
Chapter 3

Learning embeddings that reflect
similarity

This chapter describes a family of algorithms for learning an embedding

H : X → [α1h1(x), . . . , αMhM(x)]

that is faithful to a task-specific similarity. This means that the lower the distance
‖H(x) − H(y)‖ is, the higher is the probability that S(x,y) = +1. Consequently,
there exists a range of values of R such that if S(x,y) = +1 then with high probability
‖H(x)−H(y)‖ < R, and if S(x,y) = −1 then with high probability ‖H(x)−H(y)‖ >
R. For a practical application, such a relationship means that the task of matching a
query to a database may be reduced to the task of search for K nearest neighbors or for
R-neighbors of the query, embedded in H, among the database examples embedded
in the same way.

The order in which the algorithms are presented corresponds to the evolution
of this general approach, which in turn corresponds to the trade-off between the
simplicity and cost of training and the flexibility, and accuracy, of the embedding. The
similarity sensitive coding algorithm in Section 3.2 has evolved from the parameter
sensitive hashing (PSH) published in [105]. It can be seen as an improvement of
the LSH structure for a similarity measure which is not necessarily identical to an
Lp norm in X . The extension using AdaBoost (Section 3.3), published in [93] has
considerably higher training complexity, but may greatly improve the efficiency of the
embedding. However, it is still limited to a certain family of L1-like similarities. This
limitation is reduced by the third algorithm, BoostPro, presented in Section 3.4.

The embedding algorithms are designed to learn from examples of similar and
dissimilar pairs of examples. Moreover, we extend the algorithms, subject to certain
assumptions, to the semi-supervised case when only examples of similar pairs, plus
some unlabeled data points, are available.

47

3.1 Preliminaries

The general form of the embedding constructed by our algorithms is

H(x) = [α1h1(x), . . . , αMhM(x)] , (3.1)

where each dimension m is produced by a function hm, parametrized by a projection
f : X → R and a threshold T ∈ R:

h(x; f, T) =

{
1 if f(x) ≤ T,

0 if f(x) > T.
(3.2)

We will simply write h(x) when the parametrization is clear from context. This
form of H is motivated by two considerations. One is the simplicity of learning: the
“modular” form of H affords simple, greedy algorithms. The other is the computa-
tional complexity of the search: the L1 distance in H is in fact a Hamming distance
(perhaps weighted by αs), and its calculation can be implemented with particular
efficiency.

A function h in (3.2) naturally defines a classifier c : X 2 → {±1} on pairs of exam-
ples. We will refer to such c as simple classifier, and omit writing the parametrization
unless necessary:

c(x,y; f, T) =

{
+1 if h(x; f, T) = h(y; f, T),

−1 otherwise.
(3.3)

3.1.1 Threshold evaluation procedure

The embedding algorithms in this chapter differ in the form of projections f used to
derive the hs, and in the way the hs are chosen. One element they all share is a pro-
cedure for evaluating, for a fixed f , the empirical performance of the simple classifiers
that correspond to a set of thresholds. This procedure is given in Algorithm 4. We
assume that each training pair (xi,1,xi,2) is assigned a non-negative weight wi; when
an algorithm involves no such weights they can be simply assumed to be all equal.

Intuitively, the motivation behind the algorithm is as follows. Our goal is to
estimate, for a given T , the expected true positive rate

TP , Ex,y|S(x,y)=+1 [Pr(h(x) = h(y))] (3.4)

and the true false positive rate

FP , Ex,y|S(x,y)=−1 [Pr(h(x) = h(y))] , (3.5)

with the expectations taken with respect to the joint distribution of example pairs
p(x,y). In the context of retrieval, when we are conceptually considering pairing
the query with every example in the database, this means the product of marginal
distributions p(x)p(y).

48

As is normally the case in machine learning, we can only estimate these quantities
from the available examples of similar and dissimilar pairs.1 The straightforward
approach that we will adopt for now, is to estimate TP by the percentage of similar
pairs that are not separated by T , i.e. pairs for which the both values fall on the same
side of T .2 Similarly, FP is estimated by measuring the percentage of dissimilar pairs
not separated by T .

An implicit assumption in this estimation is that the training pairs are distributed
identically and independently according to a probability law that generates the data,
and therefore are equally representative. Instead, it is possible that each pair have a
weight, which may be interpreted as the probability of selecting that pair; such is the
situation in the context of boosting algorithms later in this chapter. The weights are
easily incorporated into our empirical estimation approach: instead of the percentage
of pairs separated by T , we will calculate their cumulative weight.

Algorithm 4 describes in pseudocode an efficient procedure for such estimation of
the TP and FP rates for all feasible thresholds. The technique used to do this in the
single pass is simple: when we form the sorted array of projection values, we record
for each element p = 1, 2 of a pair (x

(1)
i ,x

(2)
i) the direction di,p to its counterpart

within the array; e.g., if f(x
(1)
i) > f(x

(1)
i) then, after sorting by the values of f(x),

x
(1)
i will appear after x

(2)
i . Traversing the array from the lowest to the highest value

we maintain and update the cumulative weights (which is equivalent to counts, when
weights are all equal) of positive and negative pairs separated by the current threshold.
This is illustrated with Figure 3-1 that shows the estimated TP and FP rates for a
set of five similar and five dissimilar pairs.

The set of thresholds to consider is determined by the number of unique values
among the projections of the data: any two thresholds for which no data point is
projected between them are not distinguishable by the algorithm. Therefore, with
N training pairs we have n ≤ 2N + 1 thresholds. The sorting step dominates the
complexity, since after the values vi,p are sorted, all thresholds are evaluated in a
single pass over the sorted 2N records. Thus the running time of the algorithm is
O (N log N).

The first algorithm we propose in this thesis is the similarity sensitive coding
(SSC). It uses the procedure presented above to construct an embedding of the data
into a binary space, selecting the dimensions of the embedding independently based
on the estimated gap.

3.2 Similarity sensitive coding

The idea underlying the SSC algorithm is to construct an embedding similar to the
one achieved in LSH, but to explicitly maximize its sensitivity to the desired similarity

1In a notation shortcut we will henceforth write TP and FP to mean these estimates, rather than
the unknown true values.

2Which side is not important, as long as both values are on the same side; consequently, note
that h is not a classifier, while c is.

49

TP

FP .8.6.81 .4 .4 .8 .8.6

.6.811 .8

.6

1 .8 .6 .6 .6 .8

.6

.6

1

1

1

S = +1

S = −1
f (x)

f (x)

Figure 3-1: Illustration of the operation of Algorithm 4. Similar (top) and dissimilar
(bottom) pairs are connected by dashed lines, and are assumed to all have equal
weights of 1/10. All 21 distinct thresholds are shown; the TP (top) and FP (bottom)
rates are shown only for some. The maximal attainable gap here is .4 (.e.g, with the
ninth threshold from the left).

measure. The implicit assumption here is that the L1 distance in X provides a
reasonable foundation for modeling S, that is in need of the following improvements:

• Some dimensions are more relevant to determining similarity than others, and
thus should affect the distance more heavily.

• For a given dimension, some thresholds are more useful than others.

A pseudocode description for SSC is given in Algorithm 5. Recall the discussion
in Section 2.4.2 on the role of the gap between the TP and FP rates of a binary
function. SSC takes a parameter G that specifies a minimal acceptable value (lower
bound) of this gap, and extracts, for each dimension of the data, all the thresholds
for which the estimated TP-FP gap meets this bound.

An earlier version of this algorithm was published in [105], under the name of
parameter sensitive hashing (PSH). The original name reflected the coupling of rep-
resentation (a bit vector based on a set of axis-parallel stumps) and the LSH-based
search, and also the implicit notion of similarity present only through the specifica-
tion of pose parameters. An additional difference is in the criterion for selecting the
embedding bits: in PSH, the criterion is formulated in terms of bounding the TP
and FP rates separately rather than bounding the gap. Numerous experiments have
confirmed since that the gap-based formulation is not only better justified theoreti-
cally but also superior in practice. Thus, SSC can be seen as a generalization and
improvement of the original PSH algorithm.

In a practical implementation of Algorithm 5, one faces a number of design decision
that may have a dramatic effect on the performance. Below we discuss these issues in
the context of experimental evaluation on the UCI/Delve data sets. The focus here is

50

Algorithm 4 ThresholdRate(P, f, W): Evaluation of projection thresholds given
similarity-labeled examples.

Given: Set of labeled pairs P = {(x(1)
i ,x

(2)
i , li)}N

i=1 ⊂ X 2 × {±1},
where li = S

(
x

(1)
i ,x

(2)
i

)
.

Given: A projection function f : X → R.
Given: Weights W = [w1, . . . , wN].
Output: Set of triples {〈Tt, TPt, FPt〉}n

t=1, where TPt and FPt are the estimated TP
and FP rates for threshold Tt.

1: Let vi,p := f
(
x

(p)
i

)
for i = 1, . . . , N and p = 1, 2.

2: Let u1 < . . . < un−1 be the n− 1 unique values of {vi,p}.
3: Let ∆j := (uj+1 − uj)/2, for j = 1, . . . , n− 2.
4: Let T1 := u1 −∆1, and Tj+1 := uj + ∆j, for j = 1, . . . , n− 1.
5: for all i = 1, . . . , N do

6: Let di,1 :=

{
+1 if vi,1 ≤ vi,2,

−1 if vi,1 > vi,2.

7: Let di,2 :=

{
+1 if vi,1 > vi,2,

−1 if vi,1 ≤ vi,2.

8: Sort records {〈vi,p, di,p, wi, li〉}i=1,...,N, p=1,2 by the values of vi,p.
9: Normalize wi so that

∑
li=+1 wi = 1,

∑
li=−1 wi = 1.

10: for all j = 1, . . . , t do
11: Let ij := max{i : vi ≤ Tj}
12: TPj := 1−

∑
i≤ij ,li=+1 widi.

13: FPj := 1−
∑

i≤ij ,li=−1 widi.

on questions arising directly in the implementation of SSC. Other important issues,
such as how the similarity labels are obtained, are discussed elsewhere.

3.2.1 Benchmark data sets

Throughout this chapter we will refer to experiments on a number of data sets.
The learning problems associated with these data sets are of the type for which we
expect our algorithms to be particularly useful: regression or classification with a
large number of classes.

The purpose of these experiments is two-fold. One is to illustrate the principles
underlying the new algorithms. The data sets vary in size and difficulty, but most
of them are small enough (both in number of examples and in dimension) to allow a
rather thorough examination of the effect of various settings.

The other purpose is to evaluate the impact of our algorithms outside of the
computer vision domain, on “generic” data sets, familiar to the machine learning
community from their use as benchmarks. From a practitioner’s perspective, this
means evaluating what does one gain, if at all, from using a model of similarity
learned for the task at hand, in comparison to the standard use of distances in the

51

Algorithm 5 SSC(P, g): Similarity sensitive coding by selecting thresholds on orig-
inal dimensions.

Given: Set of similarity-labeled pairs P = {(x(1)
i ,x

(2)
i), li}N

i=1 ⊂ X 2 × {±1},
where li = S

(
x

(1)
i ,x

(2)
i

)
.

Given: Lower bound on TP-FP gap G ∈ (0, 1).
Output: Embedding HSSC : X → {0, 1}M (M to be determined by the algorithm).
1: Let M := 0.
2: Assign equal weights W (i) = 1/N to all N pairs in P .
3: for all d = 1, . . . , dim(X) do
4: Let f(x) ≡ x(d).
5: Apply ThresholdRate(P, f, W) to obtain a set of n thresholds {T d

t }n
t=1 and

associated TP and FP rates {TPd
t }, {FPd

t }.
6: for all t = 1, . . . , n do
7: if TPd

t − FPd
t ≥ G then

8: Let M := M + 1.
9: hM(x) , h(x; f, T d

t , 1) {as in (3.2).}
10: Let HSSC , x → [h1(x), . . . , hM(x)]

data space. Depending on the precise goals of an application, this effect can be
measured in terms of ROC curve behavior, or in terms of the regression/classification
error obtained by an example-based method that uses the similarity model.

The data sets are publicly available and come from a variety of domains. Below
we give a brief description of each set; the important statistics are summarized in
Table 3.1. Recall that r (given in the last column of Table 3.1) is the threshold used
to define a label-induced similarity in our experiments, as explained in Section 2.2.1,
on the distance in the labels, such that DY(yi, yj) ≤ r ⇔ S(xi,xj) = +1. For
classification problems, a natural value of r is 0, i.e. two examples are similar if and
only if they belong to the same class.

For regression the choice should be determined by the desired sensitivity of the
estimator and by the effect on the resulting similarity model. In our experiments,
we have set r based on a “rule of thumb” defined by two criteria: choose a value
that does not exceed half of the mean error obtainable by the standard (published)
regression algorithms, and that keeps the proportion of similar pairs out of all pairs
below 10% (these two criteria “pull” the value of r in different directions.) A more
thorough approach would involve optimizing the value of r by cross-validation or
holdout procedure: repeating the entire experiment of learning an embedding and
evaluating the NN estimator on this embedding, for a range of values of r. Such
procedure would likely improve the results.

Auto-MPG Predicting mileage per gallon of fuel from various mechanical charac-
teristics of a vehicle.

52

Name Source Dimension # of examples Task Label span r
MPG [16] 7 392 Regression 37.6 1
CPU [1] 21 8192 Regression 99.0 1
Housing [16] 13 506 Regression 45.0 1
Abalone [16] 7 4177 Regression 28.0 1
Census [1] 8 22784 Regression 5×105 500
Letter [1] 16 20000 Classification 1,. . . 26 0
Isolet [16] 617 3899 Classification 1,. . . 26 0

Table 3.1: Summary of the data sets used in the evaluation.

Machine CPU Regression: predicting time spent by a program in user CPU mode
from process statistics: number of system calls, page faults, I/O etc.

Boston Housing Regression: predicting median value of housing in Boston neigh-
borhoods as a function of various demographic and economic parameters.

Abalone Regression: predicting the age of abalone from physical measurements.

US Census Regression: predicting median price of housing based on neighborhood
statistics.

Letter Classification of written letters from a set of image statistics; 26 classes (one
per letter.)

Isolet Classification of spoken isolated letters (by a number of speakers) from a set
of features of the recorded acoustic signal. There are 26 classes (one per letter.) Only
half of the available 7797 examples were used to speed up experiments.

3.2.2 Performance and analysis of SSC

We have evaluated the performance of SSC on the seven data sets introduced in
Section 3.2.1. The results were obtained using ten-fold cross-validation: each data
set was randomly divided into ten disjoint parts roughly equal in size, and each part
was used as a test set while the remaining 9/10 of the data served as training set. All
the data were encoded using the SSC embedding learned on that training set, and
then the prediction error was measured for the examples in the test set using the L1

distance in the embedding space (with SSC embedding this is the same as Hamming
distance) to determine similarity.

Two parameters have to be set in this process. One is the minimal gap G. We
chose it from a range of values between 0.01 and 0.25 by leave-one-out cross valida-
tion on training data in each experiment. For each data set and in each “fold” of
the ten-fold cross validation, we encode the training data (9/10 of the total data)
using SSC with each gap value under consideration, and compute the mean absolute

53

training error of example-based estimation with that encoding. That is, we predict
the value of the label for each training point using its neighbors (but not itself) in
the embedded training set. We then select the gap value which produced the lowest
training error, and use it to compute the testing error in that fold of cross validation.
In our experiments we found that the gap value resulting from this tuning procedure
is very stable, and typically is the same for most of the ten folds in any data set;
these typical values are shown in the second to last column of Table 3.2.

The second parameter is the K (or R) in the eventual regression/classification
algorithm. Virtually all published results on these data sets refer to K-NN algorithms,
hence we also used K-NN, choosing K from a range between 1 and 300 by a procedure
identical to the one for setting g.3

As a baseline, we compare the results obtained with SSC to those obtained with
the standard nearest-neighbor regression estimation, using L1 distance between the
examples as a proxy for similarity. Tables 3.3 and 3.5 show the results of this compar-
ison for regression databases. In terms of the mean absolute error (MAE), there is a
general trend of SSC outperforming the L1. On two datasets the differences between
the means are farther than two standard deviations apart, while for others the differ-
ence is less significant. In terms of the mean squared error, the two methods achieve
qualitatively similar performances. This suggests that the error with SSC is often
smaller than that with L1, but occasionally it becomes very high due to a spurious
match. The performance of SSC on classification data sets, compared to the L1, is
similarly good, as evident from Table 3.4.

As mentioned in Chapter 1, another measure of the performance of a similarity
model is its direct effect on retrieval accuracy. Figures 3-6-3-12 show the plots of the
ROC curves for L1 and SSC on the seven benchmark datasets. In six out of seven
datasets, the curves for SSC (blue, dashed) are clearly above that for L1 (black,
dotted). The average gain in the area under curve (AUC) is between .05 and .1. The
only data set in which no gain was recorded is Isolet. The dimension of that data set
is significantly higher than the dimensions of the remaining six, and we believe that
this fact partially accounts for the difficulty of SSC. There is a very high number
of thresholds in general for this data set (i.e., the length of the unary encoding is
very high, see Table 3.2) and of the thresholds that attain the desired gap value,
in particular. Thus, in training SSC, we randomly selected 4,000 out of more than
250,000 thresholds with the gap above 0.1. That step, dictated by computational
necessity, may have removed significant some useful thresholds from the code and
hampered its retrieval accuracy.

Distribution of the TP-FP gap

An immediate effect of the value of G is on the value M , the number of selected bits.
Setting G too high will result in failure to construct an embedding; setting it too high
will result in an embedding with a huge number of bits, not only not efficient but also

3More precisely, we optimized g and K jointly, by evaluating on the training data a range of K
for each embedding obtained with a particular g, and choosing the “winning” combination for each
of the ten cross-validation folds.

54

impractical due to the required storage space. Figure 3-2 shows, for four datasets,
how the number of accepted thresholds (pooled over all dimensions) declines as the
lower bound on the gap increases.

(a) Letter, dimension 4 (b) CPU, dimension 11

(c) Boston housing, dimension 10 (d) Auto-MPG, dimension 3

Figure 3-2: The distribution of TP-FP gap values for four data sets (pooled over all
dimensions.)

Figure 3-3 shows some typical examples of the behavior of TP and FP rates and
the gap between them (for the same cases used in Figure 3-2.) As may be expected,
the general trend is that a threshold with higher TP rate typically will also have
a higher FP. This is because thresholds with high TP rates simply lie close to the
median of the projection (dimension) values, and thus are likely to separate many
pairs–similar and dissimilar. In that way, the selection procedure is guided by the
statistics of the data.

One other observation from Figure 3-3 is that the false positive rates appear to
be bounded from below at around 1/2. We will discuss this phenomenon and its
implications in Section 3.2.4.

55

(a) Letter, dimension 4 (b) CPU, dimension 11

(c) Boston housing, dimension 10 (d) Auto-MPG, dimension 3

Figure 3-3: The distribution of TP and FP rates for a single dimension, for four data
sets. Solid (red): TP; dashed (blue): FP; dotted (black): the gap.

3.2.3 The coding perspective on SSC

From a machine learning standpoint, SSC can be seen as a mechanism of directly
selecting features from a very large but finite pool, consisting of all the distinct
functions h (i.e., all the bits in the unary encoding of the data). In terms customary
in machine learning literature, this is a filter selector: the criteria for selecting or
rejecting a feature are based on the feature’s parameters–the performance of the
associated simple classifier. That is in contrast to wrapper selection, whereby the
features are evaluated by “plugging them in” to the classifier.4

The embedding HSSC can be also interpreted as encoding examples in X with an
M -bit code, which is constructed with the objective to retain maximum information
relevant to similarity between examples. (A similar interpretation of similarity fea-

4The greedy algorithm presented in Section 3.3 is an example of a wrapper feature selection.

56

Data set Optimized Nominal Unary M (gap G) Compression
MPG 39 152 4672 371 ± 7 .1 0.9206
CPU 220 625 7136969 6864 ± 308 .15 0.9990
Housing 91 385 4612045 673 ± 57 .15 0.9999
Abalone 64 224 12640 3007 ± 25 .1 0.7621
Census 107 256 58564303 3438 ± 1481 .1 0.9999
Letter 64 128 240 37 ± 0 .1 0.8458
Isolet 6844 19744 5096373 178116 ± 6948 .15 0.9651

Table 3.2: Comparison of the SSC length M to original representation. Optimized:
number of bits necessary to encode the unique values. Nominal: number of bits
necessary to encode N × dim(X) values in a N -point data set with no compression.
Unary: length of unary encoding after conversion of the data to integers (see foot-
note 5). Compression: the percentage of the unary encoding bits effectively eliminated
by SSC.

tures has been discussed in [97], in the context of binary classification problems.) It is
interesting to compare M to the length of the original representation. In terms of the
“nominal” number of dimensions, M is typically higher(as evident in Table 3.2) than
dim(X). However, the effective representation that SSC is implicitly compressing
is the unary encoding (see discussion in Section 2.4.2.) With respect to the unary
encoding,5 SSC is achieving considerable compression, as shown in the right column
of Table 3.2. The numbers refer to the percentage of unary encoding bits that are left
out of the SSC encoding (i.e., 90% compression means 90% reduction in encoding
length.) The selection procedure in SSC can therefore be seen as a dimensionality
reduction in the unary encoding space, with the objective to preserve the dimensions
most relevant to similarity judgments.

Besides examining the number of bits in the code, of course, we must also look at
the redundancy. It should come as no surprise that the code obtained with SSC is
terribly redundant. Figure 3-4 visualizes the covariance matrices for the SSC bits for
three of the data sets (these are typical covariance matrices), with red corresponding
to higher values. One source for this redundancy is trivial: if two thresholds T1 and
T2 are close (relative to the span of f(x)), the values of h(x; f, T1) and h(x; f, T2)
will be highly correlated. A less trivial source of correlation is the structure in the
data, which may include various dependencies between values and carry on to the
thresholded projections.

3.2.4 Semi-supervised learning

In Section 3.2.2 we noted that the false positive rate of the stumps in our experiments
appears to be bounded from below by 1/2. This has the following explanation. Sup-
pose that similarity is a very rare event, in the sense that for two random examples

5Recall that for integers, the length of the unary encoding is simply the span of the values. For a
set of values v1, . . . , vn some of which are non-integers, it was calculated as max{vi} · 1/ mini,j{|vi−
vj |}.

57

(a) CPU (b) Letter (c) Housing

Figure 3-4: Covariances of the SSC bits for three of the data sets. Red values are
high, blue values are low. The large blocks correspond to the original dimensions of
the data; the peaks of covariance values are around the medians of projections. Refer
to Tables 3.1 and 3.2 for details about the data sets and the embeddings.

drawn from the domain at hand, the probability of them being similar is low. This is
certainly the case for many interesting applications in computer vision. For instance,
two randomly selected images of people are unlikely to contain similar articulated
poses, and two regions randomly extracted from natural images are unlikely to be
visually similar.6 This is in fact the case in the UCI/Delve data sets used in our ex-
periments; the average similarity rate (the probability of a random pair to be similar)
ranges from 0.03 to 0.1 (with the exception of Abalone for which it is 0.3.)

Let us consider the distribution of the values of f(x) for similar and dissimilar
pairs of examples in X . The underlying assumption of our approach is that, if f is
a “useful” projection, there is a structure in the distribution of these values, namely,
that similar pairs tend to have similar values of f . On the other hand, under our
assumption that the similarity rate is significantly lower than 1/2, the set of all
dissimilar pairs is close to simply the set of all pairs in X 2. That means that

p(f(x1), f(x2) | S(x1,x2) = −1) ≈ p(f(x1), f(x2)) = p(f(x1))p(f(x2)), (3.6)

i.e. the joint distribution of the pairs of projections (f(x), f(y)) for S(x,y) = −1 is
close to the unconditional joint distribution over all pairs.7 (The second equality is
due to the assumption that examples are provided to us i.i.d.)

We can then model the process that generates negative examples for similarity
learning by the following trivial procedure: take a random pair of examples and label
it as dissimilar. This of course will produce some noise in the labels - at the rate
equal to similarity rate of the data set. In fact the natural procedure to create a set

6This may not be true if the notion of similarity is defined coarsely, e.g. if any two people standing
upright are considered in similar pose. But we will assume that the similarity is sufficiently fine, as
seems to be the case in most interesting problems.

7It should be clear that we are referring to distribution of f(x), not that of x.

58

of dissimilar pairs, and the one we used in all the experiments reported in this thesis,
is in fact almost as described above, with the additional pass to remove any spurious
similar pairs.

The consequence of (3.6) is that, for a low similarity rate ρ, the FP rate of a
feature h(x; f, T) is bounded from below by a value close to 1/2. The following proof
has been given in [70], and is augmented here to take into account the correction by ρ.
Suppose that we draw a random pair of examples (x1,x2) from the data distribution
p(x) and project them using f . Let πT be the probability mass of f(x) below the
threshold T :

πT = Pr(f(x) ≤ T)

Since the randomly constructed pair (x1,x2) is assumed to be dissimilar, a “bad”
event, from the perspective of classifying similarity, occurs when f(x1) and f(x2)
are on the same side of T on the line f(x). The probability of such an event is
π2

T +(1−πT)2. By definition of ρ the random pair (x1,x2) is dissimilar with probability
1− ρ; therefore, the expected FP rate of h(x; f, T) is

FP(f, T) = (1− ρ)
(
π2

T + (1− πT)2
)
. (3.7)

Note that πT (cdf of a scalar random variable) can be easily and robustly estimated
from the data, even with a relatively modest number of examples. This means that
in order to estimate the FP rate of a threshold, we do not need explicit examples
of dissimilar pairs if we have access to a set of unlabeled (single, not paired) data
points. We will refer to such a setup as semi-supervised.8 The threshold evaluation
procedure in Algorithm 4 is easily modified for the semi-supervised case, as described
in Algorithm 6.

In the remainder of this thesis, we will consider both supervised and semi-supervised
setup when discussing the embedding algorithms.

3.2.5 Limitations of SSC

In the experiments described above, we have seen that SSC is able to improve over
the “off-the-shelf” distance measure, both in terms of the prediction accuracy with
example-based methods that rely on it and in terms of the accuracy of similarity
detection, as expressed in the ROC curves. However, we also have pointed to a
number of problems with the embeddings constructed with SSC. These problems are
rooted in two main sources:

Constrained geometry SSC provides a refinement on the L1 distance better
tuned to the target similarity, but the reliance on axis-parallel projections limits
the resulting similarity concept to the class of hyper-rectangles in the unary encoding
space.

8This may seem somewhat different from the common use of the term “semi-supervised” to mean
that only part of the available data is labeled. To reconcile that with our use, consider that with N
examples, we essentially operate on the set of N(N − 1)/2 pairs, only a small fraction of which are
labeled (all positive), and the rest are given implicitly with no labels.

59

Algorithm 6 Semi-supervised procedure for evaluating threshold. See Section 3.2.4
for details.
Given: Data set X = [x1, . . . ,xN] ⊂ X .

Given: Set of similar pairs P+ = {
(
x

(1)
i ,x

(2)
i

)
}Np

i=1} ⊂ X 2.

Given: Projection function f : X → R
Given: Weights on pairs W = [w1, . . . , wNp], such that

∑
i wi = 1.

Given: Weights on points S = [s1, . . . , sN], such that
∑

j sj = 1.
Output: Set of triples {〈Tt, TPt, FPt〉}n

t=1, where TPi and FPi are the estimated TP
and FP rates for threshold T .

1: Let u1 < . . . < un−1 be the unique values of f{xi}N
i=1.

2: Set thresholds T1 < . . . < Tn based on {ui}, like in Algorithm 4.
3: for all i = 1, . . . , N do
4: Obtain list of records {〈vi,p, di,p, wi〉}i=1,...,Np, p=1,2 sorted by vi,p, like in Algo-

rithm 4, but using only similar pairs in P+

5: for all j = 1, . . . , n do
6: Let ij := max{i : vi ≤ Tj}
7: TPj := 1−

∑
i≤ij

widi.

8: Let πj =
∑

i: f(xi)≤Tj
si.

9: FPj := π2
j + (1− πj)

2.

Ignoring dependencies Treating features h individually leads to redundancy in
the embedding, sometimes at the cost of performance. Although some ad-hoc methods
for alleviating this (such as checking for correlation with already selected thresholds)
may help, we would like to have a more direct method to limit unnecessary depen-
dencies and to optimize the entire embedding rather than individual dimensions.

These issues are addressed in the improved versions of this basic similarity embed-
ding algorithm, which we present next. The first of them enhances SSC by replacing
independent selection of embedding bits with a greedy, sequential optimization pro-
cedure based on boosting.

3.3 Ensemble embedding with AdaBoost

Recall that for each thresholded projection h (3.2) there is a dual classifier of example
pairs c (3.3). Let us now consider the M -bit SSC embedding H = [h1, . . . , hM],
and suppose that for some x,y ∈ X the distance ‖H(x) − H(y)‖ = R. Since each
embedding dimension contributes either 0 or 1 to the distance, this means that values
at exactly R positions in the two embeddings are different. Consequently, exactly R
associated classifiers would assign Ŝ(x,y) = −1. Generally, we can write

‖H(x)−H(y)‖ =
M

2
−

M∑
m=1

1

2
cm(x,y), (3.8)

so that the distance assumes values between 0 and M .

60

In the more general form, the contribution of a thresholded projection hm to the
distance is weighted and is either 0 or αm. This corresponds to assigning a vote of
αm/2 to the classifier cm in (3.8). Together, the M thresholded projections form the
similarity classifier

C(x,y) = sgn

(
M∑

m=1

αmcm(x,y)

)
. (3.9)

This is an ensemble classifier.9 A feasible strategy for constructing an embedding H
is therefore to construct an ensemble C coupled with the threshold τ by a procedure
that minimizes the empirical risk on the training pairs. We will follow this strategy
and use the boosting approach [99, 23]. Boosting is essentially a procedure for greedy
assembly of C in a way that reduces the training error. It has also been shown to yield
excellent generalization performance. Before we describe how the boosting framework
can be applied in our task, we review it in the next section.

3.3.1 Boosting

We will follow the generalized view of AdaBoost, given in [100], since it will simplify
the transition to improved versions of our algorithm. Let X = x1, . . . ,xN be the N
training examples labeled by l1, . . . , lN ∈ {±1}. In boosting it is assumed that there
exists a weak learner that can, given a set of labeled training examples and a distri-
bution (set of non-negative weights that sum to one) W , obtain a weak hypothesis
c(x) whose training error on X, weighted by W , is better than chance (1/2). The
goal of boosting is to construct an ensemble classifier

H(x) = sgn

(
M∑

m=1

αmcm(x)

)
, (3.10)

that minimizes training error. Note that (3.10) implicitly assumes thresholding at zero
(i.e. classifying by a weighted majority). A different threshold may be introduced
post-training and set to reach the desirable ROC point.10

Finding the ensemble that attains the global minimum of training error is com-
putationally infeasible. Instead, AdaBoost gives an iterative greedy algorithm that
adds weak classifiers cm with an appropriate vote αm one at a time. Throughout
the iterations AdaBoost maintains a distribution W ; we will denote by Wm(i) the
weight on the i-th example before iteration m. The distribution is updated so that,
intuitively, examples classified correctly in an iteration have their weight reduced,
and those misclassified have their weight increased (thus “steering” the weak learner
towards themselves by increasing the cost of further misclassifying them).

The magnitude of change in iteration m is determined by the vote αm; the update

9Instead of thresholding the sum of votes at zero in (3.9), a different value of the threshold may
be introduced by adding a “dummy” classifier which always outputs, say, +1, and setting its vote
to the desired threshold value.

10Or, alternatively, by including a fixed-output weak classifier in the ensemble, similarly to the
“bias” input cell in neural networks.

61

rule in AdaBoost is

Wm+1(i) := Wm(i) exp(−αmlmcm(xi)) / ZAB
m , (3.11)

with division by the normalization constant

ZAB
m ,

N∑
i=1

Wm(i) exp(−αmlmcm(xi)) (3.12)

ensuring that Wm+1 remains a distribution in the sense defined above.
In addition to ZAB

m , another key quantity in the analysis of boosting is the weighted
correlation of labels with predictions

rAB
m ,

N∑
i=1

Wm(i)licm(xi). (3.13)

It can be shown [100] that a reasonable objective of the weak learner at iteration m
is to maximize rAB

m . Furthermore, the training error of H after m iterations can be
shown to be bounded from above by

∏m
t=1 ZAB

t ; minimizing ZAB
m in each iteration is

therefore a reasonable objective of the greedy algorithm. Once the weak classifier cm

has been selected, ZAB
m is affected only by αm, so that this objective is translated to

setting α appropriately. When the range of cm is [−1, +1], the rule

αm :=
1

2
log

1 + rAB
m

1− rAB
m

(3.14)

can be shown to achieve that goal of minimizing ZAB
m [100]. In a more general frame-

work, the optimal α can be found by numerical optimization of (an easy procedure
since Z can be shown to be convex and have a unique minimum.)

3.3.2 Supervised boosted SSC

Algorithm 7 is a straightforward application of AdaBoost to the problem of classifying
pairs for similarity. Namely, the training examples in our case are pairs, and the weak
classifiers here are thresholded projections that assign a positive or negative labels to
a pair. The true label li of a pair (x

(1)
i ,x

(2)
i) correspond to the underlying similarity

S(x
(1)
i ,x

(2)
i).

To calculate the objective in iteration m, we collect the positive terms in (3.13),
TPj

d + W n − FPj
d, and the negative terms −(FPj

d + W p − TPj
d); summation of these

yields the expression in step 7 of Algorithm 7. The calculation of αm in step 9 is done
by minimizing the ZAB

m , following the bisection search procedure suggested in [100].11

11Briefly, we start with an initial guess for an interval that contains the optimal α, and evaluate
the derivative ∂Zm/∂αm at the endpoints as well as in the middle; since the derivative does not
change the sign, and we are looking for its single zero-crossing, we then repeat, recursively, on the
half of the interval that has opposing signs of ∂Zm/∂αm at its endpoints.

62

Algorithm 7 Boosted SSC (supervised). Note: this is a direct application of the
AdaBoost algorithm.

Given: A set of pairs P{x(1)
i ,x

(2)
i }N

i=1, labeled by li = S(x
(1)
i ,x

(2)
i).

Output: A set of functions hm : X → {0, αm}, m = 1, . . . ,M .
1: Set initial set of weights W1, w1(i) = 1/N .
2: for all m = 1, . . . ,M do
3: Let W p :=

∑
i:li=+1 Wm(i), W n :=

∑
i:li=−1 Wm(i).

4: for all d = 1, . . . , dim(X) do
5: Let fd(x) ≡ x(d).

6: For each feasible threshold T j
d on fd, j = 1, . . . , nd, compute TPj

d and FPj
d

using ThresholdRate(P, fd, Wm).

7: Let r
(AB)
m (T j

d) := 2(TPj
d − FPj

d) + W n −W p.

8: Select Tm := argmaxd,j r
(AB)
m (T j

d).
9: Set αm to minimize Zm(α) (see text).

10: If αm ≤ 0, stop.
11: Update weights according to (3.11)

The boosted version differs from the original SSC algorithm in a number of
ways. First, it replaces the exhaustive collection of features with large TP-FP gap
in SSC by an optimization step that selects, at iteration m, a single feature maxi-
mizing rm. Second, it incorporates the votes αm, so that the embedding it produces
is H(x) = [α1h1(x), . . . , αmhm(x)]. As a result, the embedding space becomes a
weighted Hamming space: the L1 distances there are measured by

‖H(x)−H(y)‖ =
M∑

m=1

αm|hm(x)− hm(y)|

It is interesting to note the interaction of the type of weak learner we have chosen
and the specific nature of the task. The objective rm of the weak learner, expressed in
(3.13), can be decomposed into two terms. One term,

∑
i:li=+1 Wm(i)cm(xi) penalizes

any positive pair divided by hm. The influence of this term “pulls” the thresholds,
for any projection f , away from the median of that projection, since that reduces the
probability of crossing any positive pairs.

The second term −
∑

i:li=−1 Wm(i)cm(xi) penalizes the negative pairs that are not
divided, and its influence is exactly opposite: it encourages thresholds as close to
the median as possible, since then minimal number of negative pairs are misclassified
(and that still is about one half). This situation is different from typical classification
tasks, where the classes “work together” to optimize the decision boundaries. In
addition, the examples in the negative class are significantly more difficult to classify
consistently: a positive pair is likely to be repeatedly labeled correctly by the weak
classifiers, while a negative pair is likely to get misclassified with high probability in
any given iteration.12 The training error rates on the two classes in a typical run of

12Yet another insight into this behavior can be obtained by realizing that it is trivial to produce

63

the algorithm reflect this: the training error on the similar pairs rapidly goes down
and usually reaches zero after relatively few iterations, while the training rate on
the negative examples goes up and eventually reaches 1. This makes it important to
find the correct threshold on the Hamming distance in H, based on the ROC curve
obtained on training data (or, if possible, on a held out validation set).

Nevertheless, this algorithm may be successfully used for complicated problems
such as the task of learning similarity of human silhouettes, as described in Chapter 5.

3.3.3 Boosting in a semi-supervised setup

When only examples of similar pairs are specified in addition to the unlabeled data,
as describe in Section 3.2.4, the boosting algorithm needs a modification, which is
described in this section.

We maintain a distribution Wm(i) for i = 1, . . . , Np where Np is the number of
positive pairs. Wm plays essentially the same role as it did in AdaBoost, and is
updated in the usual way, except that the normalization constant Zm is set to make∑

i Wm+1(i) = 1/2.
We also maintain a second distribution Sm(j) on the unlabeled examples xj, j =

1, . . . , N . Before we present the update rule for Sj, let us consider the role played by
the unlabeled examples. Intuitively, an example xj serves as a representative of all
the possible pairs (xj,y) that can be constructed. As we have seen in Section 3.2.4, if
the similarity rate is low we may assume that most of these pairs are dissimilar, and at
least half (usually much more) of these pairs will be misclassified by any cm(x,y; f, T).
That number as we have seen depends on the probability mass πm = Pr(f(x) ≤ T).
Specifically, the probability of a random pair formed with xj to be misclassified by a
threshold T on a projection f is

Pj , h(xj; f, T)πm + (1− h(xj; f, T))(1− πm). (3.15)

The expected value returned by the classifier cm on a pair formed with xj is
therefore

Pj · (+1) + (1− Pj) · (−1) = 2Pj − 1.

Consequently, we change the definition of rm from (3.13):

rm ,
Np∑
i=1

Wm(i)cm(x
(1)
i ,x

(2)
i) −

N∑
j=1

Sm(j)Ey [cm(xj,y)]

=

Np∑
i=1

Wm(i)cm(x
(1)
i ,x

(2)
i) −

N∑
j=1

Sm(2Pj − 1).

(3.16)

The update rule for Sj changes accordingly; instead of having a deterministically

a threshold that will classify all positive training examples correctly, but as we have shown it is
impossible to do much better than chance on the negative examples.

64

computed value of cm in the exponent, we use the expected value, which yields

Sm+1(j) := Sm(j) · exp (αm(2Pj − 1)) / Zs (3.17)

with the normalization constant Zs =
∑

j Sm(j) exp(αm(2Pj − 1)). This implies that

• When f(xj) falls on the side of the threshold with small probability mass, its
weight goes down.

• When f(xj) falls on the side with large probability mass, its weight goes up.
Intuitively this encourages the algorithm to choose next threshold which will
place this example on the “good” side (with small probability mass).

• If πi is 1/2, the weights do not change (that is the “ideal threshold”).

3.4 BoostPro: boosting general projections

The learning framework presented above has been thus far limited to selection and
combination of features from a finite set: axis-parallel stumps (we have shown that
this is equivalent to selection of bit features from the unary encoding). This makes the
learning simple, but at the same time may limit the power of the resulting encoding.

The following “toy” example clearly demonstrates the limits imposed by a com-
mitment to axis-parallel features. Consider the 2D Euclidean space, in which we have
two similarity concepts. The first concept, SA, the angle similarity, is determined
by the slopes of straight lines passing through the origin and the points; if the angle
between the two lines is less than 5 degrees, the two points are similar. The second
concept SN , the norm similarity,relies on the Euclidean norm of the points (i.e., their
distance from the origin): if the L2 norms of two points differ by less than 1/4, they
are considered similar under SN . Figure 3-5 illustrates this, by showing, for a fixed
reference data set and two query points denoted by circles, the set of reference points
similar to the queries under each of the two concepts. The figure also shows the sim-
ilarity region: the set of all points on the 2D plane that would be judged similar to a
query. While empirical performance of a similarity model is determined in terms of
the precision/recall measured on a particular data set, its generalization performance
may be evaluated by measuring the overlap between the correct similarity region and
the region estimated under the model.

The performance of L1 distance as a proxy for either of the two similarities is
quite poor, not surprisingly. In particular, the threshold on the distance necessary to
achieve reasonable precision corresponds to an ROC point with a very low recall. It
seems obvious that no subset of the features inherently limited to axis-parallel stumps
will do much better in this case.

In hindsight (given what we know about the target similarities in each case), the
best solution is of course to simply extract the parameter which directly affects the
similarity. This would mean simply converting the Euclidean coordinated to polar
coordinates and using the phase (modulo π) and magnitude as an embedding of the
data for, respectively, SA and SN . Of course, normally we do not have such knowledge

65

(a) Angle similarity SA (b) Norm similarity SN

Figure 3-5: Toy 2D data set, with examples of angle similarity and norm similarity.
SA(x,y) ∼ |atan(x) − atan(y)|, and SN(x,y) ∼ |‖x‖ − ‖vy‖|. Circles: examples
similar, under each of the two concepts, to the query shown by the cross. Shaded
area: the similarity region (see text.)

of the functional form of the target S, and so we must rely on a learning algorithm
with a rather generic set of features that will allow us to reasonably approximate it.

3.4.1 Embedding with generic projections

We are now extending the family of the projection functions used to form the embed-
ding. We will consider all generalized linear projections of the form

f(x; θ) ,
D∑

j=1

θjφj(x). (3.18)

This still leaves the choice of φ unspecified. In this thesis, we will limit our attention
to polynomial projections, in which

φj(x) = x(d1
j) · · ·x(d

oj
j)

, (3.19)

that is, each term φj in (3.18) is a product of oj components of x (not necessarily
distinct). In our experiments, we have used projection with oj bounded either by 1
(linear projections) or 2 (quadratic projections).

This is a fairly broad family (that of course includes the axis-parallel projections
used so far), and the framework developed in this section does not necessarily assume
any further constraints. The specific choice of the projections is a matter of design,
and should probably be guided by two considerations. One is domain knowledge–
for instance, in our toy example it is pretty clear that quadratic projections should

66

be appropriate for the task. The second consideration is computational resources:
since learning with such projections involves optimization, increasing the number of
parameters will increase the time required to learn an embedding.

3.4.2 The weak learner of projections

Until now the weak learner in boosting was essentially ranking all the features based
on the current weights on the examples. Transition to an infinite set of projections
requires a weak learner capable of searching the space of features in order to optimize
the objective function in a current iteration of boosting. Below we define a differ-
entiable objective function aimed at maximizing rm, and describe a gradient ascent
procedure for that function.

In order to have a differentiable objective, we need a differentiable expression
for the classifier. Therefore, we replace the “hard” step functions in (3.2) with a
differentiable approximation via the logistic function:

h̃(x; f, T) ,
1

1 + exp (γ(f(x)− T))
. (3.20)

This introduces the parameter γ, the value of which can affect the behavior of the
learning algorithm.13 We suggest the following heuristic to set a reasonable γ:

γ =
log((1− .999)/.999)

min (|mini{f(xi)− T}|, |maxi{f(xi)− T}|)
,

which means that the lowest value of h̃ on the available data is at most 0.001, and
the highest value is at least 0.999.14

We also change the definition of the classifier associated with h̃ from (3.3) to

c̃(x,y) , 4 (h(x)− 1/2) (h(y)− 1/2) . (3.21)

Note that the response of so defined c̃ is a continuous variable in the range [−1, 1],
that can be thought of as a confidence rated prediction: if both f(x) and f(y) are
far from the threshold on different sides, then c̃(x,y) will be close to +1, and if they
are very close to the threshold the response will be close to zero.

To calculate the gradient, we need to compute the partial derivatives of the ob-
jective function with respect to the projection parameters θ1, . . . , θD, T . Below we do
that for two cases: the fully supervised case and the semi-supervised one.

13In principle the same role of determining the shape of h̃ can be played by the parameters θj ,
however we found that using γ, in particular for data with vastly different ranges for different
dimensions, improves both the numerical stability and the speed of convergence of the learning.

14In principle the objective may be explicitly optimized with respect to the value of γ as well,
however we have not pursued that direction.

67

Fully supervised case

To simplify notation, let us denote the parameter with respect to which we differ-
entiate by θ. Recall that when total N of positive and negative pairs are available,
labeled by li, the objective function is given by

r̃m ,
N∑

i=1

Wm(i)lic̃(x
(1)
i ,x

(2)
i). (3.22)

The partial derivative of (3.22) is

∂

∂θ
r̃m =

N∑
i=1

Wm(i)li
∂

∂θ
c̃(x

(1)
i ,x

(2)
i). (3.23)

Now, from definition of c̃

∂

∂θ
c̃(x

(1)
i ,x

(2)
i) = 4

[
∂

∂θ
h̃(x

(1)
i)

(
h(x

(2)
i)− 1

2

)
+

∂

∂θ
h̃(x

(2)
i)

(
h(x

(1)
i)− 1

2

)
.

]
(3.24)

Next, we can take the derivative of the soft threshold h̃. Denoting fT (x) ≡ f(x)−T
for simplicity, we get

∂

∂θ
h̃(x) =

γ exp(−γfT (x))

(1 + exp(−γfT (x)))2

∂

∂θ
fT (x). (3.25)

Finally, we can take the derivative of the projection. For the coefficients θq,
q = 1, . . . , D this will yield

∂

∂θq

fT (x) = φD(x), (3.26)

and the derivative with respect to the threshold is simply -1. Plugging the equa-
tions (3.24)-(3.26) back into (3.23) produces the partial derivative of r̃m w.r.t. the
projection parameter θ, and allows us to perform gradient ascent using standard
numerical methods.15

Semi-supervised case

The main difference of the semi-supervised case from the supervised one is that we
need to take the derivative of the second part of (3.16) containing the expected
responses of c̃. Unfortunately, we can no longer use Pj to estimate that expectation
since any point on the line f(x) will produce a different response of c̃ when paired
with f(xi). Thus, we resort to explicitly estimating the expectation, which is given

15One can also calculate the Hessian to allow for a more efficient search with Newton-Raphson
method, but we have not pursued that.

68

Data set L1 SSC BoostPro
MPG 2.7368 ± 0.4429 2.2376 ± 0.3900 1.9286 ± 0.1941
CPU 4.1969 ± 0.2189 2.1503 ± 0.1500 2.0890 ± 0.1198
Housing 3.4641 ± 0.2568 2.4748 ± 0.5166 2.4985 ± 0.5272
Abalone 1.4582 ± 0.0557 1.4700 ± 0.0606 1.4994 ± 0.0496
Census 24705.0481 ± 988.2865 22480.2135 ± 1588.8343 18379.6952 ± 540.5984

Table 3.3: Test accuracy of constant robust locally-weighted regression. Shown are
the mean values ± std. deviation of mean absolute error (MAE) for 10-fold cross-
validation.)

Data set L1 SSC BoostPro
Letter 0.0449 ± 0.0050 0.0426 ± 0.0065 0.0501 ± 0.0061
Isolet 0.1265 ± 0.1713 ± 0.0215 0.0993 ± 0.0237

Table 3.4: Test accuracy of K-NN classification with SSC vs L1 similarity (mean ±
std. deviation for 10-fold cross-validation.)

by the integral

Ey [c̃(x,y)] =

∫ ∞

−∞
h̃(x− 1/2)h̃(y − 1/2)p(y)dy. (3.27)

We estimate this integral by taking the sum over the available examples. Thus, the
expression for r̃m becomes

r̃m =

Np∑
i=1

Wm(i)c̃(x
(1)
i ,x

(2)
i) −

N∑
j=1

Sj
4

N − 1

∑
b6=j

(
h(xj)−

1

2

)(
h(xb)−

1

2

)
. (3.28)

Taking the derivative of (3.28) involves assembling Np terms given in (3.24) (for
the positive pairs) and N(N − 1) terms for the unlabeled examples. If computation
time is of concern and the quadratic dependence on N is infeasible, the latter term
may be further approximated by sampling a constant number of xb’s at, say, fixed
percentiles of the distribution of f(x).

3.4.3 Results

Synthetic 2D data

For each of the two similarity tasks introduced in the beginning of Section 3.4, the
algorithm constructed an embedding with M = 200 dimensions based on Np = 1000
positive examples (and no negative examples), using projections quadratic in x1 and
x2. Figure 3-13 shows examples of the learned weak classifiers. The plotted regions
correspond to h; the value of the classifiers c for any two examples is obtained by

69

Data Set L1 SSC BoostPro
MPG 13.9436 ± 5.1276 10.0813 ± 3.8950 7.4905 ± 2.5907
CPU 37.9810 ± 5.2729 18.2912 ± 4.2757 9.0846 ± 0.9953
Housing 26.5211 ± 6.8080 14.3476 ± 9.1516 13.8436 ± 8.4188
Abalone 4.7816 ± 0.5180 4.8519 ± 0.4712 4.7602 ± 0.4384
Census 2.493×109 ± 3.3×108 2.237×109 ± 3.2×108 1.566×109 ± 2.4×108

Table 3.5: Test accuracy of constant robust locally-weighted regression on regression
benchmark data from UCI/Delve. Shown are the mean ± std. deviation of mean
squared error (MSE) over 10-fold cross validation. Results for SVM are from [83]; see
text for discussion.

Data set Error Method Source
MPG 7.11 SVM [83]
CPU 28.14 Regression Trees [113]
Housing 9.6 SVM [83]
Abalone 4.31 Neural Network [83]
Census 1.5×109 Regression Trees [113]
Letter 0.0195 ECOC with AdaBoost [28]
Isolet 0.0372 SVM [73]

Table 3.6: The best of the available results of other methods published for a simi-
lar experimental setup. The error shown is MSE for the regression sets and mean
classification error for the classification sets.

placing them on the figure and comparing the colors at their location. Thus, the
pairs of red crosses would be classified as dissimilar (by the weak classifier alone!)
while the pairs of circles would be classified as similar. The typical shape of h (origin-
centered disks for norm, and “bow-tie” shapes for angle) effectively corresponds to
a quantization of the underlying polar coordinate used to define similarity, although
the values of those coordinates were withheld during learning. Figure 3-14 shows
retrieval results; the lighter regions in the data space correspond to a L1-ball of
radius R = 20 in H around the query (shown by cross). The ROC curves for the
similarity retrieval/classification are shown in Figure 3-15. We also evaluated the
DistBoost algorithm from [60] on these two problems. Note that the comparison
is somewhat “unfair” since DistBoost assumes that the similarity corresponds to
equivalence classes on X . Nevertheless, DistBoost performed reasonably well, in
particular for low values of recall. Overall, on these synthetic data our embedding
approach is clearly superior to both DistBoost and the L1 distance, which performs
only slightly better than chance (as expected).

Real data sets

Tables 3.3, 3.5 and 3.4 summarize the results of an experimental comparison of
BoostPro with other similarity models as a tool in example-based regression and

70

(a) Mean absolute error (b) ROC curve

Figure 3-6: Results on Auto-MPG data set. Left: box plot of test mean absolute error
of example-based regression using, from left to right, L1 distance in X , SSC embed-
ding and BoostPro embedding. The plots show distribution of results in ten-fold
cross validation. Right: test ROC curves for the ten folds of the cross-validation.
Black (dotted): L1 in X ; Blue (dashed): SSC; red (solid): BoostPro.

(a) Mean absolute error (b) ROC curve

Figure 3-7: Results on Machine CPU. See legend for Figure 3-6.

classification on the seven real data sets. In all data sets the projections used by
BoostPro were linear projections with two terms, in other words, each dimension
of the embedding is a thresholded linear combination of two coordinates of the input.
The performance in terms of mean error is also summarized graphically in Figures 3-
6-3-12; these figures show the distribution of mean errors as well as the ROC curves
for the three similarity measures on seven data sets.

Selecting the terms in the projection in BoostPro requires some care. With two-
dimensional projections it may be possible (if dim(X) is low enough), in principle,

71

(a) Mean absolute error (b) ROC curve

Figure 3-8: Results on Boston Housing. See legend for Figure 3-6.

(a) Mean absolute error (b) ROC curve

Figure 3-9: Results on Abalone. See legend for Figure 3-6.

to exhaustively consider all dim(X)(dim(X) − 1)/2 combinations, perform gradient
descent on each and select the optimal one. However, it is extremely expensive (at
every step of the gradient descent we need to compute the gradient, which requires a
pass over all the training data.) In addition, while this may speed up the reduction
in training error, there is no requirement to find the best weak classifier in a given
iteration–just to find a weak classifier better than chance. Therefore, instead of
such exhaustive search we consider with a fixed number (typically 100) randomly
constructed term combinations, set the projection parameters θ to randomly selected
numbers, find the local maximum of rm by starting the gradient ascent at each of
these projections, and select the one that attains the highest rm. Note that this is an
inherently parallelizable procedure, since the gradient ascent proceeds independently
from every initialization point. We take advantage of this and use a parallelized

72

(a) Mean absolute error (b) ROC curve

Figure 3-10: Results on US Census. See legend for Figure 3-6.

(a) Mean classification error (b) ROC curve

Figure 3-11: Results on Letter. Plots on the left show classification error distributions;
otherwise, see legend for Figure 3-6.

implementation. However, we believe that the under-exploration of the space of
projections is the main cause for the failure of BoostPro to improve over the other
similarity models.

Nevertheless, in most cases, BoostPro outperforms other similarity models ro-
bustly, as measured by the means and standard deviations of mean errors in cross
validation. The main conclusion from these experiments is that for a practitioner
of example-based estimation methods, it is often beneficial to model the similarity
rather than apply the default L1-based neighbor search in X . In some cases there is
no improvement, however; we suspect that these are the cases in which the L1 is an
appropriate proxy for similarity. The following “hybrid” approach provides perhaps
the safest means of optimizing the performance of a similarity model: using a held-out

73

(a) Mean classification error (b) ROC curve

Figure 3-12: Results on Isolet. See legend for Figure 3-11.

Figure 3-13: Typical weak classifiers (thresholded projections) learned for the angle
(top three) and norm (bottom three) similarity on the synthetic 2D data. The darker
shade corresponds to the area where h = +1. Crosses and circles show pairs that
would be classified by the projection as similar and dissimilar, respectively.

test set (or in a cross-validation setting) evaluate the estimation error using each of
the three similarity models, and select the one with the best performance.

In order to place these results in the context of state-of-the-art results, we can also
compare our results to the best results published in the machine learning literature
for the data sets in question, as summarized in Table 3.6.16 For each data set, we have

16Due to a large variety of techniques and experimental designs used in such evaluations, such
comparisons should be considered carefully. We attempted to locate the most relevant results with

74

Figure 3-14: Synthetic data: example similarity regions. Light areas correspond to x
such that ‖H(x)−H(q)‖H ≤ R, with the query q shown by the red cross and R = 20
set for 0.5 recall. The dots show the training data. Top: angle similarity, Bottom:
norm similarity.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

T
ru

e
po

si
tiv

e
ra

te

(a) Angle

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False positive rate

T
ru

e
po

si
tiv

e
ra

te

(b) Norm

Figure 3-15: ROC curves for the retrieval experiments with angle and norm similar-
ities (see Figure 3-5. Diagonal: chance. Dotted: L1. Dashed: DistBoost. Solid: the
embedding learned with semi-supervised BoostPro.

respect to the specific set of experiments reported here.

75

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False positive rate

T
ru

e
po

si
tiv

e
ra

te

(a) MPG

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False positive rate

T
ru

e
p

o
si

ti
ve

 r
at

e

(b) Housing

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

T
ru

e
p

o
si

ti
ve

 r
at

e

(c) Abalone

Figure 3-16: Results on three of the UCI data sets. Comparison of L1, DistBoost
and semi-supervised BoostPro. Diagonal: chance. Dotted: L1. Dashed: DistBoost.
Solid: the embedding learned with semi-supervised BoostPro.

Data set MPG CPU Housing Abalone Census Letter Isolet
M 180 ± 20 115 ± 48 210 ± 28 43 ± 8 49 ± 10 133 ± 13 121 ± 52

Table 3.7: Lengths of embedding learned with BoostPro on UCI/Delve data; mean
± std. deviation in 10-fold cross validation.

76

cited the best result, along with the method with which it was achieved and the source.
As can be seen, for some data sets (regression) the simple constant, i.e. zeroth-order,
robust locally-weighted regression (introduced in Section 2.2) with a BoostPro-
learned embedding performs on a par with the best published results, while for other
data sets (primarily classification) its performance appears to be inferior.

Note that our embedding offers a critical advantage over SVM or similar classifi-
cation machines, when the task of similarity retrieval is relevant. This advantage is
in our ability to directly approach this task as a distance-based neighbor retrieval in
the embedding space, and to use LSH for a sublinear time search.

The main consequence of this ability is the computational gain. When the simi-
larity notion is inherently related to class labels, SVM could be in principle applied
to classify the query example and then retrieve all database examples that have the
same class label. Since SVM are known to often retain a significant proportion of
the data as support vectors, and since the computational cost of applying an SVM is
directly proportional to the number of support vectors, this often will be much more
expensive than the fast search with LSH.

When the relevant similarity notion can not be linked to a classification problem,
SVM or similar mechanisms are simply not directly applicable to the retrieval task.
One possibility to overcome this is to train an SVM classifier of similarity, i.e. a
classifier that operates on pairs of examples. That, however, would require to apply an
SVM, which is often an expensive operation itself, for all pairs formed by connecting
the query and each of the database examples. This is clearly prohibitively expensive
even with medium-size databases, and completely infeasible for databases of the type
we will discuss in the next chapters, with millions of examples. This is in stark contrast
to the cost of retrieval with our method, that combines the learned representation in
the embedding space with the fast search using LSH, making retrieval in near-real
time easily implemented for these very large databases.

BoostPro also shows an improvement over SSCon most data sets, at the same
time greatly reducing the embedding size; Table 3.7 shows the average values of M
for BoostPro(these values are essentially determined by the stopping criteria of
AdaBoost, that stops when it can not find, within a reasonable time, a weak classifier
with non-zero rm.) Compare these numbers to those in Table 3.2.

Semi-supervised scenario

Figure 3-16 shows a result of comparing the semi-supervised version of BoostPro to
DistBoost (and L1) on three of the UCI data sets: Abalone, Housing and Auto-
MPG. The ROC curves shown are for a single partition of the data, using 40%
for testing. On these three data sets, the advantage of our embedding method is
still noticeable, although it is less pronounced, since both DistBoost and L1 perform
better than for synthetic data. In all the five data sets, the expected similarity rate
ρ (e.g., the probability that random two examples are similar) is between 0.05 and
0.3. Nevertheless, the positive-only version of the algorithm based on the assumption
that this rate is low, performs well.

We have also investigated the effect of the ground truth similarity rate on the

77

Figure 3-17: Effect of similarity rate on the performance of the semi-supervised
BoostPro, on synthetic norm similarity data. The ROC curves are shown for the
retrieval task on 1000 test points, using 600 unlabeled points and 2,000 similar pairs,
with M=100.

performance of the semi-supervised version of BoostPro. Norm similarity in the
2D “toy” data set is determined by setting a threshold on the difference between
Euclidean norms of the two points in question; varying this threshold corresponds to
modifying the similarity rate (if the threshold is low, ρ is low). We have evaluated
the retrieval performance of the algorithm for a range of values of ρ between 0.02 and
0.55. Figure 3-17 shows the ROC plots for eight values of ρ, obtained by applying
the semi-supervised BoostPro. The FP rate was estimated as per equation 3.7,
that is, using the probability mass estimate for a threshold and the correction term
for the known ρ. From the results it is apparent that the algorithm is very robust,
in the sense that the semi-supervised version achieves identical (good) results for ρ
up to 0.3; the curve for 0.4 is noticeably inferior, and for 0.55 the curve deteriorates
much further. This is consistent with our observation that for values of ρ up to 0.3
in the UCI/Delve data sets, the performance of semi-supervised algorithm does not
suffer from replacing actual negative examples with the expectations over all pairs,
corrected for the known (or estimated) ρ.

78

3.5 Discussion

We have developed a family of algorithms for learning an embedding from the original
input space X to an embedding space H. The objective of these algorithms is to to
optimize the performance of L1 distance in the embedding space as a proxy for the
unknown similarity S, which is conveyed by a set of examples of positive pairs (similar
under S) and, possibly, negative pairs, perhaps along with some unlabeled example
in X .

The following summarizes the main properties of each algorithm.

Similarity Sensitive Coding (SSC) The algorithm takes pairs labeled by similar-
ity, and produces a binary embedding space H, typically of very high dimension.
The embedding is learned by independently collecting thresholded projections
of the data.

Boosted SSC This algorithm addresses the redundancy in SSCby collecting the
embedding dimensions greedily, rather than independently. It also introduces
weighting on the dimensions of H.

BoostPro This algorithm differs from the Boosted SSCin that the dimensions of the
embedding are no longer limited to axis-parallel stumps. We have introduced a
continuous approximation for the thresholded projection paradigm in which a
gradient ascent optimization becomes possible.

Semi-supervised learning For each of these three algorithms we have presented a
semi-supervised version which only requires pairs similar under S, in addition
to a set of unlabeled individual examples in X .

As part of the discussion in this chapter we have applied some of the new algo-
rithms to a number of real-world data sets from public data repositories, and observed
very good performance, both in terms of the ROC curve of similarity detection and in
terms of the prediction accuracy for regression and classification tasks. In the follow-
ing chapters we will see how the proposed framework can be applied to challenging
problems in machine vision.

79

80

