
Compositional Semantics in Names and Numbers

Gregory Marton GREMIO@CSAIL.MIT.EDU

MIT Computer Science and Artificial Intelligence Laboratory, 200 Technology Square, Cambridge MA, 02139 USA

1. Introduction

People’s names, dates, locations, organizations, and var-
ious numeric expressions, collectively called Named En-
tities, are used to convey specific meanings to humans in
the same way that identifiers and constants convey mean-
ing to a computer language interpreter. Natural Language
Question Answering can also benefit from understanding
the meaning of these expressions because answers in a
text are often phrased differently from questions and from
each other. For example, “9/11” might mean the same as
“September 11th” and “Mayor Rudy Giuliani” might be the
same person as “Rudolph Giuliani”.

Sepia, the system presented here, uses a lexicon of lambda
expressions and a mildly context-sensitive parser to create
a data structure for each named entity. The data structure
design is inspired by the guidelines for the recent Auto-
matic Content Extraction pilot competition, and evaluation
will be performed as part of this contest.

2. Related Work

Content Extraction

Named Entity Identification, the task of finding boundaries
and categories for each named entity, was evaluated in the
late 1990’s (Marsh & Perzanowski, 1998), and statistical
systems performed best on a wide range of data. This task
does not capture any meaning, however, and is primarily
suitable for treating the entities as opaque phrases.

In contrast, the Automatic Content Extraction (ACE)
Workshop’s task requires far more semantic understand-
ing (Przybocki et al., 2003). The ACE task asks pro-
grams to distinguish between the White Houses in “visitors
streamed through the White House”, where White House is
a facility, and “The White House vetoed the bill”, where it
is an organization. Programs should mark “New York City
mayor Rudy Giuliani” as an antecedent for “The mayor”
three sentences later. Programs should note that Giuliani is
in the mayor relation to New York City.

The ACE competition is now in its third pilot phase, and
testing will begin at the end of September.

Mr. : person / name
(lambda (name)

(make-person ’name name
’title "Mister"))

Figure 1. In Sepia’s implementation of CCG, the word “Mr.” is
defined as a one-place function that takes a name to its right (a
backslash would indicate leftward application) and results in a
person. After the declaration, the function is defined in Scheme.

Applications

Content Extraction is directly applicable to answering
questions like “Who is Rudolph Giuliani” or “Who is the
mayor of New York”. It can also help expand the initial
document retrieval query so that a question about “Septem-
ber 11th” finds documents about “9/11”. Equivalent answer
candidates can be conflated instead of competing for score.
The START natural language question answering system
already incorporates an early content extractor (Katz et al.,
1998), to be replaced by Sepia.

Combinatory Categorial Grammar

The most successful methods for named entity identifica-
tion have treated it as a classification problem using lin-
guistically shallow features. The content extraction task is
better suited to a knowledge based approach because re-
solving relations and coreferences among entities requires
a greater degree of language understanding.

One approach to knowledge engineering in language is to
parse text with a compositional semantics, where the mean-
ing assigned to each word helps to determine meanings of
combinations of words. Combinatory Categorial Gram-
mar (CCG) is a technique for doing this sort of seman-
tic parsing. Its pioneer, Mark Steedman, has shown that
CCG can capture many previously problematic phenom-
ena across languages (Steedman, 2000). The parser follows
pure function application rules, and the lexicon contains all
language-specific rules, word meanings, and associations.

A lexical item consists of the word defined, a function sig-
nature called the category indicating how it can be applied
(if at all), and a function definition in lambda calculus.



Consider for example the phrase “Mr. and Mrs. Hodson”.
One lexical entry for “Mr.” is shown in Figure 1. A co-
ordination like and takes two identical categories to either
side and creates a new partial parse that has the same cat-
egory and maps any arguments to both functions. The two
single-place functions for Mr. and Mrs. combine into a
new function of the same category that, when applied to
the name Hodson, creates a set with meanings for “Mr.
Hodson” and “Mrs. Hodson”.

Simple function application, function composition, coor-
dination, and type raising allow CCG to capture composi-
tional semantics for most of natural language. In Sepia I
have implemented a CCG parser and manually created a
lexicon for understanding English named entities.

3. System Overview - Sepia

3.1 No Pipeline

The most common natural language processing architec-
ture is a pipeline of modules where each has access only to
the final decisions of the ones before it. Sepia has instead a
single representation and propagates ambiguity throughout
processing. In a pipeline, an early mistake is irreparable
by later modules. In Sepia, the later combinations make a
top-down choice from the early bottom-up possibilities.

A pipelined content extraction system would fail on the fol-
lowing cases:

� “Mr. and Mrs. Hodson and their children...”
� “They scored a hundred and ninety-one respectively.”
� “I told Howard Dean would win.”

In the first case, a later coreference module cannot associate
“their” with the Hodson couple because only one person is
recognized. Sepia’s solution was discussed above.

In the second case it is no longer possible to parse “respec-
tively” because the required coordination has been con-
sumed. By having access to the intermediate candidates
“a hundred” and “ninety-one” separately, Sepia can decide
to use “and” as a coordination rather than part of a larger
numeric expression.

In the third case, “told” cannot find a good argument struc-
ture. If Sepia had lexical entries for “told” and other verbs,
the intermediate representation with “Howard” and “Dean”
as separate names would be available to them as a possibil-
ity. Adding broader language coverage including verbs is a
goal for future work.

3.2 The Lexicon

Sepia’s non-pipelined parsing algorithm guarantees that the
right lexical items are selected, but only if they are avail-
able! As with any knowledge engineering task, manually

Mark&Margaret’s Apt. 3c
((Mark)(&)(Margaret)((’)(s))) ((Apt)(.)) ((3)(c))

Figure 2. Tokenization at word boundaries in multiple levels.

constructing a lexicon is a time consuming and brittle pro-
cess. The parser tempers brittleness by expecting failures
and dropping failed partial parses. But the greatest current
source of error is missing lexical items.

The current lexicon has lists of countries and cities, of com-
mon first and last names, and many cues for locations, or-
ganziations, and facilities. The lexicon needs many more
entries capturing relations among entities, which would
help select between ambiguous entity candidates.

3.3 Parsing Example

In the example in Figure 2, ’s is recognized as a multi-
token token because it is in the lexicon. That posses-
sive can apply either to only Margaret or to the conjuc-
tion Mark&Margaret. What ’s applies to then determines
which of Margaret or Mark&Margaret is the possessor.
But if ’s applies only to Margaret instead of to the con-
juction, then the conjuction tries to apply later and fails:
Margaret’s Apt. 3c is not the same type (facility) as Mark
(person). In this case, two partial parses are recognized in-
stead of the one (preferred) complete parse.

4. Future Work

In the immediate future, the ACE competition begins
September 29th! In the process I will extend the lexicon,
and will add a coreference mechanism. In the longer term,
I will attempt to automate learning of a broad-coverage lex-
icon (Hockenmaier et al., 2002).

References

Hockenmaier, J., Bierner, G., & Baldridge, J. (2002). Ex-
tending the coverage of a CCG system. Proc. of the As-
soc. for Computational Linguistics ’02.

Katz, B., Yuret, D., Lin, J., Felshin, S., & et al.(1998).
Blitz: A preprocessor for detecting context-independent
linguistic structures. Proc. of PRICAI ’98.

Marsh, E., & Perzanowski, D. (1998). Muc-7 evaluation
of ie technology: Overview of results. Message Under-
standing Conference MUC-7 Proceedings.

Przybocki, M., Harman, D., & Doddington, G.
(2003). Automatic content extraction (ACE)
(http://www.itl.nist.gov/iad/894.01/tests/ace/).

Steedman, M. (2000). The syntactic process. MIT Press.


