A Quantum Query Complexity Trichotomy for Regular Languages

Scott Aaronson
UT Austin

Daniel Grier
MIT

Luke Schaeffer
MIT
Query complexity - Introduction

Query complexity of language $L \subseteq \Sigma^*$

Input $x \in \Sigma^n$ initially hidden. The query complexity of L is the number of input symbols revealed by the computation.

Deterministic:

$\text{OR} = \{x : x_i = 1\}$

$D(\text{OR}) = n$

$R(\text{OR}) = \Theta(n)$
Query complexity - Introduction

Query complexity of language $L \subseteq \Sigma^*$

Input $x \in \Sigma^n$ initially hidden. The query complexity of L is the number of input symbols revealed by the computation.

Indexing oracle:
$$
\sum \alpha_{i,b} \ket{i} \ket{b} \rightarrow \sum \alpha_{i,b} \ket{i} \ket{b \oplus x_i}
$$

Quantum: The number of calls to the indexing oracle to determine membership of an input with bounded error.

$$Q(\text{OR}) = \Theta(\sqrt{n})$$
$$Q(\text{PARITY}) = \Theta(n)$$
Query complexity - Introduction

Query complexity of language $L \subseteq \Sigma^*$

Input $x \in \Sigma^n$ initially hidden. The query complexity of L is the number of input symbols revealed by the computation.

Why query complexity?

- Provable lower bounds
- Lower bounds can suggest efficient algorithms
Regular languages as regular expressions

Regular languages over a finite alphabet Σ

<table>
<thead>
<tr>
<th>Basic sets:</th>
<th>Combination rules:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empty Set \emptyset</td>
<td>Concatenation AB</td>
</tr>
<tr>
<td>Empty string ${\varepsilon}$</td>
<td>Union $A \cup B$</td>
</tr>
<tr>
<td>Literal ${a \in \Sigma}$</td>
<td>Kleene Star A^*</td>
</tr>
</tbody>
</table>

Examples $\Sigma = \{0,1,2\}$

- $\Sigma = \{0\} \cup \{1\} \cup \{2\} = 0 \cup 1 \cup 2$
- $\Sigma^* = \{\varepsilon, 0, 1, 2, 00, 01, 02, 10, \ldots\}$
- $\text{OR} = 0^*1(0 \cup 1)^*$
- $\text{AND-OR} = 2\text{OR}2\ldots2\text{OR}2 = 2(\text{OR}2)^*$
- $\text{PARITY} = (0^*10^*1)^*0^*$

$A^* = \{a_1\ldots a_k : k \geq 0, a_i \in A\}$
Regular languages are nice

- Closed under many operations
 - Concatenation, Union, Kleene Star
 - Complement
 - Reversal
- Natural questions are decidable
 - “Is the language infinite?”
- Extremely robust definition
 - Regular expressions
 - Finite state automata
 - Recognized by finite monoids

Finite state automaton for PARITY
Quantum query complexity and regular languages

\[1\Sigma^*1 \quad \emptyset \quad O(1) \]

\[\text{AND-OR*} \quad \text{OR} \quad \tilde{\Theta}(\sqrt{n}) \]

\[\text{PARITY} \quad \Omega(n) \]
Quantum query trichotomy for regular languages

Trichotomy Theorem: Every regular language has quantum query complexity $\Theta(1)$, $\tilde{\Theta}(\sqrt{n})$, or $\Theta(n)$.

- Each query complexity corresponds to a class of regular expressions.
- All upper bounds come from explicit quantum algorithms.

Classes of regular expressions:

Trivial: Depend on $O(1)$ characters at beginning or end of string.

Star free: Regular expressions without Kleene star operation, but with the addition of the complement operation.

Regular: General regular expressions.

trivial \subsetneq star free \subsetneq regular
Quantum query trichotomy for regular languages

Trichotomy Theorem: Every regular language has quantum query complexity $\Theta(1)$, $\tilde{\Theta}(\sqrt{n})$, or $\Theta(n)$.

Caveat:

Parity on even length strings: $\text{PARITY} \cap (\Sigma \Sigma)^*$

Query complexity oscillates between 0 and $\Theta(n)$.

Fix: *Redefine the standard notion of query complexity:*

Query complexity of strings of length up to n, rather than exactly n.

AND-OR is a star free language

<table>
<thead>
<tr>
<th>Basic sets:</th>
<th>Combination rules:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empty Set \emptyset</td>
<td>Concatenation AB</td>
</tr>
<tr>
<td>Empty string ${\varepsilon}$</td>
<td>Union $A \cup B$</td>
</tr>
<tr>
<td>Literal ${a \in \Sigma}$</td>
<td>Complement \overline{A}</td>
</tr>
</tbody>
</table>

AND-OR

\[
\text{AND-OR} = 2\text{OR}2 \ldots 2\text{OR}2 = 2(\text{OR}2)^* = 2(0^*1(0 \cup 1)^*2)^*
\]

Exercise…

\[
\text{AND-OR} = \overline{\emptyset}2\overline{\emptyset}(1 \cup 2)\overline{\emptyset}2\overline{\emptyset} \cap 2\overline{\emptyset} \cap \overline{\emptyset}2
\]
McNaughton’s characterization of star free languages

Theorem [McNaughton]: A language is star free iff it is expressible in first-order logic with the less-than relation.

\[
\text{OR : } \exists i \text{ st. } x_i = 1
\]

\[
\text{AND-OR : } \forall i \forall j \exists k \ (i < j) \land (x_i = 2) \land (x_j = 2) \implies (i < k < j) \land (x_k = 1)
\]

Can extend to any constant number of alternating quantifiers

Consequence: Quantum algorithm for star free languages extends the Grover speed-up to a much larger class of string problems.

Application:
\[\tilde{\Theta}(\sqrt{n})\] algorithm for dynamic constant-depth Boolean formulas
Outline for remainder of talk

1) Structure of trichotomy proof
 a) Upper bounds
 b) Lower bounds

2) $\tilde{O}(\sqrt{n})$ algorithm for star-free languages
Trichotomy proof: Upper bounds

Algorithms:

Trivial: Only constantly-many symbols of input determine membership. Constant-size lookup table.

Star free: Challenging. More on this later.

Regular: Linear time deterministic algorithm from machine definition: “Read-only Turing machines”

![Diagram of a 2-state deterministic finite automaton with transitions labeled by 0, 1, 2 and acceptance states 0, 1, 2, 0, 1.](image-url)
Trichotomy proof: Lower bounds

Completing the classification requires:

\[L \not\in \text{trivial} \implies Q(L) = \Omega(\sqrt{n}) \]

\[L \not\in \text{star free} \implies Q(L) = \Omega(n) \]
\(\tilde{O}(\sqrt{n})\) algorithm for star-free languages
\(\tilde{\Theta}(\sqrt{n}) \) quantum algorithm for AND-OR

Idea: Search for a substring \(20 \times 2 \) violating the OR

First attempt: Grover search.
\(\tilde{\Theta}(\sqrt{n}) \) quantum algorithm for AND-OR

Idea: Search for a substring 20*2 violating the OR

First attempt: Grover search.

\[x : \quad \overbrace{20\cdots0\cdots02} \]

Grover iterations: \(O(\sqrt{n}) \)

Work per iteration: \(O(n) \)

Total time: \(O(n^{3/2}) \)
\(\tilde{\Theta}(\sqrt{n})\) quantum algorithm for AND-OR

Idea: Search for a substring \(20^*2\) violating the OR

Second attempt: Grover within Grover.
$\tilde{O}(\sqrt{n})$ quantum algorithm for AND-OR

Idea: Search for a substring $20^2 \times 2$ violating the OR

Second attempt: Grover within Grover.

$x : \quad 000$
Quantum algorithm for AND-OR

Idea: Search for a substring 20^*2 violating the OR

Second attempt: Grover within Grover.

$x : 0\cdots000\cdots0$
\(\tilde{\Theta}(\sqrt{n})\) quantum algorithm for AND-OR

Idea: Search for a substring 20*2 violating the OR

Second attempt: Grover within Grover.

\[x : 20 \ldots 0 \ldots 000 \ldots 0 \ldots 02\]

Outer Grover: \(O(\sqrt{n})\)

Inner Grover: \(O(\sqrt{1}) + O(\sqrt{2}) + O(\sqrt{4}) + \cdots + O(\sqrt{2^k}) = \tilde{O}(\sqrt{\ell})\)

Total time: \(\tilde{O}(n)\)

\(\ell = \text{length of match}\)
\[\tilde{O}(\sqrt{n}) \] quantum algorithm for AND-OR

Idea: Search for a substring \(20^*2 \) violating the OR

Complete: Grover within Grover with multiple marked items.

\[x : \quad 20\ldots0\ldots000\ldots0\ldots02 \]

\[\ell \]

Grover search with multiple marked items: When there are \(t \) marked items, Grover search only requires \(O(\sqrt{n/t}) \) iterations.

Full strategy:
- Exponential search over length of the match: \(\ell = 1, 2, 4, 8, \ldots \)
- Grover search for index in the middle of the \(20^*2 \) substring.
- Grover/binary search to find 2 on each side at distance at most \(\ell \).

Analysis:
\[O(\sqrt{n/\ell}) \cdot \tilde{O}(\sqrt{\ell}) = \tilde{O}(\sqrt{n}) \]

Inner Grover

Outer Grover
Generalizing the AND-OR algorithm - Splitting

\[x : \ 20\ldots0\ldots02\ \ 20*\ 0*2\]

Splitting: Language \(L \subseteq \Sigma^* \) splits as \(\bigcup_{i=1}^{k} A_i B_i \) if

1) \(L = \bigcup_{i=1}^{k} A_i B_i \) for some constant \(k \).

2) \(\forall x \in L \) and decompositions \(x = uv \), \(\exists i \) such that \(u \in A_i \) and \(v \in B_i \)

Example: \(20*2 \) splits as \((20*2)\varepsilon \cup (20*) (0*2) \cup \varepsilon (20*2)\)
Splitting implies infix search

Infix Search: Let language L split as $\bigcup_{i=1}^{k} A_i B_i$ and suppose

$$Q(\Sigma^* A_i) = \tilde{O}(\sqrt{n}) \text{ for all } i$$

$$Q(B_i \Sigma^*) = \tilde{O}(\sqrt{n}) \text{ for all } i$$

Then $Q(\Sigma^* L \Sigma^*) = \tilde{O}(\sqrt{n})$.

Proof: Use same algorithm from **AND-OR**.

$x: ?\ldots?\ldots?$

A_i B_i
Schützenberger’s theorem: *(very informal)*
Given any star-free language, there is a hierarchy of component star-free languages. A language at one level of the hierarchy can be expressed as a combination of “simpler” languages from lower levels in the following way:

\[(\Sigma^* A_1 \cap A_2 \Sigma^*) - \Sigma^* A_3 \Sigma^*\]

Remarkable fact: \(A_3 \) splits into simpler languages.

Plan: *Recursive algorithm:*
Find \(\tilde{O}(\sqrt{n}) \) algorithms for all component languages.

Not obvious: this will imply \(\tilde{O}(\sqrt{n}) \) algorithms for prefix and suffix problems: \(\Sigma^* A_1, A_2 \Sigma^*, \ldots \)
Definition: A language L is recognized by a monoid M if there exists a homomorphism $\varphi : \Sigma^* \to M$ and a subset $S \subseteq M$ such that

$$L = \{ w \in \Sigma^* : \varphi(w) \in S \}$$

A monoid is a semi-group with an identity element.

Monoid for **OR:**

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

$$\varphi : \{0,1\}^* \to M$$

- $\varphi(\varepsilon) = \varphi(0) = 0$
- $\varphi(1) = 1$

$S = \{1\}$

Theorem (Schützenberger): A language is star free iff it is recognized by a **finite aperiodic** monoid.

Aperiodic: for all $m \in M$ there exists $n \geq 0$ such that $m^n = m^{n+1}$.

Proof sketch: $(\Sigma^* A_1 \cap A_2 \Sigma^*) - \Sigma^* A_3 \Sigma^*$
Theorem: For every algebraic number $c \in [1/2,1]$, there exists a context-free language L such that $Q(L) = \Theta(n^c)$.

$O(n^{c+\epsilon})$ and $\Omega(n^{c-\epsilon})$ for all $\epsilon \geq 0$ for all limit computable $c \in [1/2,1]$.

Theorem: If L is context free and $Q(L) = \Theta(n^c)$, then c is limit computable.
Open Problems

1) Can you remove the log factors from the star-free algorithm?

2) Complete the classification for context-free languages. Can a CFL have query complexity $\tilde{\Theta}(n^c)$ for some $c \in (0, 1/2)$?

3) Applications of star-free algorithm?