
Chapter 7

Conclusions

In this concluding chapter we summarize the contributions of this thesis and the
possible impact as we see it, and discuss the important directions of future work.

7.1 Summary of thesis contributions

The central problem addressed in this thesis is the problem of modeling a boolean
similarity concept, which is conveyed only be means of examples of what constitutes
similar and dissimilar pairs under that concept. Before we summarize the specific
technical contributions in the remainder of this section, below are the main conclu-
sions we see emerging from our work.

• It is usually beneficial to learn a model for the similarity relevant to the task, be
it regression, classification or retrieval. It rarely hurts, and usually improves the
performance of the end goal application. Of course, the precise gain of learn-
ing similarity for any given application can be assessed by standard validation
techniques.

• Such learning can be successfully done directly from examples of similarity judg-
ment specific for the task, with minimal assumptions regarding the properties of
the underlying similarity concept. In many cases, for instance when the task in-
volves regression, the learning procedure including labeling similarity examples
can be completed fully automatically.

• In some problems, such as pose estimation, example-based methods have been
generally overlooked since it is commonly assumed they are computationally
infeasible. It does not have to be the case; with suitable embedding technique
it may be possible to provide a way of extremely efficient example-based estima-
tion in complex, high-dimensional problems. Our approach, to our knowledge,
is the first to combine the power of learning task-specific similarity with the
general embedding framework that allows this.
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7.1.1 Learning algorithms

The basis of our approach is to construct an embedding

H(x) = [α1h1(x), . . . , αMhM(x)],

such that low distance between H(x) and H(y) corresponds, with high probability,
to positive label assigned by the similarity S(x,y). The main advantage of this
approach, and what distinguishes it from the alternatives known to us, is that it
achieves two important goals:

• It provides us with a set of similarity classifiers on pairs of examples. This set is
parametrized by the value of the threshold on distance in the embedding space
H.

• It reduces the problem of similarity search to the problem of search for neighbors
with respect to the L1 distance. As a result, we are able to leverage state-of-
the-art search algorithms like LSH, that have sublinear running time.

In Chapter 3 we have presented a family of learning algorithms that construct an
embedding of the form described above:

Similarity Sensitive Coding (SSC) The algorithm1 takes pairs labeled by similar-
ity, and produces a binary embedding space H, typically of very high dimension.
The embedding is learned by independently collecting thresholded projections
of the data. This algorithm improves the performance of example-based meth-
ods on some data sets, and has been used however its utility is largely limited
to cases when the underlying similarity is close to L1 distance, with some mod-
ifications. This algorithm has been successful in articulated pose estimation
domain, as described in Chapters 4 and 5.

Boosted SSC This algorithm2 addresses the redundancy in SSCby collecting the
embedding dimensions greedily, rather than independently. It also introduces
weighting on the dimensions of H. We have applied this algorithm to the
tasks of pose and orientation estimation for an articulated tracking application,
described in Chapter 5.

BoostPro This algorithm is a generalization of Boosted SSCin that the dimensions
of the embedding are no longer limited to axis-parallel stumps. We have intro-
duced a continuous approximation for the thresholded projection paradigm in
which a gradient ascent optimization becomes possible. This algorithm further
improves the performance of example-based methods on standard benchmark
data. We also show its performance on articulated pose estimation, in chapter 4.
Finally, we have used this algorithm to learn visual similarity of image patches,
and have shown significant improvement over standard similarity measures used
with two patch descriptors.

1Published in [105]; joint work with P. Viola.
2Published in [93]; joint work with L. Ren, J. Hodgins, H. Pfister and P. Viola.
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Semi-supervised learning For each of these three algorithms we have presented a
semi-supervised version which only requires pairs similar under S, in addition
to a set of unlabeled individual examples in X .

7.1.2 Example-based pose estimation

In chapters 4 and 5 we have introduced a new approach to pose estimation from sin-
gle image. Contrary to previously proposed approaches, it does not use a parametric
model that is to be fitted to the image. Instead, it uses the learned similarity embed-
ding to search a large database of images with known underlying poses. As a result,
the notoriously difficult problem of fitting the articulated pose model is reduced to
two much simpler, and much faster, steps: search in a database for (approximately)
nearest neighbors, and fitting a local low-order model to the retrieved neighbors. To
our knowledge this approach achieves state-of-the-art performance while requiring
significantly less time per image than alternative approaches.

7.1.3 Articulated tracking

The main impact of our approach on articulate tracking is in providing a way of
automatic initialization of the tracker and, effectively, subsequent re-initialization
in every frame. In Chapter 5 we have described two tracking systems that take
advantage of this ability. Both systems have been demonstrated to be superior, in
terms of combined speed, accuracy and robustness, to state-of-the-art alternatives.

7.1.4 Patch similarity

In Chapter 6 we have described another application of the similarity learning frame-
work: learning visual similarity of natural image patches under rotation and small
translation. For two patch descriptors (the sparse overcomplete code coefficients and
the very popular SIFT descriptor) we have shown that by learning an embedding
of the descriptor with BoostPro and using the distance in the embedding space,
we can significantly improve the matching accuracy. The main contributions of this
study are:

• This is the first attempt, to our knowledge, to improve the matching accuracy
of standard (and widely used) descriptors by learning a similarity model specific
to the invariant properties the matching is intended to capture.

• The fact that the learned similarity is measured by the L1 distance in the
embedding space is very significant from the computational point of view, since
in a large-scale recognition system we may need to probe databases with millions
of patches for similarity to the input set of patches. Our framework allows us
to apply algorithms like LSH, and perform this search in sublinear time.
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7.2 Direction for future work

Theoretical investigation An open theoretical question that arises from the work
presented here pertains to the class of similarity concepts that can be attained by the
embedding algorithms presented in Chapter 3. By departing from the framework
of LSH to similarity-sensitive framework introduced in Section 2.4.2, we extend the
class of similarities from L1 to a more general family. It would be interesting to
characterize the properties of this family, and the connections between the geometry
of a similarity concept in X 2 and the extent to which an embedding learned by our
algorithms can represent that concept.

Evaluation We believe that a number of interesting additional experiments would
be useful to better understand the differences between algorithms and the conditions
under which each algorithm is best applicable. Such experiments include an eval-
uation of boosted SSC on more tasks, in addition to the pose estimation task in
Chapter 5, to better understand its capacity and limitations and an investigation
into better ways of setting the bound G on the TP-FP gap in SSC. In addition,
we are investigating improved strategies of selecting the projection terms (i.e. the
dimensions used in a projection) in BoostPro, especially for high-dimensional rep-
resentation where even approximating the exhaustive search of the space of fixed-size
term combinations is impractical.

Another aspect of empirical evaluation that should be improved is in the area of
comparing pose estimation algorithms. Although lack of a standard articulated pose
benchmark with known ground truth (neither real images nor realistic synthetic ones)
makes this difficult, it is important to compare alternative approaches; one approach
we are aware of which may provide a suitable alternative has been recently proposed
in [2].

Extending the similarity framework In the Introduction we mention definitions
of similarity that are more refined than the boolean notion addressed in this thesis.
The algorithms presented here are developed to deal with the boolean case, however
we believe they can be extended to learning ranking. The main change in the formu-
lation is the transition from the classification of pairs to the classification of triples.
Recent work [5] suggests that an embedding can be learned that represents ranking
under known distance functions. We believe that it may be possible to extend such
an approach to the case when the ground truth ranking is conveyed only by examples,
in a spirit similar to our extension of the LSH. One important application of such
extension would be in information retrieval, where feedback often is available in the
form of ranking rather than just binary labels on the results.

Learning features for visual classification The results presented in Chapter 6
suggest a promising direction of future research in the use of learned similarity. It
would be interesting to investigate the effect of embedding the descriptors (and the
improved matching accuracy) on classification performance. Below we present an
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idea for integration of the similarity learning approach developed in this thesis in a
multi-category classification architecture.

Evidence from neuroscience [39] suggests that the majority of cells in the visual
pathway may be placed within a computational hierarchy. As the level in the hierar-
chy increases, which roughly corresponds to retino-cortical direction (away from the
retina),

• The invariance increases: features become less sensitive to various transforma-
tions.

• Selectivity increases: it takes a more distinctive image elements to activate a
feature. Consequently, higher layers should be more overcomplete and sparse.

• Receptive fields become larger.

• Receptive fields become more complex (more non-linear, in particular).

From a computational point of view, the order in the hierarchy corresponds to
order of processing: the lowest level corresponds to measures computed directly from
the image pixels, and the values in subsequent layers may be computed from the
values obtained in the lower levels. However, it is not clear how the flow of sensory
information and decisions across the hierarchy is organized in the brain; in particular,
there exists a huge number of feedback projections along the visual pathway, the
function of which is not fully understood.

It would be interesting to explore a hierarchical representation organized in ac-
cordance with the computational principles mentioned above. Finding the learning
algorithm for constructing such a hierarchy is the main challenge in designing such an
architecture. An interesting approach could be to learn the lower, less selective layers
in an unsupervised way, while the higher, more selective layers could be better learned
on a per-category basis, perhaps in conjunction with learning object- or part-specific
similarity operators, along the lines developed in this thesis.

Figure 7-1 shows a “cartoon” of this approach. An appealing property of it is that
lower-level features are necessarily shared between all categories, while higher-level
features are more likely to be unique for a given class (although the learning algorithm
should probably allow for sharing in later layers as well).

It’s important to emphasize the difference between this approach and, say, the
standard multi-layer neural network where a designated output layer is the only one
affecting the decision. In the proposed hierarchy there is no output layer per se,
but rather the entire set of features is considered in similarity calculations. This is
achieved by allowing any feature to be used in similarity-reflecting embeddings for
the highest (categorical) level.

137



Figure 7-1: A cartoon of the proposed hierarchical representation, showing the sharing
of the features and the two-stage learning architecture. A representation for a given
image patch may include any of the features from the lower (generic) layers and any
of the features from the higher, class-specific layers.
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