
Extracting Answers from the Web Using
Knowledge Annotation and Knowledge Mining Techniques

Jimmy Lin Aaron Fernandes Boris Katz Gregory Marton Stefanie Tellex
MIT Artificial Intelligence Laboratory

200 Technology Square
Cambridge, MA 02139

{jimmylin,adfernan,boris,gremio,stefie10}@ai.mit.edu

Abstract

Aranea is a question answering system that extracts
answers from the World Wide Web using knowl-
edge annotation and knowledge mining techniques.
Knowledge annotation, which utilizes semistruc-
tured database techniques, is effective for answer-
ing large classes of commonly occurring questions.
Knowledge mining, which utilizes statistical tech-
niques, can leverage the massive amounts of data
available on the Web to overcome many natural lan-
guage processing challenges. Aranea integrates these
two different paradigms of question answering into
a single framework. For the TREC evaluation, we
also explored the problem of answer projection, or
finding supporting documents for our Web-derived
answers from the AQUAINT corpus.

1 Introduction

Aranea, MIT’s entry to the TREC Question Answer-
ing track, focused on extracting answers from the
World Wide Web. Our system was organized around
a modular framework that integrates two different
paradigms of question answering: knowledge anno-
tation using annotated structured and semistruc-
tured resources and knowledge mining using statis-
tical techniques that leverage data redundancy (cf.
(Lin and Katz, 2003)).

Aranea’s approach to question answering is mo-
tivated by an observation about the empirical dis-
tribution of user queries, which quantitatively obey
Zipf’s Law—a small fraction of question types ac-
count for a significant portion of all question in-
stances. Certain natural language questions tend to
occur much more frequently than others, an obser-
vation that is confirmed by many different sources:
TREC queries (Lin, 2002), logs from the Start
question answering system (Katz, 1997), and logs
of a commercial search engine (Lowe, 2000). Fur-
thermore, many questions ask for the same type
of information and differ only in the specific ob-
ject questioned, e.g., “What is the population of
(the United States, Mexico, Canada,. . .)?” We can
group these questions into a single class (or type),
i.e., “What is the population of x?” where x can

be any country, and find the answer in a database.
Knowledge annotation is a question answering strat-
egy that allows heterogeneous sources on the Web
to be accessed as if it were a uniform database.
By connecting natural language queries to this “vir-
tual” database, Aranea can answer large classes of
commonly-occurring questions.

Typically, Zipf curves have broad tails where in-
dividual instances are either unique or account for
an insignificant fraction of total instances. This
observation also holds true for the distribution of
user questions: in addition to asking large classes
of commonly-occurring questions, users also pose
a significant number of unique questions that can-
not be easily classified into common categories or
grouped by simple patterns, e.g., “What format was
VHS’s main competition?” To answer these ques-
tions, Aranea employs what we call redundancy-
based knowledge mining techniques.

For the TREC evaluation, the extraction of an-
swers from the Web necessitated an extra step in
the question answering process, usually known as
answer projection. For every Web-derived answer,
our system had to find a supporting document from
the AQUAINT corpus, even though the corpus itself
was never used in the question answering process.
This additional component had a significant impact
on the overall performance of our system.

2 Overall Framework

The general architecture of the Aranea system is
shown in Figure 1. User questions are routed to two
separate components, one that employs the knowl-
edge annotation strategy (Section 3) and one that
utilizes the knowledge mining strategy (Section 4).
Both components consult the World Wide Web to
generate candidate answers, and the results of both
components are piped through a knowledge boost-
ing and cleanup module (Section 5), which check
the answer candidates against a number of heuris-
tics to ensure their validity. Finally, the answer pro-
jection module (Section 6) finds an article from the
AQUAINT corpus that adequately supports the an-
swer derived from the Web.

jimmylin
In Proceedings of the Eleventh Text REtrieval Conference (TREC 2002), November, 2002

Figure 1: Overall Architecture of the Aranea question answering system.

Aranea supports a modular pipeline architecture
by enforcing input and output constraints at the
module interfaces. The input and output of each
module is an XML-encoded data structure that
keeps track of the current computational state.
Aranea modules are conceptualized as transforma-
tions over this XML data structure.

3 Knowledge Annotation

Although the Web consists largely of unorganized
pages, pockets of structured and semistructured
knowledge exist as valuable resources for ques-
tion answering. For example, the CIA World
Factbook provides political, geographic, and eco-
nomic information about every country in the world;
50states.com contains numerous properties related
to US states from state bird to land area; Biog-
raphy.com has collected profiles of over twenty-five
thousand famous (and not-so-famous) people; the
Internet Movie Database stores entries for hundreds
of thousands of movies, including information about
their cast, production staff, and dozens of other
properties.

To effectively use these existing resources for ques-
tion answering, the plethora of knowledge sources
must be integrated, or federated, under a common
interface or query language. Database concepts and
techniques provide the tools to accomplish just that.
In fact, since many of these sources are part of the
“deep” or “invisible” Web, they are inaccessible to
search engines and can only be modeled as “virtual”
databases. We have developed a schema-based tech-
nique called knowledge annotation by which natural

language queries can be connected to semistructured
knowledge sources.

Our knowledge annotation strategy provides an
effective mechanism for answering natural language
questions. Because users frequently ask the same
types of questions, a few well-chosen knowledge
sources are sufficient to provide good knowledge cov-
erage. For example, we have verified that ten Web
sources can provide answers to 27% of TREC-9 and
47% of TREC-2001 questions from the QA track
(Lin, 2002). In addition, other researchers (Hovy
et al., 2002) have noticed the importance of external
knowledge sources for question answering.

The knowledge annotation component of Aranea
is a simplified implementation of the system used
by the Start (Katz, 1988; Katz, 1997) and Om-
nibase (Katz et al., 2002a; Katz et al., 2002b) sys-
tems. Start is a natural language understanding
system, and Omnibase is a virtual database that pro-
vides uniform access to heterogenous and distributed
Web sources via a wrapper-based framework. A sim-
plified version of natural language annotation tech-
nology (Katz, 1997) is employed in database access
schemata to mediate between natural language and
database queries.

Since it came on-line in December 1993, Start
has engaged in exchanges with hundreds of thou-
sands of users all over the world, supplying them
with useful knowledge. However, because the system
provides users with paragraph-sized answers that of-
ten contain multimedia fragments such as pictures
and audio clips, they are not suitable for a TREC-
style evaluation. There is evidence to support that

Figure 2: The knowledge annotation component of
Aranea

paragraph-sized chunks form the most suitable unit
of response to a user question, because it provides
not only the exact answer, but additional contex-
tual information that may help with interpretation
and analysis (Lin et al., 2003). Because this year’s
TREC QA track accepted only exact answers, we
found it inappropriate to directly evaluate Start
and Omnibase.

3.1 Database Access Schemata
A collection of database access schemata and wrap-
pers comprise the knowledge annotation component
of Aranea (Figure 2). Each schema is composed
of two connected parts: the question signature and
the database query. A question signature is a col-
lection of regular expressions that match a specific
class of user questions, e.g., requests for birth dates
of people.1 These patterns are paired with unfilled
database queries that are dynamically instantiated
with bindings extracted from the question signature.
Consider a typical database access schema:

When was x born?
What is the birthdate of x?
. . .
→ (biography.com x birthdate)

In this example, questions that ask for the birth
dates of various people are translated into an object–
property–value database query (Katz et al., 2002a).

1These question signatures are a simplified version of nat-
ural language annotations used by Start, which are parsed
into and stored as ternary expressions. Because matching
occurs at the level of the parsed structures, powerful linguis-
tic machinery can be employed to handle different linguistic
phenomena, e.g., synonymy, hyper/hyponymy, syntactic al-
ternations, etc.

These queries specify the data source where the
answer could be found (biography.com), the ob-
ject in question (x), and the property sought after
(birthdate). The value of the object’s property typ-
ically answers the user’s question.

The knowledge annotation component of Aranea
operates by matching the user question against
schemata stored in the knowledge base and exe-
cuting database queries generated by the matched
schemata.

The Aranea database engine is responsible for
retrieving the actual answers by executing the
database queries. The retrieval of such informa-
tion depends on the type of the data source: Some
sources are stored locally, and may translate into a
file lookup. Other sources are stored on remote Web
sites behind a CGI interface; executing database
queries on these sources requires dynamically recon-
structing an HTTP request and properly parsing the
resulting HTML document. More details on the pro-
cess of structuring a knowledge source for database
access is discussed in the next section.

3.2 Knowledge Engineering
Teaching Aranea’s knowledge annotation compo-
nent to answer different classes of natural language
questions involves three separate steps borrowed
from Start and Omnibase: identifying question
classes and knowledge sources, writing the database
access schemata, and writing wrappers for the data
sources.

The first step in the knowledge engineering pro-
cess is to identify the class of questions to be an-
swered and an adequate knowledge source that pro-
vides the answer. Empirical analysis of the ques-
tion distribution provides hints on the effectiveness
of any effort. We have noticed, for example, that
users frequently asked about the demographics and
economics of countries. These questions can be an-
swered by writing a schema that uses information
found within the CIA World Factbook.

Once a question class and a knowledge source
have been determined, regular expression patterns
that capture the general form of the question must
be written. Usually, such patterns take into ac-
count various alternative formulations of the same
query. These patterns must clearly indicate the noun
phrase that can be parameterized. For example, in
the question class “What is the GDP of x?”, x stands
as a generic placeholder for country names. The
mapping between the natural language patterns and
the database query must also be specified, e.g., the x
extracted from the previous question pattern fills the
x slot in the database query (cia-factbook x gdp)

After a database access schema has been crafted, a
wrapper must be written for the knowledge resource.
These wrappers supply the actual procedures used
to execute queries of a specific form. Although

Aranea provides a generic framework for organiz-
ing the queries and convenient libraries of often-used
functionality, specific implementations for accessing
various data sources must be provided separately.
Typically, executing a query involves either look-
ing up the information in a locally stored database
(ranging in complexity from tab-delimited flat files
to full SQL databases), or executing a CGI request
to retrieve a dynamically generated page from a re-
mote Website and performing additional postpro-
cessing to extract only the relevant fragments.

The Aranea system deployed for the TREC com-
petition included twenty-eight schemata that access
seven different data sources. Here are two examples:

• Biography.com This source provides informa-
tion about the lifespan, birth dates, and death
dates of various well-known people. Answer-
ing questions about such properties involves dy-
namically retrieving pages from biography.com
(via CGI) and performing simple pattern
matching on the HTML document to extract
exact dates.

• CIA World Factbook This resource provides
various useful facts about countries, e.g., popu-
lation, area, capital, etc. This information was
download and structured in a locally-stored tab-
delimited file. Questions about various proper-
ties of world countries are translated into simple
file lookups.

4 Knowledge Mining

The knowledge mining approach to question answer-
ing is based on the observation that as the size of a
text collection increases, occurrences of the correct
answer tend to also increases. Specifically, Breck et
al. (Breck et al., 2001) noticed a correlation be-
tween the number of times an answer appeared in
the TREC corpus and the average performance of
TREC systems on that particular question. This
result verifies intuition: the more times an answer
appears, the easier it is to find it. The knowledge
mining component of Aranea extends this insight to
the World Wide Web, and leverages the Web’s mas-
sive size for question answering.

As a text collection, the Web is larger in size than
any research corpus by several orders of magnitude.
An important implication of this size is the amount
of data redundancy inherent in the text collection;
potentially, each item of information has been stated
in a variety of ways, in different documents. How-
ever, data redundancy is counterbalanced by the
poor quality of individual documents.

A question answering system can utilize massive
amounts of Web data in two ways: as a surrogate
for sophisticated natural language techniques and
as a method for overcoming poor document quality.

Consider the question “When did Wilt Chamberlain
score 100 points?” Here are two possible answers:

(1) Wilt Chamberlain scored 100 points on
March 2, 1962 against the New Yorks Knicks.

(2) On December 8, 1961, Wilt Chamber-

lain scored 78 points in a triple overtime

game. It was a new NBA record, but War-

riors coach Frank McGuire didn’t expect it to
last long, saying, “He’ll get 100 points some-

day.” McGuire’s prediction came true just a

few months later in a game against the New

York Knicks on March 2.

The answer could be more easily extracted from
sentence (1) than from passage (2). In general, the
task of answering a question is not very difficult if
the document collection contains the answer stated
as a simple reformulation of the question. In these
cases, simple techniques, e.g., keywords or regular
expressions suffice to achieve state-of-the-art perfor-
mance. As the size of the document collection grows,
the more likely it is that question answering sys-
tems can find statements that answer the question
by matching a simple reformulation.

Without the luxury of massive amounts of data,
a question answering system may be forced to ex-
tract answers from passages in which they are not
obviously stated, e.g., passage (2). In these cases,
sophisticated natural language processing may be re-
quired to relate the answer to the question, e.g., rec-
ognizing syntactic alternations, resolving anaphora,
making commonsense inferences, performing relative
date calculations, etc.

The World Wide Web is so big that simple pat-
tern matching techniques can often replace the need
to understand both the structure and meaning of
language. The answer to a question could be ex-
tracted by searching directly for an anticipated an-
swer form, e.g., in the above example, by searching
for the string “Wilt Chamberlain scored 100 points
on” and extracting words occurring to the right.
Naturally, this simple technique depends crucially
on the corpus having an answer formulated in a spe-
cific way. Thus, the larger the text collection is, the
greater the probability that simple pattern matching
techniques will yield the correct answer. Data re-
dundancy enables a simple trick to overcome many
troublesome issues in natural language processing,
e.g., alternations, anaphora, etc.

Despite the apparent advantages of massive
amounts of data, the process of answering questions
using the Web is complicated by the low average
quality of individual documents. Due to the low bar-
rier of entry in Web publishing, many documents are
poorly written, barely edited, or simply contain in-
correct information. As a result, text extracted from
a single document cannot be trusted as the correct

answer. This problem can also be alleviated through
data redundancy. A single instance of a candidate
answer may not provide sufficient justification, but
multiple occurrences of the same answer in different
documents lends credibility to the proposed answer.2

The tremendous amounts of information on the
World Wide Web would be useless without an effec-
tive method of data access. Providing the basic in-
frastructure for indexing and retrieving text at such
scales is a tremendous engineering task. Fortunately,
such services already exist, in the form of search en-
gines. For example, Google, the largest of the Web
search engines, boasts over 3 billion documents in
its index.3 Using existing search engines as informa-
tion retrieval backends, we can focus our efforts on
answer extraction.

Many of the knowledge mining techniques de-
scribed above have been implemented in previous
systems (Brill et al., 2001; Buchholz, 2001; Clarke
et al., 2001; Kwok et al., 2001; Soubbotin and Soub-
botin, 2001; Brill et al., 2002). The introduction
of redundancy-based question answering using the
Web (Brill et al., 2001) at last year’s TREC confer-
ence has generated a new set of techniques for at-
tacking the question answering problem. We have
taken advantage of previous experiences to refine
many techniques within a better engineered frame-
work. In particular, our infrastructure supports a
modular architecture that allows specific functional-
ity to be encoded into manageable components. This
not only allows for faster development cycles, but fa-
cilitates glass-box testing to properly determine the
effectiveness of various techniques.

The data flow in the knowledge mining component
of Aranea is shown in Figure 3. In the following sec-
tions, we describe each module in detail. Each mod-
ule accepts an Aranea XML data structure as input
and returns a structure of the same type as output;
the functionality of each module is implemented as
internal transformations on the XML data structure.

4.1 Formulate Requests
The first step in answering natural language ques-
tions in the knowledge mining component is to trans-
late them into Aranea queries, or requests. These re-
quests specify the textual context in which answers
are likely to be found, and are analogous to queries
posed to information retrieval systems. However, be-
cause Aranea relies on Web search engines to fulfill
these requests, fine-grained control over the result
set is impossible. Aranea instead relies on quantity
to make up for lack of quality.

Two types of queries are generated by this module:
exact (or reformulation) queries and inexact (or back-

2Unfortunately, this technique equates the most popular
answer with the correct answer, which occasionally results in
very comical responses.

3as of early 2003

Get Support

�

Score Candidates

�

Combine Candidates

�

Filter Candidates

�

Vote

�

Generate N-Grams

�

Execute Requests

�

Formulate Requests

Figure 3: Data flow in the knowledge mining com-
ponent of Aranea

off) queries. Queries of both types are concurrently
generated, but usually given different scores.

An inexact query indicates that an answer is likely
to be found within the vicinity of a set of keywords.
They are composed by treating the natural language
question as a bag of words.

An exact query specifies the location of a potential
answer in more detail, e.g., the answer to “When did
the Mesozoic period end?” is likely to appear within
ten words and fifty bytes to the right of the exact
phrase “the Mesozoic period ended”. Exact queries
in Aranea are generated by approximately a dozen
pattern matching rules based query terms and their
part-of-speech tags; morpho-lexical pattern matches
trigger the creation of reformulated exact queries.
As an example, the previous query was generated
by the rule “wh-word did . . . verb → . . . verb+ed”.
An internal lexicon ensures that the generated verb
remains properly inflected.

As a complete example, the requests generated in
response to the question “When did the Mesozoic pe-
riod end?” are shown in Figure 4. Aranea generates
two inexact and one exact requests; each request is
assigned a basic score, which establishes the relative
importance of the queries.

4.2 Execute Requests
The request execution module is responsible for
retrieving textual “snippets” that honor the con-
straints set forth in each request. Currently, the
Google search engine is used to mine text from the

Query: When did the Mesozoic period end
Type: inexact
Score: 1
Number of snippets to mine: 100

Query: the Mesozoic period ended
Type: inexact
Score: 1
Number of snippets to mine: 100

Query: the Mesozoic period ended ?x

Type: exact

Score: 2

Number of snippets to mine: 100

Maximum length for ?x: 50
Maximum word count for ?x: 5

Figure 4: Typical requests generated by Aranea.

Web. In the case of inexact requests, the entire sum-
mary provided by Google is extracted for further
processing. For exact queries, the request execu-
tion module performs additional pattern matching
to ensure that the correct positional constraints are
satisfied.

4.3 Generate N-Grams
This module exhaustively generates all possible un-
igrams, bigrams, trigrams, and tetragrams from the
text fragments generated by the request execution
module. These n-grams, which are given initial
scores equal to the weight of the request from which
they derive, serve as the raw candidate answers.

4.4 Vote
The voting module collates the n-grams generated
by the previous module. The new score of each an-
swer candidate is equal to the sum of the scores of all
occurrences of that particular n-gram. This module
has the effect of promoting text fragments that oc-
cur frequently (in the context of query terms), and
are hence more likely to answer the user question.

4.5 Filter Candidates
In this stage of the processing, a coarse-grained filter
in applied to answer candidates:

• Candidates that begin or end with stopwords
are discarded.

• Candidates that contain words found in the user
question are discarded. The only exception to
this rule is question focus words, e.g., a question
beginning with “how many meters...” can be
answered by an expression containing the word
meters.

In addition, this stage encodes a few heuristics
that can potentially decrease the number of answer
candidates. For example, the answer to “how far”,

“how fast”, “how tall”, etc., questions must contain
a numeric component (either numeric digits or nu-
merals); thus, we can safely discard all answer can-
didates that do not fit these criteria. We have also
noticed that “who” and “where” questions usually
cannot be answered with expressions that contain
tokens consisting of numeric digits; Aranea can sim-
ilarly reduce the number of answer candidates based
on this criterion. The general principle embodied in
this module is to filter with high confidence, erring
on the side of being too lenient. False positives can
always be sorted out by later modules, but the sys-
tem will not be able to recover from false negatives.

4.6 Combine Candidates
In this module, shorter answers are used as evidence
to boost the score of longer answers. If a portion
of a candidate answer appears itself as a candidate
answer, then the score of the shorter answer is added
to the score of the longer answer. For example, if “de
Soto” appears on the list of candidate answers along
with “Hernando de Soto”, the score of the shorter
candidate would be added to the score of the longer
one. This module counteracts the tendency of the n-
gram generation and voting modules to favor shorter
answers.

4.7 Score Candidates
The score of each answer candidate is multiplied by
the following factor:

1
|A|

∑

w∈A

log(
N

wc
)

A is a set of keywords in the candidate answer; N is
the total number of words in the AQUAINT corpus;
wc is the number of occurrences of word w in the
AQUAINT corpus. Each answer candidate is scaled
by the average of an idf-like value of its component
keywords. This scoring balances the effect of individ-
ual keywords having different (unconditioned) pri-
ors. Since the exact distribution of unigrams on the
Web can not be easily obtained in a reliable manner,
Aranea uses statistics from the AQUAINT corpus as
a surrogate.

4.8 Get Support
This module performs a final sanity check on the
candidate answers. It verifies that final candidate
answers actually appear in the original text snip-
pets mined from the Web. Occasionally, the various
modules within the knowledge mining component of
the system will assemble a nonsensical answer; this
module ensures that such answers are discarded.

5 Answer Boosting and Cleanup
Results from both the knowledge annotation and
knowledge mining components of Aranea are sub-
jected to a series of heuristic checks. These heuristics

may employ external knowledge resources to verify
the candidate answers.

The answer boosting module of Aranea contains
heuristics specifically dedicated to verifying geo-
graphic locations. We have gathered large lists of
known geographic entities, e.g., world cities, US
cities, etc.; these lists allow us to “boost” the
score of certain answer candidates in response to
“what city”, “what state”, “what country”, “what
province”, etc. questions.

Questions requiring dates as answers similarly re-
ceive special treatment. Named entity detectors al-
low us to promote dates over other noun phrases.
Knowledge of dates also helps Aranea extract the
exact answers. For example, a candidate answer to
a “what year” question often contains extra infor-
mation such as the month and day; Aranea removes
such extraneous information.

Beyond a few simple heuristics, Aranea also per-
forms part-of-speech tagging on the answer candi-
dates to ensure that they are full constituents (NP
or VP). Extra leading or trailing words are trimmed.

6 Answer Projection
The final step in the preparation of an answer de-
rived either from knowledge annotation or knowl-
edge mining is answer projection, during which
each Web-extracted answer is paired with a docu-
ment from the AQUAINT corpus to form the basic
[answer, docid] response unit. Answer projection
was accomplished in a two step process: first, a set
candidate documents was gathered; then, a modified
passage retrieval algorithm scanned the documents
to pick the best document.

We experimented with three different methods of
retrieving a candidate set of documents on which to
project our Web-derived answers:

• NIST documents. The top fifty documents
supplied by NIST served as the baseline set of
candidate documents for answer extraction.

• MultiText passages. We have implemented
the passage retrieval algorithm described by
Clarke et al. (2000). A set of passages gener-
ated by this algorithm serves as the candidate
documents for answer projection.

• PC3 MultiText passages. We have aug-
mented the MultiText passage retrieval algo-
rithm by a backoff procedure we call pc3. Our
algorithm applies a series of controlled query ex-
pansion loops, which successively broadens the
query terms (e.g., by including different inflec-
tions and synonyms of the keywords) until an
adequate set of candidate passages have been
found.

After a set of candidate documents has been gath-
ered, the answer projection module applies a mod-

ified window-based passage retrieval algorithm to
score the documents. Each 140-byte window is given
a score equal to the number of times keywords from
both the question and candidate answer appears,
with the restriction that at least one keyword from
the question must appear in the particular passage.
The score of a document is simply the score of the
highest scoring passage. The highest scoring docu-
ment is paired with the Web-derived candidate an-
swer as the final response unit.

7 Confidence Ordering
This year’s TREC evaluation required participants
to sort answers according to confidence, motivated
by the importance of a system knowing when it is
likely to be right or wrong. Although this was cer-
tainly an interesting aspect of the question answer-
ing task, due to time constraints, we were unfortu-
nately not able to devote much attention to it.

For the deployed TREC system, we employed a
crude algorithm:

• All when questions were placed before all who
and where questions, which were ordered be-
fore all what questions. All other questions were
placed after. We discovered through ad-hoc ex-
perimentation that Aranea generally performed
better on certain types of questions; the confi-
dence ordering reflected our experiences.

• Within each type of question, answers derived
from knowledge annotation were always placed
before answers derived from knowledge mining.

• Answers were sorted by the document score pro-
duced by the answer projection algorithm

• Any further ties were broken by scores gener-
ated by the knowledge mining component.

8 Results
The official TREC results are shown in Table 1.
The only difference between our three runs was the
method used to generate the initial set of candidate
documents for answer projection:

• aranea02a used only the top fifty NIST-supplied
documents.

• aranea02pbq used the top fifty NIST-supplied
documents and passages derived from the Mul-
tiText algorithm.

• aranea02pc3 used the top fifty NIST-supplied
documents and passages derived from the pc3
variant of the MultiText algorithm.

In addition, we analyzed Aranea’s performance
without taking into account answer projection. We
felt that this particular instance of answer projec-
tion is an artifact of the TREC evaluation, and not

aranea2002a aranea2002pbq aranea2002pc3 aranea2002
NIST Docs MultiText pc3 MultiText no projection

Knowledge correct 22 4.4% 23 4.6% 22 4.4% 30 6.0%

Annotation inexact 2 0.4% 3 0.6% 2 0.4% 2 0.4%

unsupported 8 1.6% 6 1.2% 8 1.6% - -
wrong 10 2.0% 10 2.0% 10 2.0% 10 2.0%

total 42 8.4% 42 8.4% 42 8.4% 42 8.4%

Knowledge correct 130 26.0% 131 26.2% 129 25.8% 153 30.6%

Mining inexact 34 6.8% 33 6.6% 34 6.8% 43 8.6%
unsupported 32 6.4% 32 6.4% 32 6.4% - -

wrong 262 52.4% 262 52.4% 262 52.4% 262 52.4%

total 458 91.6% 458 91.6% 458 91.6% 458 91.6%

Total correct 152 30.4% 154 30.8% 151 30.2% 183 36.6%

inexact 36 7.2% 36 7.2% 36 7.2% 45 9.0%
unsupported 40 8.0% 38 7.6% 40 8.0% - -

wrong 272 54.4% 272 54.4% 273 54.6% 272 54.4%

total 500 100% 500 100% 500 100% 500 100%

CWS score 0.433 0.427 0.421 0.529

Table 1: TREC Results

aranea2002a aranea2002pbq aranea2002pc3 aranea2002
NIST Docs MultiText pc3 MultiText no projection

Knowledge correct 52.4% 54.8% 52.4% 71.4%

Annotation inexact 4.8% 7.1% 4.8% 4.8%

unsupported 19.0% 14.3% 19.0% -
wrong 23.8% 23.8% 23.8% 23.8%

Knowledge correct 28.4% 28.6% 28.2% 33.4%

Mining inexact 7.4% 7.2% 7.4% 9.4%

unsupported 7.0% 7.0% 7.0% -
wrong 57.2% 57.2% 57.4% 57.2%

Table 2: Performance of individual components.

inherent in the question answering task itself. We
rescored the unsupported judgments of aranea02a ei-
ther as inexact or correct, careful to adhere to the
same standards of judgment as the other runs. This
result is shown in the last column of Table 1.

In the formal TREC runs, our system answered
approximately thirty percent of the questions cor-
rectly. Disregarding answer projection, Aranea
provided exact, correct answers for nearly thirty-
seven percent of the questions. Out of five hun-
dred questions, 42 (8.4%) answers were contributed
by Aranea’s knowledge annotation component; the
knowledge mining component accounted for the rest,
or 458 (91.6%) questions.

Approximately 15% of answers judged as correct
were derived from knowledge annotation techniques.
We believe that this performance is remarkable, con-

sidering that our system contained only twenty-eight
data access schemata over seven sources, represent-
ing no more than a few person-days worth of knowl-
edge engineering effort. Our experiences with Start
and Omnibase have helped us streamline the knowl-
edge engineering process, allowing us to rapidly
structure knowledge sources to answer English ques-
tions. These results also verify that analysis of the
typical distribution of user questions can help guide
the knowledge engineering effort. Our database ac-
cess schemata were geared towards answering the
most frequently occurring questions from the previ-
ous TREC evaluations; many of the same question
types also appeared in this year’s evaluation.

Overall, we noticed that answer projection was
the obvious weak link in Aranea. For approximately
twenty percent of our Web-derived answer, our sys-

tem was unable to find an adequate supporting doc-
ument, which resulted in a drastic reduction of our
overall TREC score. Our passage retrieval algorithm
was not sophisticated enough to ignore documents
that contained keywords from the question and an-
swer, but in fact did not answer the question. More
future research is required to obtain better answer
projection performance.

Individual analysis of each Aranea component is
shown in Table 2. In general, the database compo-
nent achieves much higher accuracy than the knowl-
edge mining component, due to the knowledge en-
gineering effort involved in creating database ac-
cess schemata. However, projecting answers derived
from database access appears more difficult than an-
swers derived from knowledge mining. Once again,
we believe that Aranea demonstrates the validity
and effectiveness of knowledge engineering in the
question answering process. Knowing when to apply
manual effort and selectively using human labor can
translate into a big payoff in terms of performance
enhancement.

9 Contributions

The Aranea system presents two different paradigms
for approaching the question answering problem. In
the knowledge annotation approach, natural lan-
guage questions can be translated into database
queries, which then extract answers from the Web.
In the knowledge mining approach, data redundancy
on the Web can be leveraged to overcome many dif-
ficult problems in natural language processing.

Aranea smoothly integrates both the knowledge
annotation and knowledge mining approach into a
uniform framework. With knowledge about the
types of questions that users ask, we were able to
utilize each paradigm effectively.

Another insight we gained in developing Aranea is
to let the analysis of user questions guide our knowl-
edge engineering effort. By correctly anticipating
the types of questions users typically ask, we were
able to construct effective database access schemata
with reasonable amounts of manual labor.

We believe that Aranea provides a well-engineered
platform for experimenting with various Web-based
question answering techniques. In the future, we
will continue to refine existing technology and de-
velop new methods for answering natural language
questions.

10 Acknowledgements

This research is funded by DARPA under contract
number F30602-00-1-0545 and administered by the
Air Force Research Laboratory. Additional funding
is provided by the Oxygen Project.

References

Eric Breck, Marc Light, Gideon S. Mann, Ellen
Riloff, Brianne Brown, Pranav Anand, Mats
Rooth, and Michael Thelen. 2001. Looking un-
der the hood: Tools for diagnosing your ques-
tion answering engine. In Proceedings of the 39th
Annual Meeting of the Association for Computa-
tional Linguistics (ACL’01) Workshop on Open-
Domain Question Answering.

Eric Brill, Jimmy Lin, Michele Banko, Susan Du-
mais, and Andrew Ng. 2001. Data-intensive ques-
tion answering. In Proceedings of the Tenth Text
REtrieval Conference (TREC 2001).

Eric Brill, Susan Dumais, and Michele Banko. 2002.
An analysis of the AskMSR question-answering
system. In Proceedings of the 2002 Conference on
Empirical Methods in Natural Language Process-
ing (EMNLP 2002).

Sabine Buchholz. 2001. Using grammatical rela-
tions, answer frequencies and the World Wide
Web for question answering. In Proceedings of the
Tenth Text REtrieval Conference (TREC 2001).

Charles Clarke, Gordon Cormack, Derek Kisman,
and Thomas Lynam. 2000. Question answering
by passage selection (multitext experiments for
TREC-9). In Proceedings of the Ninth Text RE-
trieval Conference (TREC-9).

Charles Clarke, Gordon Cormack, and Thomas Ly-
nam. 2001. Exploiting redundancy in question
answering. In Proceedings of the 24th Annual
International ACM SIGIR Conference on Re-
search and Development in Information Retrieval
(SIGIR-2001).

Eduard Hovy, Ulf Hermjakob, Chin-Yew Lin, and
Deepak Ravichandran. 2002. Using knowledge to
facilitate factoid answer pinpointing. In Proceed-
ings of the 19th International Conference on Com-
putational Linguistics (COLING-2002).

Boris Katz, Sue Felshin, Deniz Yuret, Ali Ibrahim,
Jimmy Lin, Gregory Marton, Alton Jerome Mc-
Farland, and Baris Temelkuran. 2002a. Omni-
base: Uniform access to heterogeneous data for
question answering. In Proceedings of the 7th In-
ternational Workshop on Applications of Natural
Language to Information Systems (NLDB 2002).

Boris Katz, Jimmy Lin, and Sue Felshin. 2002b.
The START multimedia information system:
Current technology and future directions. In Pro-
ceedings of the International Workshop on Multi-
media Information Systems (MIS 2002).

Boris Katz. 1988. Using English for indexing and
retrieving. In Proceedings of the 1st RIAO Con-
ference on User-Oriented Content-Based Text and
Image Handling (RIAO ’88).

Boris Katz. 1997. Annotating the World Wide Web
using natural language. In Proceedings of the 5th

RIAO Conference on Computer Assisted Informa-
tion Searching on the Internet (RIAO ’97).

Cody Kwok, Oren Etzioni, and Daniel S. Weld.
2001. Scaling question answering to the Web.
In Proceedings of the Tenth International World
Wide Web Conference (WWW2001).

Jimmy Lin and Boris Katz. 2003. Question an-
swering techniques for the World Wide Web. In
EACL-2003 Tutorial.

Jimmy Lin, Dennis Quan, Vineet Sinha, Karun Bak-
shi, David Huynh, Boris Katz, and David R.
Karger. 2003. The role of context in question an-
swering systems. In Proceedings of the 2003 Con-
ference on Human Factors in Computing Systems
(CHI 2003).

Jimmy J. Lin. 2002. The Web as a resource for ques-
tion answering: Perspectives and challenges. In
Proceedings of the Third International Conference
on Language Resources and Evaluation (LREC-
2002).

John B. Lowe. 2000. What’s in store for question
answering? (invited talk). In Proceedings of the
Joint SIGDAT Conference on Empirical Methods
in Natural Language Processing and Very Large
Corpora (EMNLP/VLC-2000).

Martin M. Soubbotin and Sergei M. Soubbotin.
2001. Patterns of potential answer expressions as
clues to the right answers. In Proceedings of the
Tenth Text REtrieval Conference (TREC 2001).

