilitate similarity detection, and,
for instance, the generative power of the sparse code is lost in the 100-dimensional
embedding.

We are interested in the accuracy of matching similar patches. Since the match is
decided by thresholding a numerical value , namely, the distance either in the original
descriptor space or in the embedding space, we can use the ROC curves to compare
the models of similarity. These are shown in Figures 6-5 and 6-6, and the areas under
the curves are given in Table 6.1.

A comparison between the baseline ROC curves (dashed lines in Figures 6-5 and 6-
6, and the area under the curves given in Table 6.1, confirm the intuition that the
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Figure 6-6: ROC curves with SIFT descriptors. Dashed: L1 on SIFT descriptors.
Solid: L1 in BoostPro embedding.

sparse code coefficients in their “raw” form are not effective for matching patches.
The performance of both pixel-based match and the L1 distance on the sparse code
coefficients is essentially not much better than random.

The ROC of the distances in the similarity embedding, on the other hand, are
clearly superior to those of the distances in the original descriptor space, both for
SIFT and for the sparse codes. For SIFT, the embedding yields an improvement in
the area under curve to more than 0.96, with the equal error rate of 0.8930 (i.e., the
probability of detecting a correct match of 89.3% corresponds to probability 10.7% of
false match). By comparing the patch paitrs misclassified by the two measures we can
see that most of the gain is achieved in learning the rotation correspondences between
the gradient histogram bins, and as a result the error rate on patches similar up to
rotation is decreased with the embedding similarity. As for the shifts, the descriptor
is already quite robust to matching shifted patches. These findings are in agreement
with the analysis of SIFT performance in [77].

We also have analyzed the embedding of the sparse code coefficients. Figure 6-7
shows, in each row, the basis patches which form the projection, with the coefficients
written under the corresponding patches. The three rows correspond to the first three
projections. Note that due to the non-convex nature of the optimization surface in
BoostPro, these are not necessarily, or even likely, the most efficient projections,
but rather simply the projections that happened to be picked up first. This is also
reflected in the magnitude of the αm values (the height of spikes in Figure 6-8). Often
in application of AdaBoost these values decrease steadily, however this is not the case
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a b c d e f g h i j

0.6286 -2.9260 -0.8801 -2.8439 2.7368 -1.2706 20.8419 -3.2741 3.5916 -2.2061

2.8240 1.3132 -0.4150 0.4338 -4.8073 4.9658 -1.8069 1.7104 1.5883 -3.2200

0.0278 -0.0182 -0.2556 0.6643 -0.2896 0.2154 0.0156 -0.5497 0.6012 -0.6488

Figure 6-7: The first three projections in the embedding of sparse code coefficients
learned with BoostPro. The number under each basis patch is the coefficient in
the projection. Thresholds, selected for each projection by applying Algorithm 4, are
6.85, .16 and 0.003, respectively. The letters are used to identify the columns.

here.

We will discuss in some detail the top row of the figure, showing the first pro-
jection; letters on top help identify the basis functions. Recall from Chapter 3 the
general interpretation of the projections: two patches must fall on the same side
of the threshold in order for the projection to contribute to the matching score (or,
equivalently, for the projection not to contribute to the distance value in H.) Perhaps
the best way to describe the effect of the individual components of the projection is
to say that if for the two patches the coefficients for the basis function d have high
value, and the coefficients for the function e have low value (i.e., large absolute value
and negative sign), it increases their chances to be considered similar by the weak
classifier associated with this projection. Note that the low frequency basis function
g has a coefficient much higher than others, so that this particular projection largely
looks at the spatial frequency of the features within the patch, so, for instance, two
relatively “flat” patches will be likely considered similar by this projection.

Generally, the magnitude of the coefficients in the projection determines the im-
portance of the corresponding basis function (within that projection). The signs
are only meaningful relative to the signs of the other projection components. For
instance, the sign of the function d is not important by itself: its contribution to
similarity judgment on two patches that both have ad = 3 will be the same as for
two patches with ad = −3 (in both cases it will “move” both patches in the same
direction relative to the threshold.) However, in combination with other basis func-
tions and their signs in the projection in the same projection the sign does play a
role: if two basis functions are likely to correspond to similar patches their sign will
likely match. For instance, a patch with af = 1 and a patch with ah = 1 will have a
positive contribution from the corresponding projection coordinates (i.e. they will be
“moved” towards the same side of the threshold); this probably is explained by the
possibility of a shift that move a vertical edge on the right side of the patch in the
right-left direction.
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Finally, Figure 6-8 shows the embeddings themselves, for the same example patches
as the descriptors in Figure 6-2. This figure provides a visual illustration of the im-
proved correspondences between the representations of similar patches (much more
noticeable with SIFT.)

6.5 Discussion

The main conclusion from the experiments presented here is that it is beneficial to
learn a similarity model, rather than to rely on properties of a descriptor and use
the metric as a proxy for such similarity. This is the case both when the descriptor
in question is not designed to be invariant to transformations, as is the case with
the sparse overcomplete codes, and when it is specifically designed with such invari-
ance in mind, which is the case with SIFT. For both descriptors, it pays off to learn
a similarity model, as far as the matching quality measured by ROC is concerned.
Our experiments also suggest that for matching similar image patches under rota-
tions and minor shifts, the best method among the ones investigated is to use the
SIFT descriptor of the region, embedded into a similarity-reflecting space by applying
BoostPro.

Another important conclusion is that the sparse overcomplete codes for image
patches can be potentially used in a matching-based framework, if a proper similarity
measure (or equivalently a proper embedding of the code) is used, rather than the
näıvely applied L1 distance. While the improvement is still not enough to place this
descriptor in the same “league” with SIFT, we believe that certain characteristics
make it appealing and warrant further looking into its use in recognition. First, it
is based on a generative model of natural images, and thus can exlain the patch in
terms of the fundamental visual elements comprising it. Second, the performance
achieved here did not require any information from an interest operator, of the kind
necessary to apply SIFT. This may be an appealing property for approaches that do
not use the keypoint paradigm.

An aspect of our approach to modeling visual similarity of patches that distin-
guishes it from other approaches, is that we do not impose an invariant representation
directly. Instead we learn a representation that makes similarity under the transfor-
mations explicit, thus causing the matching to become invariant. Another key aspect
is that similarity is learned, not hand-crafted into the model. This is promising from
the perspective of class-specific or object-specific matching, when similarity is defined
in different ways for different classes, or when the type of patches to be compared is
restricted. Of course, this promise has to be evaluated in further experiments, which
are in the focus of our ongoing work.

The implications of this study on “downstream” applications to recognition and
classification also remain to be seen. Our goal here has been to separate the patch
similarity measure from the context in which is is used by an overall recognition strat-
egy, under the assumption that any strategy would benefit from a better matching
component. Further experiments are needed to quantify the effect of the improve-
ment in matching on the accuracy in the final task of a system. Experiments in
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this direction should extend the notion of similarity (or, equivalently, invariance) to
affine transformations not included in our experiments above, namely, out-of-plane
rotations. However, we expect that the effect of learning the embedding will be main-
tained in this extended framework. Another issue that may require special care is
the selection of informative patches. An almost “flat” patch may be, under most
reasonable definitions of visual similarity, similar to any other flat patch however es-
tablishing such a match may not be informative from a classification or recognition
perspective. More generally, some patches are more useful than others for a particular
object class. This leads to the idea of class-specific visual similarity between patches.
We have not yet developed an approach that would achieve this but some ideas are
discussed briefly in the next chapter.
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Figure 6-8: Embeddings of the codes shown in Figure 6-2. Left: BoostPro on SIFT.
Right: BoostPro on sparse code coefficients.
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Chapter 7

Conclusions

In this concluding chapter we summarize the contributions of this thesis and the
possible impact as we see it, and discuss the important directions of future work.

7.1 Summary of thesis contributions

The central problem addressed in this thesis is the problem of modeling a boolean
similarity concept, which is conveyed only be means of examples of what constitutes
similar and dissimilar pairs under that concept. Before we summarize the specific
technical contributions in the remainder of this section, below are the main conclu-
sions we see emerging from our work.

• It is usually beneficial to learn a model for the similarity relevant to the task, be
it regression, classification or retrieval. It rarely hurts, and usually improves the
performance of the end goal application. Of course, the precise gain of learn-
ing similarity for any given application can be assessed by standard validation
techniques.

• Such learning can be successfully done directly from examples of similarity judg-
ment specific for the task, with minimal assumptions regarding the properties of
the underlying similarity concept. In many cases, for instance when the task in-
volves regression, the learning procedure including labeling similarity examples
can be completed fully automatically.

• In some problems, such as pose estimation, example-based methods have been
generally overlooked since it is commonly assumed they are computationally
infeasible. It does not have to be the case; with suitable embedding technique
it may be possible to provide a way of extremely efficient example-based estima-
tion in complex, high-dimensional problems. Our approach, to our knowledge,
is the first to combine the power of learning task-specific similarity with the
general embedding framework that allows this.
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7.1.1 Learning algorithms

The basis of our approach is to construct an embedding

H(x) = [α1h1(x), . . . , αMhM(x)],

such that low distance between H(x) and H(y) corresponds, with high probability,
to positive label assigned by the similarity S(x,y). The main advantage of this
approach, and what distinguishes it from the alternatives known to us, is that it
achieves two important goals:

• It provides us with a set of similarity classifiers on pairs of examples. This set is
parametrized by the value of the threshold on distance in the embedding space
H.

• It reduces the problem of similarity search to the problem of search for neighbors
with respect to the L1 distance. As a result, we are able to leverage state-of-
the-art search algorithms like LSH, that have sublinear running time.

In Chapter 3 we have presented a family of learning algorithms that construct an
embedding of the form described above:

Similarity Sensitive Coding (SSC) The algorithm1 takes pairs labeled by similar-
ity, and produces a binary embedding space H, typically of very high dimension.
The embedding is learned by independently collecting thresholded projections
of the data. This algorithm improves the performance of example-based meth-
ods on some data sets, and has been used however its utility is largely limited
to cases when the underlying similarity is close to L1 distance, with some mod-
ifications. This algorithm has been successful in articulated pose estimation
domain, as described in Chapters 4 and 5.

Boosted SSC This algorithm2 addresses the redundancy in SSCby collecting the
embedding dimensions greedily, rather than independently. It also introduces
weighting on the dimensions of H. We have applied this algorithm to the
tasks of pose and orientation estimation for an articulated tracking application,
described in Chapter 5.

BoostPro This algorithm is a generalization of Boosted SSCin that the dimensions
of the embedding are no longer limited to axis-parallel stumps. We have intro-
duced a continuous approximation for the thresholded projection paradigm in
which a gradient ascent optimization becomes possible. This algorithm further
improves the performance of example-based methods on standard benchmark
data. We also show its performance on articulated pose estimation, in chapter 4.
Finally, we have used this algorithm to learn visual similarity of image patches,
and have shown significant improvement over standard similarity measures used
with two patch descriptors.

1Published in [105]; joint work with P. Viola.
2Published in [93]; joint work with L. Ren, J. Hodgins, H. Pfister and P. Viola.
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Semi-supervised learning For each of these three algorithms we have presented a
semi-supervised version which only requires pairs similar under S, in addition
to a set of unlabeled individual examples in X .

7.1.2 Example-based pose estimation

In chapters 4 and 5 we have introduced a new approach to pose estimation from sin-
gle image. Contrary to previously proposed approaches, it does not use a parametric
model that is to be fitted to the image. Instead, it uses the learned similarity embed-
ding to search a large database of images with known underlying poses. As a result,
the notoriously difficult problem of fitting the articulated pose model is reduced to
two much simpler, and much faster, steps: search in a database for (approximately)
nearest neighbors, and fitting a local low-order model to the retrieved neighbors. To
our knowledge this approach achieves state-of-the-art performance while requiring
significantly less time per image than alternative approaches.

7.1.3 Articulated tracking

The main impact of our approach on articulate tracking is in providing a way of
automatic initialization of the tracker and, effectively, subsequent re-initialization
in every frame. In Chapter 5 we have described two tracking systems that take
advantage of this ability. Both systems have been demonstrated to be superior, in
terms of combined speed, accuracy and robustness, to state-of-the-art alternatives.

7.1.4 Patch similarity

In Chapter 6 we have described another application of the similarity learning frame-
work: learning visual similarity of natural image patches under rotation and small
translation. For two patch descriptors (the sparse overcomplete code coefficients and
the very popular SIFT descriptor) we have shown that by learning an embedding
of the descriptor with BoostPro and using the distance in the embedding space,
we can significantly improve the matching accuracy. The main contributions of this
study are:

• This is the first attempt, to our knowledge, to improve the matching accuracy
of standard (and widely used) descriptors by learning a similarity model specific
to the invariant properties the matching is intended to capture.

• The fact that the learned similarity is measured by the L1 distance in the
embedding space is very significant from the computational point of view, since
in a large-scale recognition system we may need to probe databases with millions
of patches for similarity to the input set of patches. Our framework allows us
to apply algorithms like LSH, and perform this search in sublinear time.
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7.2 Direction for future work

Theoretical investigation An open theoretical question that arises from the work
presented here pertains to the class of similarity concepts that can be attained by the
embedding algorithms presented in Chapter 3. By departing from the framework
of LSH to similarity-sensitive framework introduced in Section 2.4.2, we extend the
class of similarities from L1 to a more general family. It would be interesting to
characterize the properties of this family, and the connections between the geometry
of a similarity concept in X 2 and the extent to which an embedding learned by our
algorithms can represent that concept.

Evaluation We believe that a number of interesting additional experiments would
be useful to better understand the differences between algorithms and the conditions
under which each algorithm is best applicable. Such experiments include an eval-
uation of boosted SSC on more tasks, in addition to the pose estimation task in
Chapter 5, to better understand its capacity and limitations and an investigation
into better ways of setting the bound G on the TP-FP gap in SSC. In addition,
we are investigating improved strategies of selecting the projection terms (i.e. the
dimensions used in a projection) in BoostPro, especially for high-dimensional rep-
resentation where even approximating the exhaustive search of the space of fixed-size
term combinations is impractical.

Another aspect of empirical evaluation that should be improved is in the area of
comparing pose estimation algorithms. Although lack of a standard articulated pose
benchmark with known ground truth (neither real images nor realistic synthetic ones)
makes this difficult, it is important to compare alternative approaches; one approach
we are aware of which may provide a suitable alternative has been recently proposed
in [2].

Extending the similarity framework In the Introduction we mention definitions
of similarity that are more refined than the boolean notion addressed in this thesis.
The algorithms presented here are developed to deal with the boolean case, however
we believe they can be extended to learning ranking. The main change in the formu-
lation is the transition from the classification of pairs to the classification of triples.
Recent work [5] suggests that an embedding can be learned that represents ranking
under known distance functions. We believe that it may be possible to extend such
an approach to the case when the ground truth ranking is conveyed only by examples,
in a spirit similar to our extension of the LSH. One important application of such
extension would be in information retrieval, where feedback often is available in the
form of ranking rather than just binary labels on the results.

Learning features for visual classification The results presented in Chapter 6
suggest a promising direction of future research in the use of learned similarity. It
would be interesting to investigate the effect of embedding the descriptors (and the
improved matching accuracy) on classification performance. Below we present an
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idea for integration of the similarity learning approach developed in this thesis in a
multi-category classification architecture.

Evidence from neuroscience [39] suggests that the majority of cells in the visual
pathway may be placed within a computational hierarchy. As the level in the hierar-
chy increases, which roughly corresponds to retino-cortical direction (away from the
retina),

• The invariance increases: features become less sensitive to various transforma-
tions.

• Selectivity increases: it takes a more distinctive image elements to activate a
feature. Consequently, higher layers should be more overcomplete and sparse.

• Receptive fields become larger.

• Receptive fields become more complex (more non-linear, in particular).

From a computational point of view, the order in the hierarchy corresponds to
order of processing: the lowest level corresponds to measures computed directly from
the image pixels, and the values in subsequent layers may be computed from the
values obtained in the lower levels. However, it is not clear how the flow of sensory
information and decisions across the hierarchy is organized in the brain; in particular,
there exists a huge number of feedback projections along the visual pathway, the
function of which is not fully understood.

It would be interesting to explore a hierarchical representation organized in ac-
cordance with the computational principles mentioned above. Finding the learning
algorithm for constructing such a hierarchy is the main challenge in designing such an
architecture. An interesting approach could be to learn the lower, less selective layers
in an unsupervised way, while the higher, more selective layers could be better learned
on a per-category basis, perhaps in conjunction with learning object- or part-specific
similarity operators, along the lines developed in this thesis.

Figure 7-1 shows a “cartoon” of this approach. An appealing property of it is that
lower-level features are necessarily shared between all categories, while higher-level
features are more likely to be unique for a given class (although the learning algorithm
should probably allow for sharing in later layers as well).

It’s important to emphasize the difference between this approach and, say, the
standard multi-layer neural network where a designated output layer is the only one
affecting the decision. In the proposed hierarchy there is no output layer per se,
but rather the entire set of features is considered in similarity calculations. This is
achieved by allowing any feature to be used in similarity-reflecting embeddings for
the highest (categorical) level.
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Figure 7-1: A cartoon of the proposed hierarchical representation, showing the sharing
of the features and the two-stage learning architecture. A representation for a given
image patch may include any of the features from the lower (generic) layers and any
of the features from the higher, class-specific layers.

138



Bibliography

[1] Delve Datasets. http://www.cs.toronto.edu/ delve/data/datasets.html.

[2] Ankur Agarwal and Bill Triggs. 3d human pose from silhouettes by relevance
vector regression. In International Conference on Computer Vision & Pattern
Recognition, pages II 882–888, Washington, DC, June 2004.

[3] S. Agarwal and D. Roth. Learning a Sparse Representation for Object Detec-
tion. In European Conference on Computer Vision, 2004.

[4] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu. An
optimal algorithm for approximate nearest neighbor searching fixed dimensions.
Journal of the ACM, 45(6):891–923, 1998.

[5] V. Athitsos, J. Alon, S. Sclaroff, and G. Kollios. Boostmap: A method for
efficient approximate similarity rankings. In IEEE Conf. on Computer Vision
and Pattern Recognition, Madison, WI, June 2004.

[6] V. Athitsos and S. Sclaroff. Estimating 3D Hand Pose from a Cluttered Image.
In IEEE Conf. on Computer Vision and Pattern Recognition, pages 432–439,
Madison, WI, June 2003.

[7] C. G. Atkeson, A. W. Moore, and S. Schaal. Locally weighted learning. Artificial
Intelligence Review, 11(1-5):11–73, 1997.

[8] D. H. Ballard and L. E. Wixson. Object Recognition Using Steerable Filters at
Multiple Scales. In Proceedings of IEEE Workshop on Qualitative Vision, 1993.

[9] Evgeniy Bart and Shimon Ullman. Class-based matching of object parts. In
Proceedings of CVPR Workshop on Image and Video Registration, 2004.

[10] J. S. Beis and D. G. Lowe. Shape Indexing Using Approximate Nearest-
Neighbor Search in High-Dimensional Spaces. In IEEE Conf. on Computer
Vision and Pattern Recognition, pages 1000–1006, 1997.

[11] S Belongie, J. Malik, and J. Puzicha. Shape Matching and Object Recognition
Using Shape Contexts. IEEE Transactions on Pattern Analysis and Machine
Intelligence, April 2002.

139



[12] Y. Bengio, J.-F. Paiement, P. Vincent, O. Delalleau, N. Le Roux, and
M. Ouimet. Out-of-sample extensions for lle, isomap, mds, eigenmaps, and
spectral clustering. In Neural Information Processing Systems, 2004.

[13] J. L. Bentley. Multidimensional binary search trees used for associative search-
ing. Communications of the ACM, 18(9):509–517, September 1975.

[14] A. C. Berg, T. L. Berg, and J. Malik. Shape Matching and Object Recognition
using Low Distortion Correspondence. In IEEE Conf. on Computer Vision and
Pattern Recognition, June 2005.

[15] P.J. Besl and N. MacKay. A Method for Registration of 3D Shapes. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 14:239–256, Febru-
ary 1992.

[16] C. L. Blake and C. J. Merz. UCI repository of machine learning databases.
[http://www.ics.uci.edu/∼mlearn/MLRepository.html], 1998.

[17] E. Borenstein and S. Ullman. Class-Specific, Top-Down Segmentation. In Euro-
pean Conference on Computer Vision, pages 109–124, Copenhagen, Denmark,
May 2002.

[18] A. Borodin, R. Ostrovsky, and Y. Rabani. Lower bounds for high dimensional
nearest neighbor search and related problems. In Proceedings of the Thirty-First
Annual ACM Symposium on Theory of Computing (STOC’99), pages 312–321,
New York, May 1999. Association for Computing Machinery.

[19] Michael C. Burl, Markus Weber, and Pietro Perona. A probabilistic approach
to object recognition using local photometry and global geometry. In European
Conference on Computer Vision, Freiburg, Germany, 1998.

[20] Sumit Chopra, Raia Hadsell, and Yann LeCun. Learning a similarity metric dis-
criminatively, with application to face verificatio. In IEEE Conf. on Computer
Vision and Pattern Recognition. IEEE Press, 2005.

[21] W. S. Cleveland. Robust locally weighted regression and smoothing scatter
plots. Journal of American Statistical Association, 74(368):829–836, 1979.

[22] W. S. Cleveland and S. J. Delvin. Locally weighted regression: an approach to
regression analysis by local fitting. Journal of American Statistical Association,
83(403):596–610, 1988.

[23] M. Collins, R. Schapire, and Y. Singer. Logistic regression, adaboost and breg-
man distances. In COLT: Proceedings of the Workshop on Computational Learn-
ing Theory, Morgan Kaufmann Publishers, 2000.

[24] T. M. Cover. Estimation by the nearest neighbor rule. IEEE Transactions on
Information Theory, 14:21–27, January 1968.

140



[25] T. M. Cover. Rates of Convergence for Nearest Neighbor Procedures. In Proc.
1st Ann. Hawaii Conf. Systems Theory, pages 413–415, January 1968.

[26] T. M. Cover and P. E. Hart. Nearest neighbor pattern classification. IEEE
Transactions on Information Theory, 13:21–27, January 1967.

[27] T. F. Cox and M. A. A. Cox. Multidimensional scaling. Chapman & Hall,
London, 1994.

[28] K. Crammer and Y. Singer. On the Algorithmic Implementation of Multiclass
Kernel-based Vector Machines. Journal of Machine Learning Research, 2:265–
292, December 2001.

[29] Curious Labs, Inc., Santa Cruz, CA. Poser 5 - Reference Manual, 2002.

[30] D. Michie, D.J. Spiegelhalter, and C.C. Taylor, editors. Machine Learning,
Neural and Statistical Classification. Ellis Horwood, 1994.

[31] M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni. Locality-sensitive hashing
scheme based on p-stable distributions. In annual acm symposium on compu-
tational geometry, 2004.

[32] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational
Geometry: Algorithms and Applications. Springer-Verlag, Berlin, Heidelberg,
New York, second edition, 2000.

[33] V. de Silva and J. B. Tenenbaum. Global versus local methods in nonlinear
dimensionality reduction. In Neural Information Processing Systems, pages
705–712, 2002.

[34] D. Demirdjian and T. Darrell. Using Multiple-Hypothesis Disparity Maps and
Image Velocity for 3-D Motion Estimation. International Journal of Computer
Vision, 47(1-3), 2002.

[35] D. Demirdjian, L. Taycher, G. Shakhnarovich, K. Grauman, and T. Darrell.
Avoiding the streetlight effect: Tracking by exploring likelihood modes. In
Proceedings of the International Conference on Computer Vision, Beijing, PRC,
October 2005 (to appear).

[36] J. Deutscher, A. Blake, , and I. Reid. Articulated body motion capture by
annealed particle filtering. In IEEE Conf. on Computer Vision and Pattern
Recognition, pages 126–133, Hilton Head, USA, June 2000.

[37] L. Devroye. On the inequality of Cover and Hart in nearest neighbor dis-
crimination. IEEE Transactions on Pattern Analysis and Machine Intelligence,
3:75–78, 1981.

[38] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern classification. John Wiley &
sons, New York, second edition, 2001.

141



[39] E. R. Kandel, J. H. Schwartz, and T. M. Jessell. Principles of Neural Science.
Elsevier, New York, 3rd edition, 1991.

[40] A. Elgammal and C. S. Lee. Inferring 3D Body Pose from Silhouettes using
Activity Manifold Learning. In IEEE Conf. on Computer Vision and Pattern
Recognition, Washington, DC, July 2004.

[41] {Eyes, JAPAN}. Motion capture sequences database. www.mocapdata.com,
2005.

[42] C. Faloutsos and K.-I. Lin. FastMap: A fast algorithm for indexing, data-mining
and visualization of traditional and multimedia datasets. In Michael J. Carey
and Donovan A. Schneider, editors, Proceedings of the 1995 ACM SIGMOD
International Conference on Management of Data, pages 163–174, San Jose,
California, 22–25 1995.

[43] J. Fan and I. Gijbels. Local Polynomial Modelling and Its Applications. Chap-
man and Hall, 1996.

[44] M. Farach-Colton and P. Indyk. Approximate nearest neighbor algorithms for
Hausdorff metrics via embeddings. In 40th annual symposium on foundations
of computer science, pages 171–179, New York, NY, 17 October 1999. IEEE
Computer Society Press.

[45] P. Felzenszwalb and D. Huttenlocher. Efficient matching of pictorial structures.
In IEEE Conf. on Computer Vision and Pattern Recognition, pages 66–75, Los
Alamitos, June 13–15 2000. IEEE.

[46] R. Fergus, P. Perona, and A. Zisserman. Object class recognition by unsu-
pervised scale-invariant learning. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, volume 2, pages 264–271, June 2003.

[47] D. Field. What is the goal of sensory coding? Neural Computation, 6:559–601,
1994.

[48] J. Fritz. Distribution-Free Exponential Error Bound for Nearest Neighbor Pat-
tern Classification. IEEE Transactions on Information Theory, 21(5):552–557,
September 1975.

[49] A. Frome, D. Huber, R. Kolluri, T. Bulow, and J. Malik. Recognizing objects
in range data using regional point descriptors. In European Conference on
Computer Vision, Prague, Czech Republic, May 2004.

[50] K. Fukunaga and D. M. Hummels. Bias of nearest neighbor error estimates.
IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-
9(1):103–112, January 1987.

142



[51] B. Georgescu, I. Shimshoni, and P. Meer. Mean shift based clustering in high
dimnensions: A texture classification example. In International Conference on
Computer Vision, 2003. (to appear).

[52] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions via
hashing. In Proceedings of the 25th International Conference on Very Large
Data Bases (VLDB ’99), pages 518–529, San Francisco, September 1999. Mor-
gan Kaufmann.

[53] J. Goldberger, S. T. Roweis, G. Hinton, and R. Salakhutdinov. Neighbourhood
component analysis. In Neural Information Processing Systems, pages 513–520,
2004.

[54] R. Gonzalez and R. Woods. Digital image processing. Prentice hall, Upper
Saddle River, New Jersey, 2nd edition, 2001.

[55] K. Grauman and T. Darrell. Fast contour matching using approximate earth
mover’s distance. In IEEE Conf. on Computer Vision and Pattern Recognition,
Washington, DC, June 2004.

[56] K. Grauman and T. Darrell. The pyramid match kernel: Discriminative classi-
fication with sets of image features. In International Conference on Computer
Vision, Beijing, PRC, October 2005.

[57] K. Grauman, G. Shakhnarovich, and T. Darrell. A bayesian approach to image-
based visuall hull reconstruction. In Proceedings IEEE Conf. on Computer
Vision and Pattern Recognition, Madison, WI, 2003.

[58] K. Grauman, G. Shakhnarovich, and T. Darrell. Inferring 3d structure with a
statistical image-based shape model. In Proceedings of the International Con-
ference on Computer Vision, Nice, France, October 2003.

[59] Hemera Images. www.hemera.com.

[60] T. Hertz, A. Bar-Hillel, and D. Weinshall. Boosting margin-based distance
functions for clustering. In International Conference on Machine Learning,
Banff, Canada, July 2004.

[61] T. Hertz, A. Bar-Hillel, and D. Weinshall. Learning distance functions for
image retrieval. In IEEE Conf. on Computer Vision and Pattern Recognition,
Washington, DC, June 2004.

[62] G. R. Hjaltason and H. Samet. Properties of embedding methods for similar-
ity searching in metric spaces. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 25(5):530–549, May 2003.

[63] M. K. Hu. Visual Pattern Recognition from Motion Invariants. 8:179–187, 1962.

143



[64] A. Hyvrinen and P. O. Hoyer. A two-layer sparse coding model learns simple
and complex cell receptive fields and topography from natural images. Vision
Research, 41(18):2413–2423, 2001.

[65] P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing
the curse of dimensionality. In Proceedings of the 30th Annual ACM Symposium
on Theory of Computing (STOC-98), pages 604–613, New York, May 23–26
1998. ACM Press.

[66] M. Isard and A. Blake. Condensation – conditional density propagation for
visual tracking. International Journal of Computer Vision, 29(1):5–28, 1998.

[67] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton. Adaptive mixtures
of local experts. Neural Computation, 3(1):79–87, 1991.

[68] A. K. Jain and A. Vailaya. Image retrieval using color and shape. Pattern
Recognition, 8(29):1233–1244, 1996.

[69] M. Jones and P. Viola. Face Recognition Using Boosted Local Features. Tech-
nical Report TR2003-025, MERL, Cambridge, MA, May 2003.

[70] Y. Ke, D. Hoiem, and R. Sukthankar. Computer vision for music identification.
In IEEE Conf. on Computer Vision and Pattern Recognition, San Diego, CA,
June 2005 (to appear).

[71] Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce. Semi-local affine parts
for object recognition. In British Machine Vision Conference, volume volume
2, pages 779–788, 2004.

[72] J. Lee, J. Chai, P. S. A. Reitsma, J. K. Hodgins, and N. S. Pollard. Interactive
Control of Avatars Animated with Human Motion Data. ACM Transactions
on Graphics: Special Issue Proceedings of SIGGRAPH, 21(3):491–500, 2002.

[73] H. Lei and V. Govindaraju. Speeding Up Multi-class SVM by PCA and Feature
Selection. In Feature Selection in Data Mining, Workshop, pages 72–79, 2005.

[74] B. Leibe and B. Schiele. Analyzing contour and appearance based methods
for object categorization. In IEEE Conf. on Computer Vision and Pattern
Recognition, Madison, WI, 2003.

[75] T. Liu, A. W. Moore, and A. Gray. New Algorithms for Efficient High Dimen-
sional Non-parametric Classification. In Neural Information Processing Sys-
tems, 2003.

[76] D. G. Lowe. Object recognition from local scale-invariant features. pages 1150–
1157, Corfu, Greece, December 2000.

[77] D. G. Lowe. Distinctive image features from scale-invariant keypoints. Inter-
national Journal of Computer Vision, 60(2):91–110, 2004.

144



[78] David G. Lowe. Similarity metric learning for a variable-kernel classifier. Tech-
nical report, February 15 1994.

[79] S. Mahamud and M. Hebert. The optimal distance measure for object detection.
In IEEE Conf. on Computer Vision and Pattern Recognition, Madison, WI,
June 2003.
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