Fault-Tolerant Computing in
Wireless Ad Hoc Networks

Gregory Chockler, IBM Research
chockler@il.ibm.com

http://theory.csail.mit.edu/~grishac
http://www.research.ibm.com/people/c/chockler

Notes

m Names in brackets, as in [Xyz00], refer to
a document in the list of references

m There might be some slight differences
with the slides on CD

— The final version will be available at
http://www.research.ibm.com/people/c/chockler

Disclaimer

m Fault tolerance in wireless networks is a
new rapidly evolving research area

— This tutorial is by no means exhaustive
— Many interesting topics not covered in the

tutorial due to lack of time

m The material selection reflec

s to a large

extent my personal taste and experience

— Most results are theoretical

— Only a small portion was implemented

Wireless Ad Hoc Networks

m Radio-equipped devices
m Spontaneous connectivity
— No networking infrastructure

Failures in Wireless Networks

m Device failures
— Limited battery life
— Small size and fragility
— Software bugs

m Message loss
— Collision, interference, hidden terminals

. S Y <=

More Limitations

m No unique IDs

m Unknown topology

m Inaccurate knowledge of location
m Drifting clocks

m Mobility

Robustness to Failures

m Many applications could live with
guarantees

— E.qg., data collection, aggregation, querying,
monitoring, etc...

@)

O/O/'O"
NS

@
-
-

Robustness to Failures

m \Well-defined
guarantees are crucial
for mission critical
tasks
— Emergency response

— Coordinated lander
guidance

— Rover navigation

— Autonomic flight and £
traffic control

— Coordinated UAVs

Supporting Robustness

m Develop a suite of services (
to mask failures
— Well-defined guarantees
— Comprehensive
— Powerful
— Realistic
— Simple to understand and use
— Modular

Fault-Tolerance Middleware

m Local infrastructure
— Local agreement
— State machines
— Virtual nodes

m Global infrastructure
— Round synchronization
— Broadcast
— Quorums

m Applications

Fault-Tolerance Middleware

— State machines and virtual nodes
— Local agreement

m Global infrastructure
— Round synchronization
— Broadcast
— Quorums

Local Infrastructure

m Objective: create a entity
from a collection of closely coupled,
devices

Local State Machine

m All the nodes within the communication
range of one another emulate a persistent

— : environment stimuli

— Qutputs: consistent actions based on the
state machine transition function

Example: Virtual Traffic Lights

Example: Virtual Traffic Lights

Example: Virtual Traffic Lights

Fault-Tolerance Middleware

m Local infrastructure
— State machines and
— Local agreement

m Global infrastructure
— Round synchronization
— Broadcast
— Quorums

Virtual Nodes

m Emulate a persistent node in each
locality populated by nodes

m [nput:
m Output: send(vn,message)

m The applications are deployed at virtual
nodes as though they are real nodes

— Programmers do not need to care about
“peculiarities” of wireless networks

Virtual Nodes

Virtual Nodes

Applications

m Location management
m Routing

m Tracking

m Motion coordination

m Traffic management

m Traffic coordination

m Many others

GeoCast Routing

m Location-based routing
— Requires knowing precise location

m Use broadcast to disseminate messages to
the neighbors

m The neighbor closest to the destination
will forward the message in the same
manner

GeoCast Routing

.~ Send a message
. to a virtual node

Home Location

Where's the
“yellow” node?

Point-to-Point Routing

Route to the
“yellow” node?

Implementing a Virtual Node

m State-machine replication [8]

m the virtual node state at the
physical nodes within the region

m Broadcast each received message within
the region using a

m Total-order broadcast (TO-Broadacst):
messages are delivered at the same order
at all nodes

Implementing a Virtual Node [5,6,7]

m Tight clock synch within a region

m Location/time awareness (GPS)

m Known bound on message delay d
m One node is a leader

Implementing TO-Broadcast [5,7,8]

tl t1+d £2+d

Deliver Deliver m2

Implementing TO-Broadcast [5,7,8]

m Affix message M a unique timestamp:
— TS := clock()

m Locally broadcast (M, TS,Sender)

m For each received (m,ts,sender) such that
clock()=ts+d, move (m,ts,sender) to out-
buffer

m Deliver messages in the out-buffer in the
timestamp order
— Break ties using the sender id

Implementing a Virtual Node

m A physical node receives m:
— TO-Broadcast(m) within the region

m Upon delivery of a TO message m:
— Perform the transition triggered by m

— If @ new message m’ should be sent:

= If (leader?) then send m’ to the destination VN
using Geocast

Towards a More Realistic Model

m The VN implementation relies on
Reliable local broadcast

Known identifiers

Known number of nodes

m These assumptions are not always realistic
in wireless networks

m How to relax these assumptions in a
meaningful way?

The New Model

Unknown number of nodes, no unique ids

Messages can be lost due to and
other anomalies

Round-based computation: Each process in

each round:
1. Broadcasts a message
2. Receives messages
3. Performs computation

» Messages broadcast in r are received in r

Round-Based Computation

m Computation proceeds in rounds

m In each round r, each process P:
— Sends a message
— Receives messages
— Performs computation

m Might seem unrealistic, but can be easily
emulated with

— Bounded drift clocks and message delay
m We'll see an implementation later

Local Agreement

m Can we still implement a VN?
— What is necessary for that?

m Single-hop environment

m We investigate this using a /oca/
agreement problem =»

Fault-Tolerance Middleware

m Local infrastructure
— State machines and virtual nodes

m Global infrastructure
— Round synchronization
— Broadcast
— Quorums

Local Agreement (Consensus) [2,3]

m Start with possibly different input values

m Agreement:

— Different = (eventually) the same
output at each participating node

m Validity:
— Each output is the input of some process

Characterizing Collision

Characterizing Collision

O O
0
O @ ¢

O
@ | O
O C

Non-Uniform Collisions: Any node can loose any message in any round

Unfortunately...

Agreement is impossible with
non-uniform collisions.

Solution:

Collision Detection

Collision Detection

Collision Detectors

m Properties:
— : If P loses a message, ...
— . If P loses no messages, ...

m Question: Find a CD which is both
and enough to solve agreement

Completeness Degrees

1

Always Complete Majority Complete Zero Complete

Completeness Degrees

o

A

Always Complete Majority Complete Zero Complete

Completeness Degrees

Collision Detector Classes

(Always)
Accurate: A

Eventually
Accurate: 0A

(Always) Complete:
C

AC

0AC

Majority Complete:
Maj-C

Maj-AC

Maj- 0AC

0-Complete:
0-C

0-AC

0- 0AC

Agreement is impossible with ¢C

Collision Detector Classes

T

[Alharavic)

Suantyally

If >2 messages are te: 0A

lost, then report

(Always) Comple
C

AC

H collision.

Majority Complete: p

Maj-C

Maj-AC

Maj- 0AC

0-Complete:
0-C

0-AC

0- CAC

Agreement is impossible with ¢C

Collision Detector Classes

T

[Alharavic) Ev/a

ﬂtqally

If >2 messages are te: 0A

lost, then report

(Always) Comple
C

H collision. .

Maj-C

Majority Complete: # If all messages are
lost, then re

A collision.

0-Complete: ~~
0-C

port a

0-AC

0- CAC

Agreement is impossi

ble with 0C

Agreement with CD
No Collision

Freedom

Agreement with CD
No Collision

Freedom

(Always) Accurate

Agreement with CD
No Collision

Freedom

Eventually Accurate

V is the va!ue domain

Eventual Collision Freedom

m Eventually, if only 1 node broadcasts...

Eventual Collision Freedom

m Eventually, if only 1 node broadcasts,
then no collision occurs

m Use a
— Outputs “active/passive” at each node
— Implementation: randomized backoff, e.q.

Eventual Collision Freedom

m Eventually, if only 1 node broadcasts
then no collision occurs

m Use a
— Outputs “active/passive” at each node
— Implementation: randomized backoff, e.q.

If nodes broadcast, then no collisions
— /is an unknown MAC layer constant
— »could be as low as 1

Agreement with CD

No Collision

Freedom

Impossible
Impossible

Impossible

V is the value domain

Agreement with CD

Eventual Collision | No Collision

Freedom Freedom
AC O(1) O(log
maj- AC O(1) O(log
0-AC O(log [V) O(log
OAC O(1) Impossible
maj->AC O(1) Impossible
0-OAC O(log |V']) Impossible

V is the value domain

Agreement with CD

Eventual Collision | No Collision

Freedom Freedom
AC O(1) O(log
maj- AC O(1) O(log
0-AC O(log [V) O(log
OAC Impossible
maj->AC O(1) Impossible
0-OAC O(log |V']) Impossible

V is the value domain

Agreement with 0AC

m Estimate := initial value

m Algorithm executes in super-rounds:

— : Vote round
= Active nodes vote on a value

= If no collisions detected, then estimate := the
smallest value heard

: Veto round
= Anybody can veto if collision detected in Round 1
= If nobody vetoes, then decide estimate and halt

Agreement with 0AC

Round 1

Agreement with 0AC

Round 1

| C
Agreement with 0A

Vi

VvV
Vi

und 2
r{ Continue... }
Rou

Agreement with 0AC

A

Round 1

Agreement with 0AC

A

« {V]_I }

(false positive)

Round 1

Agreement with 0AC

A

Round 1

Agreement with 0AC

A

@
V4 O

Rour{ Continue... }undz

Agreement with 0AC

A

Round 1

Agreement with 0AC

Vi
/‘
o \,
V4 |
Vi

Round 1

Agreement with 0AC

Vi
/‘
o \,
V4 |
Vi

Round 1

Agreement with 0AC

Vi
/‘
o \,
V4 @
Vi

®
Vv
1 v,

ROUI{ Decide v, }und 2

Agreement with 0AC

v

4 I

Decides in at most 3
/ rounds after stabilization™

*Stabilization: accuracy and
collision-freedom

< 4
ROUI{ Decide v, }Uﬂd 2

Agreement with CD

Eventual Collision | No Collision

Freedom Freedom
AC o(1) O(log |V
maj-AC O(1) O(log |V
0-AC O(log |[V|) O(log |V
OAC Impossible
maj->AC O(1) Impossible
0-OAC O(log |V']) Impossible
V is the value domain

Agreement with Maj-0AC

m Estimate := initial value

m Algorithm executes in super-rounds:

— : Vote round
» Active nodes vote on a value

= If no collisions detected, then estimate := the
smallest value heard

: Veto round
= Veto if collision detected in Round 1 or

= If nobody vetoes, then decide estimate and halt

Agreement with Maj-0AC

Round 1

Agreement with Maj-0AC

/

O—\
Vi {7, 7> O

Round 1

Agreement with Maj-0AC

V

N

Decides in at most 4
rounds after stabilization™

*Stabilization: accuracy and
collision-freedom

| 4
Rour{ Continue... }undz

Maj-0AC Consensus: Simulations

| | | |
round = 0.1, mac = strong
round = 0.05, mac = strong
round = 0.2, mac = strong
round = 0.1, mac = weak

NS-2, 802.11

Consensus with CD

Eventual Collision | No Collision
Freedom Freedom
AC o(1) O(log |V
maj-AC O(1) O(log |V
0-AC O(log [V) O(log |V
OAC O(1) Impossible
maj->AC O(1) Impossible
0-OAC O(log |V']) Impossible

V is the value domain

Agreement with 3-AC

m 2-complete, accurate collision detector

2" broadcast schedules for
| O O the first r rounds

—_—> | «—

—|— O O O |V| possible values

For k < log(|V|), at most
v, |V|/2 broadcast
schedules to follow =

Exists two values resulting
in the same broadcast
schedule of length k

Agreement with 3-AC

m 2-complete, accurate collision detector

2" broadcast schedules for
| O O the first r rounds

—_—> | «—

—|— O O O |V| possible values

For k < log(|V|), at most
v, |V|/2 broadcast
schedules to follow =

Exists two values resulting
in the same broadcast
schedule of length k

Agreement with O-0AC

m Everybody broadcasts its initial value -
— estimate := 1. eM ? initVal : min(M)
—abort ;=0

m For every bit B of estimate:

— If (B = 1 or abort) then broadcast Veto \ pro-
— If received something and B=0, abort := 1 | P%>¢

m If abort, then broadcast Veto }de_

— If nothing received, decide estimate, halt | cide

Implementing Collision Detection

m Carrier sensing
— CSMA: 802.11, 802.15.4, sensor wireless MAC
— Sense carrier in the idle mode

m Cyclic Redundancy Check (CRC)

m Preamble detection

— Normally, preamble is only detected in the
synchronization state

— If detected in the receive state = collision

Local Agreement: Conclusions

m Local infrastructure for realistic collision
models

— Non-uniform collision

m Necessary building blocks:
— Collision detector for consistency
— Contention manager for progress

m The most realistic yet powerful collision
detector is Maj-CAC

Prototype Implementation

Prototype Implementation

Fault-Tolerance Middleware

m Local infrastructure
— State machines and virtual nodes
— Local agreement
O
— Round synchronization
— Broadcast
— Quorums

Multi-Hop Wireless Networks

SOl

Middleware for Multi-Hop Networks [1]

doRound Collision

1

Contention Contention
Manager : Manager

Collision doRound

Eimd SynchronizerJ

Bcast Receive

L Detector

Collision | E J

Detector J LRound Synchronizer |:

Receive Receive Bcast Receive

Wireless Network

Round Synchronizer

m Supports synchronous protocols
m Nodes synched with neighbors

During each round r, a protocol running on process p Is
allowed to broadcast one or zero messages to
p's neighbors. The component returns to the protocol
a set containing all round r messages sent
by p's neighbors and successfully received by p.

An Example: Reliable Broadcast

initf m);
starfed — false
actwe — false
mEG —— M

doRoun d, msgs|], collssion)
. i mod 2 = 0 then // Heceive a message in even rounds.

if |:n-::|1: starfad) and |I|m.5g.5| =) then
started — true
msg «— msgdl]
if wllisron then
return veto [/ Brondeast a weto if receive failed .
glse
return
else if md mod 2 = 1then |/ Receive aveto in odd rounds.
if sfarfed then
if (not collision) and (|msgs| = 0) and acfive then
halt() // I no vetoes, then done.
glse if I:cc'H.r'.s.r'-:"n I or I:|m.5g'.5| = 01 then
active «— Backoff(e TooMany)
else if (not collision) and (|msgs| = () and (net admwe) then
active — Backoff(e TooFew)
if agie -

Reliable Broadcast

Reliable Broadcast

Reliable Broadcast

Reliable Broadcast

o o ©
o ﬁ\Q
e

Reliable Broadcast

Reliable Broadcast

Implementing Round Synchronizer

m Use "start” message, or collision detection
to synch with neighbors

m Use local timer to maintain local synch
for bounded number of rounds

m Periodic resynchronizations required
— Compensate for clock drift

Fault-Tolerance Middleware

m Local infrastructure
— State machines and virtual nodes
— Local agreement

m Global infrastructure
— Round synchronization
— Broadcast

Quorum Systems

m Universe U of servers
N

— Intersection for coordination and information
sharing among clients

. Improved and

o . data replication, data
dissemination, mutual exclusion, etc.

Quorum System Examples

m Threshold QS: a set of all sets containing
a of servers in U/

m Grid QS: o,

Data-Centric Event Storage

Accessing Quorums

'S servers until a

m Client (initiator) contac

full guorum of replies is collected
— Variety of ways for doing that

m The initiator must be able to

responding nodes

— Majority: count responses
— Grid: identify the square to fill

Accessing Quorums

Accessing Quorums

Accessing Quorums in Sensornets

O~ []

. =———— '\
C——]

Initiator

Accessing Quorums in Sensornets

Q- -l
initiator

Accessing Quorums in Sensornets

@

(N

Q

©]

Not scalable:

per node!

. =———— '\
——]

nitiator

O

Communication Complexity of

m transmitted in

QS

quorum access

— Does not depend on the access pattern

P-to-p
(threshold)

Gossip
(threshold)

Best that was
known

Low Bandwidth Quorum Access [4]

Idea: Use probabilistic sampling to
achieve communication
complexity

Use gossip (flooding) for robustness

Sampling-Based Quorum Access [4]

m [nitiator:

(1) X:=0(c log(N))-sized sample of nodes
chosen U.A.R.

(2) Gossip <X,req_data>
m Everybody forwards <X, req_data>
m Node p:

— If p in X, gossip back <X, resp_data>
m Everybody forwards <X, resp_data>

Accessing Quorums with Sampling

©]

. =———— '\
——]

O initiator

Accessing Quorums with Sampling

©]

. =———— '\
——]

O initiator

Accessing Quorums with Sampling

Initiator

Accessing Quorums with Sampling

@ @ o P [

. =———— '\
——]

Initiator

Why this works?

m Lemma: If X is a sample of size
chosen , then % of nodes
that receive the request is the same in
both X and the entire population w.h.p.

m Proof: Follows from a Chernoff bound
— See the paper for details

Updates vs. Queries

m : Ensure that enough nodes got the
data though only a log-sized sample
responds

— The protocol described thus far
o . Ensure that the sample “hits” some
updated nodes

— Using samples of size IEICRIEES
intersection w.h.p.

— Proof: Chernoff bound and union bound

Adding Fault Tolerance

m Assume a fraction p of nodes can crash or
disconnect

m Modify the access protocol so that only a
fraction r of nodes in X is required to
respond

— In the paper: p<0.25, r=0.6
— p can be made asymptotically close to 0.5

The Initiator Protocol

Update(value)
| sample — Random(S.r)

2 responses —)

3 while |responses| < (1 —p—7)r

4 do responses — Gossip(update. sample. value)
> return

Query()
sample — Random(S.)
responses «— ()
do responses — Gossip(query, sample, 1)
return responses

|
2
3 while |responses| < (1 —p —7)r
4
3

Quorum Systems Summary

m Low communication complexity is
important for environments with
resources, such as sensor and ad hoc
networks

m Probabilistic, sampling-based QS
— polylog communication complexity

— Available as long as 250% of nodes are alive
and connected

Conclusions

m Middleware for fault-tolerant computing in
realistic wireless ad hoc networks

m Low-level components
— Collision detectors
— Contention manager
— Round synchronizer
— Reliable broadcast
— Quorums

m High-level components
— Virtual nodes and state machines
— Local agreement

Future Work

m Malicious failures

m Weakest collision detector for agreement
m Implementing collision detectors

m More efficient/resilient implementations
m Implementations in real networks

m Applications

References

[1] G. Chockler, M. Demirbas, S. Gilbert, and C. Newport. A Middleware Framework for Robust
Applications in Wireless Ad Hoc Networks. Proceeding of the 43rd Allerton Conference on
Communication, Control, and Computing, September, 2005

[2]G. Chockler, M. Demirbas, S. Gilbert, C. Newport, and T. Nolte. Consensus and Collision
Detectors in Wireless Ad Hoc Networks. 24th Annual Symposium on the Principles of
Distributed Computing (PODC), July, 2005

[3] G. Chockler, M. Demirbas, S. Gilbert, N. Lynch, C. Newport, and T. Nolte. Reconciling the
Theory and Practice of UnReliable Wireless Broadcast. /nternational Workshop on
Assurance in Distributed Systems and Networks (ADSN), June, 2005

[4] G. Chockler, S. Gilbert, and B. Patt-Shamir. Communication-Efficient Probabilistic Quorum

Systems. Proceedings of the International Workshop on Foundations and Algorithms for Wireless
etworking (FAWN), March, 2006.

[5] S. Dolev, S. Gilbert, L. Lahiani, N. Lynch, and T. Nolte. Timed Virtual Stationary Automata for
I[\)/IobﬂebNetzv(\)lg 5rks. 9th International Conference on Principles of Distributed Systems (OPODIS),
ecember,

[6] S. Dolev, S. Gilbert, N. Lynch, A. Shvartsman, and J. Welch. GeoQuorums: Implementin
12\58%11ic Memory in Mobile Ad Hoc Networks. Distributed Computing, 125-155, November,

[7] S. Dolev

S. Gilbert, N. Lynch
for Mobile Adhoc Networks. Proceeding of the 18th International Conference on Distributed
Computing (DISC), October, 2004.

[8] L. Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM: 21(7), 1978

E. Schiller, A. Shvartsman, and J. Welch. Virtual Mobile Nodes

URLs:
Virtual Nodes: http://theory.lcs.mit.edu/~sethg/biblio-projects.html#vi
Fault-tolerance middleware: http://theory.lcs.mit.edu/~sethg/biblio-projects.html#consensus

Thank You !

