
Aspect-Oriented Programming using Reflection

and Metaobject Protocols

Gregory T. Sullivan
Artificial Intelligence Laboratory

Massachusetts Institute of Technology
gregs@ai.mit.edu

http://www.ai.mit.edu/projects/dynlangs/

April 27, 2001

1 Introduction

Some of the original inspiration for Aspect-Oriented
Programming (AOP) [KLM+97] draws from the re-
search in dynamic, reflective object-oriented lan-
guages and metaobject protocols (MOPs) [KdB91]1.
A MOP lets the programmer delve “under the covers”
and programmatically affect basic language mecha-
nisms such as dynamic method dispatch and class in-
stantiation. These powerful facilities enable the sort
of crosscutting metaprogramming that AOP strives
to deliver. We believe that there are two reasons
why research on providing aspect-oriented program-
ming features to the programmer has strayed from its
metaobject protocol roots:

Too much rope: Metaobject protocols, while ele-
gant, are complicated. Providing access to the
implementation of a language’s runtime may be
placing too much power and complexity in the
hands of the programmer.

Too much overhead: It is generally assumed that
the presence of a runtime MOP has too negative
an impact on performance to be worthwhile.

1The astute reader will notice that many of the same per-
sonalities are involved in MOP’s and AOP.

Research groups at MIT and elsewhere are revisit-
ing the fundamental ideas of reflection and metaob-
ject protocols, applying them to aspect-oriented pro-
gramming, and inventing techniques to minimize the
potential drawbacks mentioned above.

In the remainder of this article, we give a brief
overview of reflection and metaobject protocols, show
how they are excellent tools for aspect-oriented pro-
gramming, and give an overview of techniques that
address both language design and language imple-
mentation concerns.

2 Reflection and Metaobject
Protocols

Computational reflection [Smi82, Mae87] enables a
program to access to its internal structure and be-
havior and also to programmatically manipulate that
structure, thereby modifying its behavior. The Java
programming language provides some reflection capa-
bility. For example, a Java program can ask for the
class of a given object, find the methods on that class,
and then invoke one of those methods. Some research
groups, such as the DJ project at Northeastern Uni-
versity [OL01], take advantage of Java reflection to
implement aspect-oriented features.

1



A metaobject protocol defines execution of an appli-
cation in terms of behaviors implemented by meta-
classes (e.g. Class or VirtualFunction). For exam-
ple, dynamic method dispatch may involve a method
named dispatch on virtual functions that takes as
arguments the values for a given call. The dispatch
method would determine the most applicable method
given the arguments, and then chain to that method
implementation. A programmer could override the
default behavior of the dispatch method in order to
affect what happens when a virtual function is called.

Java’s built-in reflection capabilities fall short of a full
metaobject protocol in two important respects:

1. Java’s reflection is “read-only”. For example, a
program can query the methods of a class, but
a program cannot dynamically change the meth-
ods of a class. Full reflection allows modification
of any meta-information that can be reified.

2. Java does not allow subclassing of metaclasses
such as Class and Method. With a full MOP,
subclassing metaclasses is a way to incrementally
change the default behavior of a language.

In the terminology of [KLM+97], Java provides intro-
spection but not intercession. Java does provide some
dynamism with the fairly heavyweight mechanism of
dynamic class loading. Other mainstream program-
ming languages, such as C++, provide even less in
the way of computational reflection.

A research group at E.M.N. in France [DS01] is work-
ing on providing metaobject protocols using reflection
in support of aspect-oriented programming.

3 Aspect-Oriented Program-
ming using Metaobject Pro-
tocols

A metaobject protocol allows the programmer to in-
crementally modify the default behavior of a pro-
gramming language. For example, to effect the be-
fore, after, and around advice of AspectJ (see related

article), we may choose one of the following strate-
gies:

1. Specialize the default behavior. If we want to add
behavior to every call of a set of virtual meth-
ods, we can specialize the metaobject protocol’s
dispatch method to each such virtual method.
The version of dispatch for a specific virtual
method would perform the aspect-specific be-
havior and then chain to the default dispatch
method.

2. Dynamically replace methods. A full reflection
protocol allows runtime method redefinition. If
we can identify which application methods are
affected by an aspect definition, we can replace
the default implementations of the methods with
“woven” versions.

In [Böl99], Böllert uses reflection in Smalltalk to dy-
namically add aspect behavior via inheritance and
dynamic method definition.

4 Aspect Languages using
Metaobject protocols

Aspect-oriented programming is all about enabling
the programmer to concisely address functionality
that may crosscut the actual implementation of their
application. This may be accomplished by using a
“general purpose” aspect-oriented language such as
AspectJ, or more “concern-specific” aspect languages
such as in [LK97, Sei99]. Either way, the existence
of a robust metaobject protocol provided by the host
programming language makes implementing aspect
languages much more straightforward.

Thus it is through aspect-oriented languages that we
tame the complexity and power of metaobject pro-
tocols. An aspect language is the interface to the
functionality of a metaobject protocol.

Jonathan Bachrach at MIT has developed a The Java
Syntactic Extender, a procedural macro system for
Java [Bac01]. A powerful macro system, combined

2



with a metaobject protocol, allows the programmer
to design domain-specific aspect languages for manip-
ulating specific crosscutting concerns.

For example, if the runtime exposes facilities for mon-
itoring system load and distributing processes, it is
straightforward to write macros that facilitate pro-
grammer control over dynamic process distribution.

5 Optimistic Optimization

It has been observed that, when a metaobject pro-
tocol is available, uses of the more powerful and dy-
namic features of the metaobject protocol are rela-
tively rare; that is, most individual methods do not
use advanced features of the metaobject protocol.
Also, for any given application, use of the metaobject
protocol will tend to be fairly constrained and pre-
dictable. We take advantage of these observations by
using optimistic optimization. The idea is that, after
an application starts running, we produce, using par-
tial evaluation [JGS93, Sul01] techniques, specialized
versions of the application’s methods that are opti-
mized assuming that mutable parts of the metaob-
ject protocol will not change. All such optimistic op-
timizations are guarded, so that if the assumptions
upon which the optimizations are based are ever vi-
olated, the optimizations are undone.

For example, we apply standard optimization tech-
niques to call sites, but if at runtime there are changes
to the dispatch mechanisms exposed by the metaob-
ject protocol, we may have to undo those call site
optimizations.

6 Summary

We advocate providing reflection (both introspection
and intercession) as part of a language implementa-
tion, and we think that can be done without a large
performance penalty. A metaobject protocol then ex-
poses, in a principled way, crosscutting aspects of a
running application. Finally, aspect languages, built

on top of a metaobject protocol, give the program-
mer a structured tool for manipulating the exposed
concerns.

References

[Bac01] Jonathan R. Bachrach. The
Java Syntactic Extender. See
http://www.ai.mit.edu/~jrb/jse,
April 2001.

[Böl99] Kai Böllert. On weaving aspects. In Pro-
ceedings of Aspect-Oriented Programming
Workshop at ECOOP’99, Lisbon, Portu-
gal, June 1999.

[DS01] R. Douence and M. Südholt. A
generic reification technique for
object-oriented reflective languages.
In Higher-Order and Symbolic Com-
putation, volume 14(1). Kluwer, 2001.
http://www.emn.fr/cs/research/teams/object/Welcome.html.

[JGS93] Neil D. Jones, Carsten K. Gomard, and
Peter Sestoft. Partial Evaluation and Au-
tomatic Program Generation. Prentice
Hall International, International Series
in Computer Science, June 1993. ISBN
number 0-13-020249-5 (pbk).

[KdB91] G. Kiczales, J. des Rivières, and D. G.
Bobrow. The Art of the Metaobject Pro-
tocol. MIT Press, Cambridge (MA), USA,
1991.

[KLM+97] Gregor Kiczales, John Lamping, Anurag
Menhdhekar, Chris Maeda, Cristina
Lopes, Jean-Marc Loingtier, and John Ir-
win. Aspect-oriented programming. In
Mehmet Akşit and Satoshi Matsuoka,
editors, ECOOP ’97 — Object-Oriented
Programming 11th European Conference,
Jyväskylä, Finland, volume 1241 of Lec-
ture Notes in Computer Science, pages
220–242. Springer-Verlag, New York, NY,
June 1997.

3



[LK97] Cristina Videira Lopes and Gregor Kicza-
les. D: A language framework for dis-
tributed programming. Technical Report
SPL97-010, P9710047, Palo Alto, CA,
USA, February 1997.

[Mae87] Pattie Maes. Concepts and experiments
in computational reflection. In Norman
Meyrowitz, editor, Proceedings of the 2nd
Annual Conference on Object-Oriented
Programming Systems, Languages and
Applications (OOPSLA ’87), pages 147–
155, Orlando, FL, USA, October 1987.
ACM Press.

[OL01] Doug Orleans and Karl Lieberherr. DJ:
Dynamic Adaptive Programming in Java.
Technical Report NU-CCS-2001-02, Col-
lege of Computer Science, Northeastern
University, Boston, MA, March 2001.

[Sei99] Lionel Seinturier. Jst: An object synchro-
nization aspect for java. In Proceedings of
the Aspect-Oriented Programming Work-
shop at ECOOP99, 1999.

[Smi82] B. Smith. Reflection and Semantics in a
Procedural Language. PhD thesis, Mas-
sachusetts Institute of Technology, 1982.
Laboratory of Computer Science TR 272.

[Sul01] Gregory T. Sullivan. Dynamic partial
evaluation. In Olivier Danvy and An-
drzej Filinski, editors, Programs as Data
Objects 2, volume ? of LNCS, page ?
Springer-Verlag, May 2001.

4


