
1 Opening

Nuggeteer gives scores for each response-nugget pair, and the judgement files
give a human judgement as to whether each response contains each nugget.
We construct Bayesian models that are descriptive of the scores, resposnes,
and nuggets, but generative with respect to the judgements. We model
judgement assignments as being caused directly by the scores, according to a
noisy threshold function. In other words, if the score exceeds some threshold,
the response will be judged to contain the nugget, and if it does not, it will
not, except for probabilities of error. To put it symbolically, if we parametrize
the noisy threshold function by some threshold α and low and high error rates
(meaning, error rates below and above the threshold value, respectively) εl,
εh, referred to collectively by θ, the probability of a “yes” judgement as a
function of the nuggeteer score s will be given by:

py(s|θ) =

{
1 − εh s > α
εl otherwise

and of “no”, conversely, by:

pn(s|θ) = 1 − py(s|θ).

Then, for any given score-judgement pair d = (s, j),

p(d|θ) =

{
py(s|θ) j = “yes”
pn(s|θ) j = “no”

and, for any given set D of score-judgement pairs di,

p(D|θ) =
∏
i

p(di|θ).

Note that this produces a probability distribution over the judgements given
the scores, responses, nuggets, and parameters.

2 Models

Now that we have a theory of scores, errors, and thresholds, several reason-
able possibilities for specific models present themselves. They vary thus:

1

• Are the high and low error rates different?

• Is there one global threshold, or should the thresholds vary by year,
question, or nugget?

• Do the error rates (be they equal or different) vary by year, question,
or nugget?

We can consider models that answer these questions in every combination of
ways.

The worth of a Bayesian model M is the posterior distribution

p(θ|D, M) =
p(D|θ)p(θ|M)

p(D|M)

that it induces over its parameters θ, and the derived inference machinery,
which gives, for a putative data point d,

p(d|D, M) =
∫

θ
p(d|θ)p(θ|D, M).

In general practice, as well as in our particular case, the likelihood, p(D|θ),
is part of the definition (as was, indeed, presented at the end of Section ??),
and is easily computable; the prior, p(θ|M), is dispensed with by making
it uniform;1 and it is the normalization constant, p(D|M), that presents a
problem. If one wishes only to compare probabilities within a single model, it
is sometimes possible to avoid dealing with the normalization constant, but
in our case, especially since we have multiple models, we will deal with it.
As it happens, dealing with the normalization constant is remarkably similar
to inference, so the effort we are about to undertake will not be wasted.

As to the process of computing said normalization constants, let us ex-
amine, as a basic case, the model Mb stating: “Thresholds and error rates
are global, and error rates are not constrained to be equal.” What, then, is
p(D|Mb), for a given collection D of response-nugget pairs and their scores?

p(D|Mb) =
∫

θ
p(D|Mb, θ)p(θ|Mb) (1)

1The error probabilities, being probabilities, naturally range from zero to one, and
Nuggeteer only outputs scores in the range from zero to one, so that is a natural bound
on the thresholds as well.

2

=
∫ 1

0

∫ 1

0

∫ 1

0
p(D|Mb, εl, εh, α)p(εl, εh, α|Mb)dαdεhdεl (2)

=
∫ 1

0

∫ 1

0

∫ 1

0
p(D|Mb, εl, εh, α)dαdεhdεl (3)

=
∫ 1

0

∫ 1

0

∫ 1

0
(1 − εl)

c1(α)ε
c2(α)
l ε

c3(α)
h (1 − εh)

c4(α)dαdεhdεl (4)

=
∫ 1

0

∫ 1

0

∑
i

(1 − εl)
c1(α)ε

c2(α)
l ε

c3(α)
h (1 − εh)

c4(α)(si+1 − si)dεhdεl(5)

Where ?? and ?? follow by defintion, ?? follows by assumption of uniform
prior, ?? follows, with definitions of the c’s as counts of appropriate events,
from the functional form of p(D|Mb, θ), and ?? follows by sorting the data
points by increasing score. Here we define the c’s as the following counts of
data points:

c1(α) = |{di = (si, ji)|si ≤ α, ji = “no”}| ,
c2(α) = |{di = (si, ji)|si ≤ α, ji = “yes”}| ,
c3(α) = |{di = (si, ji)|si > α, ji = “no”}| ,
c4(α) = |{di = (si, ji)|si > α, ji = “yes”}| .

Observe that the c’s are exhaustive, and so, for any fixed α, c1(α) + c2(α) +
c3(α)+ c4(α) = |D|. Though the integral and sum ?? may seem daunting for
large c∗, it (or, rather, its logarithm, since it is so small) are, in fact, possible
to compute with reasonable precision and in reasonable time. How to do this
is the subject of Appendix ??.

Now consider any grouping G of the data points into disjoint, exhaustive
groups g ⊆ D. Any reasonable such grouping (e.g. group by question or
group by nugget) leads to two more reasonable models: a model M θ

G which
asserts that each group g has its own (independent) set of parameters θg =
(εlg, εhg, αg), and a model Mα

G which asserts that each group g has its own
(independent) threshold αg, but the error rates εl, εh are global. (We take
the model M ε

G that asserts that the error rates are local per group but the
threshold is global not to be reasonable).

If the grouing G divides D into one group that contains all the data points
in D, then M θ

G = Mα
G = Mb, as detailed above. Otherwise, some math bears

doing to find the relationships among M θ
G, Mα

G, and Mb. Let the number of
groups |G| be n, let the counts c(αg) count only the data points in a given

3

group g, and let us begin with M θ
G.

p(D|M θ
G) =

∫
θ1

∫
θ2

· · ·
∫

θn

n∏
i=1

(1 − εlgi
)c1(αgi)ε

c2(αgi)

lgi
ε
c3(αgi)

hgi
(1 − εhgi

)c4(αgi).

While this integral looks absolutely awful, we are fortunate in that as θgi

varies, neither ε∗gj
nor c∗(αgj

) vary for any j 6= i. Therefore, the integral of
the product becomes the product of the integrals, and

p(D|M θ
G) =

n∏
i=1

∫
θgi

(1 − εlgi
)c1(αgi)ε

c2(αgi)

lgi
ε
c3(αgi)

hgi
(1 − εhgi

)c4(αgi),

which is just a product of models like Mb, but on separate data sets g:

p(D|M θ
G) =

n∏
i=1

p(gi|Mb).

Now to the other model, Mα
G. It is quite similar, except that there are

only two ε variables. If we integrate with respect to them on the furthest
outside, we find

p(D|Mα
G) =

∫
ε

∫
αg1

∫
αg2

· · ·
∫

αgn

n∏
i=0

(1 − εl)
c1(αgi)ε

c2(αgi)

l ε
c3(αgi)

h (1 − εh)
c4(αgi).

Now, by the same observation of non-variance,

p(D|Mα
G) =

∫
ε

n∏
i=0

∫
αgi

(1 − εl)
c1(αgi)ε

c2(αgi)

l ε
c3(αgi)

h (1 − εh)
c4(αgi).

This integral is not the same as ??, but can still be approxiamted numerically.
A natural numerical integration method amounts to putting a discrete prior
on the ε parameters. In our case, we work with giving probability 1

100
to each

value of ε in
{

k
100

}
.

3 Inference

Given a new TREC system for evaluation, it is desirable to compute an F -
measure for it, as an estimate of how it would score in the actual TREC
competition, and assignments of the individual nuggets to the system’s re-
sponse, as justification and development information.

4

In the Bayesian setting, it is more convenient to compute probabilities of
nugget assignments, and then compute an expected F -measure from them. A
particular model M produces a posterior on parameters p(θM |M). Suppose
we are given a set of responses R = {ri} to a given question. Suppose the
question has nuggets N = {nj}. Then the probability p(nj|R,M) of the
response set R containing the nugget nj is given in terms of the probabilities
of each response ri containing nj in the natural way,

p(nj|R,M) = 1 −
∏
i

(1 − p(nj|ri, M)).

The p(nj|ri, M) are derived from the Nuggeteer scores we are modeling di-
rectly from the assumptions in Section ??. For any pair (ri, nj), Nuggeteer
produces a score sij. For a given set of parameters θM , we have

p(nj|ri, θM) = py(sij|θM),

so for the whole trained model we have

p(nj|ri, M) =
∫

θM

py(sij|θM)p(θM |M). (6)

The computations involved in (??) are the subject of Appendix ??.
With the probabilities p(nj|R,M) in hand, we can turn to the final task

of computing expected F-measure. Unfortunately, we face the snag that F-
measure contains precision- and recall-dependent terms in the denominator,
and expectations do not divide. Fortunately, we can work around this well
enough. Since F-measure is indifferent, modulo the vital/okay distinction,
to which nuggets are present in the response, it suffices to compute from
the nugget probabilities probability distributions on the counts of vital and
okay nuggets present in the response. From there, we need only evaluate the
definitions of expectation and F-measure to produce expected F.

A Computation

So, now that we have all these beautiful integrals, products, and summations,
how should we go about actually computing them? Let us begin with the
problem, both more important and more readily solvable, of integrating with
respect to α. Fortunately, since the values of the c(α) only change at a finite
number of values of α, this integral reduces to a summation. Unfortunately,

5

the values being summed are products of large powers of numbers less than
1, or perhaps integrals of such products, and as such can be too small for
standard floating point arithmetic. Fortunately, we have their logarithms,
and can carry out logspace summation upon them, as described in the next
paragraph.

Suppose we have some xi, and want to know
∑

xi, but the xi are too
small for standard floating-point arithmetic. Let ai = ln xi. Then∑

xi =
∑

eai .

Now, for any A = ln X,

ln
∑

xi = ln
(
X
∑ xi

X

)
= ln X + ln

∑ xi

X
= A + ln

∑
eai−A.

If we choose A = max(ai), the largest of the eai−A will be 1, so any others
that remain too small for floating point can safely be ignored, as they will
not contribute meaningfully to the sum.

Let us now turn to the problem of integrating with respect to ε. In the
Mα

G models, there are just two ε parameters and many αg parameters. If we
choose to integrate the ε’s outside, there will be no closed form (known to
the authors) for the final integrals, but two parameters are not too hard to
integrate numerically.

In the M θ
G models, on the other hand, there are many ε parameters, but

only one α parameter per pair of ε parameters. In this case, it is useful to
integrate with respect to ε on the inside, for then they are independent of
each other, and ***FIND REFERENCE*** tells us that∫

xn(1 − x)mdx =
xn+1

2F1(n + 1,−m; n + 2; x)

n + 1
+ C,

where 2F1 is the hypergeometric function. Unfortunately, computing the
value of 2F1 for arguments as large as c(α) is beyond the capabilities of the
GSL (***REFERENCE?***). Fortunately, ***REFERENCE*** provides a
helpful formula:

2F1(a, b; c; 1) =
Γ(c)Γ(c − a − b)

Γ(c − a)Γ(c − b)
,

so, in our case,∫ 1

0
εn(1 − ε)mdε =

1n+1
2F1(n + 1,−m; n + 2; 1)

n + 1
− 0

6

=
1

n + 1

Γ(n + 2)Γ(m + 1)

Γ(1)Γ(m + n + 2)

=
(n + 1)!(m)!

(n + 1)(n + m + 1)!
,

the logarithm of which is readily computable.

B Inference Details

Given a system’s responses to a question and the associated nugget-score
pairs, we wish to compute the probabilities that the system’s responses will
contain the nuggets, and from those probabilities, we can compute the ex-
pected F-measure for that system on that question. As discussed in Sec-
tion ??, that amounts to computing, for each system response ri and nugget
nj, with corresponding score sij,

p(nj|ri, M) =
∫

θM

py(sij|θM)p(θM |M). (7)

In the particular case of a model of the Mα
G class, with the uniform priors

we have been assuming, the parameters are two global ε paramters, εl and
εh, and one parameter αg for each group in the grouping G. If we let g be
the group of the nugget nj, the other αg′ parameters are irrelevant and thus
integrate out to 1, and the integral (??) reduces to

p(nj|ri, M
α
G) =

∫ 1

0

∫ 1

0

∫ 1

0
p(nj|ri, αg, εl, εh)p(αg, εl, εh|Mα

G)dαgdεhdεl (8)

=
∫ 1

0

∫ 1

0

(∫ 1

0
p(nj|ri, αg, εl, εh)p(αg|εl, εh, M

α
G)dαg

)
p(εl, εh|Mα

G)dεhdεl.(9)

Let us consider for a moment the case when the {ε} are fixed. Then,
because of the structure of py,

p(nj|ri, εl, εh, M
α
G) =

∫ 1

0
p(nj|ri, αg, εl, εh)p(αg|εl, εh, M

α
G)dαg

=
∫ 1

0
py(sij|αg, εl, εh)p(αg|εl, εh, M

α
G)dαg

= εh

∫ sij

0
p(αg|εl, εh, M

α
G)dαg + εl

∫ 1

sij

p(αg|εl, εh, M
α
G)dαg.

7

For fixed {ε} the structure of Mα
G entails a piecewise constant posterior on

αg, with changes in the constant at relevant scores in the training data.
Therefore, the latter two integrals reduce to sums and can be computed
without any further mathematical insight.2

Unfortunately, the {ε} parameters are more difficult to deal with precisely.
While the posterior on {ε} can be written down,

p(εl, εh|D, Mα
G) =

p(D|εl, εh, M
α
G)(p(εl, εh|Mα

G) = 1)

p(D|Mα
G)

=

∏
g∈G

∫ 1
0 p(D|εl, εh, αg)p(αg|Mα

G)dαg

p(D|Mα
G)

,

p(D|Mα
G) =

∫ 1

0

∫ 1

0

∏
g∈G

∫ 1

0
p(D|εl, εh, αg)p(αg|Mα

G)dαg

 dεldεh,

neither these integrals nor their substitution into (??) are amenable to sym-
bolic evaluation. We chose, therefore, to replace the continuous uniform prior
on {ε} with a discrete uniform one,3 converting the outer integrals both above
and in (??) into sums (and using the piecewise constance of the posterior on
αg to evaluate the inner one). This has much the same effect as estimat-
ing said integrals with a sample-and-add numerical integration technique,
but has the benefit of sampling consistently across all the integrations, and
having an interpretation in the language of the model.

2For the terminally curious, they are computed thus: Order said relevant scores sg by
increasing value as sk

g , and let k∗ be the index such that sk∗

g < sij < sk∗+1
g . Then, for

fixed {ε},

p(nj |ri, εl, εh,Mα
G) =

∑
k<k∗

εh(sk+1
g − sk

g)p

(
αg =

sk
g + sk+1

g

2
|εl, εh,Mα

G

)
+

+
∑

k>k∗

εl(sk+1
g − sk

g)p

(
αg =

sk
g + sk+1

g

2
|εl, εh,Mα

G

)
+

+
(
εh(sij − sk∗

g) + εl(sk∗+1
g − sij)

)
p

(
αg =

sk∗

g + sk∗+1
g

2
|εl, εh,Mα

G

)
.

Computing this sum involves nothing more than a finite number of evaluations of
p(αg|εl, εh,Mα

G) and a finite number of arithmetical operations.
3In this instance, εl ranging by hundredths from 0.01 to 0.2, and εh from 0.01 to 0.35.

8

