Introduction

• **Objective**: neural control of artificial motor systems.

• Previous work has focused on kinematic control. This does not take into account physical constraints and may result in unnatural movement artifacts such as jitter.

• Possible solution is to use full biomechanical model of the system, but it is expensive and difficult to control with limited neural bandwidth.

• Our proposal: a computationally simple model with only a few parameters that are directly controlled by the decoded neural signal.

The spring-based model

- Inspired by Hinton & Nair, 2005.
- Represent the hand as a point mass \(m \) located at the wrist.
- Four virtual springs: one end attached to the hand, the other end slides without friction.
- Control of the system is via dynamically modifying the spring stiffness coefficients \(k_B, k_C, k_D \) and \(k_0 \).
- Viscosity coefficient \(\beta \) controls damping.
- Impose stiffness constraints \(k_A \) to maintain non-negative coefficients.

Methods: Direct decoding of system dynamics

• The controlling signal: firing rates of \(C \) units recorded from motor cortex
 - Firing rates estimated in bins of fixed length.

• Let \(\tilde{Z}(t) = [Z(t-1), \ldots, Z(t)] \) be the history of firing rates over \(i \) bins.

• We treat the movement decoding as a parametric regression problem:
 \[\tilde{Z}(t) = K(t) = [k_A(t), k_B(t), k_C(t), k_D(t)]\]

Training paradigm for the model:

• Observed data: firing rates \(\tilde{Z}(t) \) and hand positions \(x(t) \).

• From accelerations, we recover the stiffness coefficients, e.g.:
 \[k_A = \frac{m\tilde{a}_x(t) + \tilde{v}_x(t) + \kappa(L + x(t))}{2L}\]

• Given the coupled observed/estimated \(\tilde{Z}(t) \rightarrow k_A(t), k_C(t), k_D(t) \), fit the regression parameters for a chosen regression models.

• The complementary coefficients \((B, D)\) recovered from stiffness constraint.

• Linear regression model: linear filter (LF)
 \[k(t) = w^T\tilde{Z}(t)\]
 where the weight vector \(w \) is learned from data.

• Nonlinear regression model: Support Vector Machine (SVM)
 \[k(t) = \sum_i \alpha_i h(\tilde{Z}(t), \bar{Z}_i)\]
 where \(h \) is a kernel function, and \(\alpha_i \) are learned from training data.

Testing paradigm:

• Observed firing rates \(\tilde{Z}(t) \rightarrow \tilde{K}(t) \rightarrow \tilde{a}(t), \tilde{v}(t), \tilde{s}(t) \rightarrow \tilde{s}(t+1)\)

Methods: Data and Evaluation

All analysis performed on an offline movement reconstruction tasks.

• **Monkey data**: behaving animals, moving manipulandum to control cursor.
 - 96-electrode arrays implanted in MI hand/arm area (see Shoham et al., 2005)
 - CL: sequential tracking (piecewise linear movement, discrete target).

• **Human data**: paralyzed subject, instructed to attempt movement
 - A single patient (brain stem stroke); see poster 256.10 for details.
 - Pursuit tracking task (follow cursor manipulated by technician); see 256.11.

Results

<table>
<thead>
<tr>
<th>Session</th>
<th>MAE</th>
<th>(\beta)</th>
<th>(\rho)</th>
<th>CC</th>
<th>CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear filter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL (sequential)</td>
<td>0.26</td>
<td>0.27</td>
<td><0.005</td>
<td>0.61</td>
<td>0.64</td>
</tr>
<tr>
<td>LA (continuous)</td>
<td>0.06</td>
<td>0.09</td>
<td>>0.1</td>
<td>0.76</td>
<td>0.79</td>
</tr>
<tr>
<td>SVM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL (sequential)</td>
<td>0.24</td>
<td>0.23</td>
<td>0.78</td>
<td>0.79</td>
<td>0.84</td>
</tr>
<tr>
<td>LA (continuous)</td>
<td>0.09</td>
<td>0.08</td>
<td><0.005</td>
<td>0.80</td>
<td>0.81</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session</th>
<th>MAE</th>
<th>(\beta)</th>
<th>(\rho)</th>
<th>CC</th>
<th>CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear filter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL (sequential)</td>
<td>0.33</td>
<td>0.38</td>
<td><0.005</td>
<td>0.56</td>
<td>0.47</td>
</tr>
<tr>
<td>LA (continuous)</td>
<td>0.41</td>
<td>0.42</td>
<td>0.04</td>
<td>0.30</td>
<td>0.32</td>
</tr>
<tr>
<td>SVM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL (sequential)</td>
<td>0.57</td>
<td>0.55</td>
<td><0.005</td>
<td>0.08</td>
<td>0.08</td>
</tr>
<tr>
<td>LA (continuous)</td>
<td>0.31</td>
<td>0.32</td>
<td><0.005</td>
<td>0.29</td>
<td>0.28</td>
</tr>
</tbody>
</table>

Conclusions

• **Objective**: neural control of artificial motor systems.

• Previous work has focused on kinematic control. This does not take into account physical constraints and may result in unnatural movement artifacts such as jitter.

• Possible solution is to use full biomechanical model of the system, but it is expensive and difficult to control with limited neural bandwidth.

• Our proposal: a computationally simple model with only a few parameters that are directly controlled by the decoded neural signal.

Methods: Direct decoding of system dynamics

• The controlling signal: firing rates of \(C \) units recorded from motor cortex
 - Firing rates estimated in bins of fixed length.

• Let \(\tilde{Z}(t) = [Z(t-1), \ldots, Z(t)] \) be the history of firing rates over \(i \) bins.

• We treat the movement decoding as a parametric regression problem:
 \[\tilde{Z}(t) = K(t) = [k_A(t), k_B(t), k_C(t), k_D(t)]\]

Training paradigm for the model:

• Observed data: firing rates \(\tilde{Z}(t) \) and hand positions \(x(t) \).

• We estimate instantaneous velocities \(\tilde{v}(t) \) and accelerations \(\tilde{a}(t) \).

• From accelerations, we recover the stiffness coefficients, e.g.:
 \[k_A = \frac{m\tilde{a}_x(t) + \tilde{v}_x(t) + \kappa(L + x(t))}{2L}\]

• Given the coupled observed/estimated \(\tilde{Z}(t) \rightarrow k_A(t), k_C(t), k_D(t) \), fit the regression parameters for a chosen regression models.

• The complementary coefficients \((B, D)\) recovered from stiffness constraint.

• Linear regression model: linear filter (LF)
 \[k(t) = w^T\tilde{Z}(t)\]
 where the weight vector \(w \) is learned from data.

• Nonlinear regression model: Support Vector Machine (SVM)
 \[k(t) = \sum_i \alpha_i h(\tilde{Z}(t), \bar{Z}_i)\]
 where \(h \) is a kernel function, and \(\alpha_i \) are learned from training data.

Testing paradigm:

• Observed firing rates \(\tilde{Z}(t) \rightarrow \tilde{K}(t) \rightarrow \tilde{a}(t), \tilde{v}(t), \tilde{s}(t) \rightarrow \tilde{s}(t+1)\)

Methods: Data and Evaluation

All analysis performed on an offline movement reconstruction tasks.

• **Monkey data**: behaving animals, moving manipulandum to control cursor.
 - 96-electrode arrays implanted in MI hand/arm area (see Shoham et al., 2005)
 - CL: sequential tracking (piecewise linear movement, discrete target).

• **Human data**: paralyzed subject, instructed to attempt movement
 - A single patient (brain stem stroke); see poster 256.10 for details.
 - Pursuit tracking task (follow cursor manipulated by technician); see 256.11.

References

Support gratefully acknowledged: NIH/NINDS, VA, ONR, DARPA, Cyberkinetics Neurotechnology Systems, Inc.
Disclosures: LH: Clinical trial support, Cyberkinetics (CKI); JM: Consultant, CKI; GF: Consultant, stock holdings, CKI; JD: Chief Scientist/Offer, salary, stock holdings, director, CKI.