
l

of
istency
mmonly
ral
of a small

ith
Information Processing Letters 86 (2003) 169–176

www.elsevier.com/locate/ip

On the composability of consistency conditions✩

Roy Friedmana,∗, Roman Vitenberga, Gregory Chocklerb

a Computer Science Department, Technion – The Israel Institute of Technology, Haifa 32000, Israel
b Institute of Computer Science, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel

Received 4 March 2002; received in revised form 25 November 2002

Communicated by F.Y.L. Chin

Abstract

This paper presents a formal framework, which is based on the notion of aserialization set, that enables to compose a set
consistency conditions into a more restrictive one. To exemplify the utility of this framework, a list of very basic cons
conditions is identified, and it is shown that various compositions of the basic conditions yield some of the most co
used consistency conditions, such assequential consistency, causal memory, and Pipelined RAM. The paper also lists seve
applications that can benefit from even weaker semantics than Pipelined RAM that can be expressed as a composition
subset of the basic conditions.
 2003 Elsevier Science B.V. All rights reserved.

Keywords:Concurrency; Distributed computing; Distributed systems; Formal semantics

1. Introduction care is not taken, these replicas might end up w
que
is,
the
es,
cts,
loy
t is
me
. If

of

uncorrelated data, rendering them useless as a mean
ict
ch

e is
ncy
and
ro-
ome
[3].
of

and
self.
ok

ecial

ll rig
Distributed shared objects is a common techni
for information sharing in distributed systems. That
processes communicate by updating and querying
same objects. For efficiency and availability purpos
most implementations of distributed shared obje
and other forms of distributed shared memory, emp
replication and caching. However, once an objec
replicated and/or cached, multiple copies of the sa
object may exist in the system at the same time

✩ This work was supported in part by the Israeli Ministry
Science grant number 1230-1-98.

* Corresponding author.
E-mail addresses:roy@cs.technion.ac.il (R. Friedman),

romanv@cs.technion.ac.il (R. Vitenberg), grishac@cs.huji.ac.il
(G. Chockler).

0020-0190/03/$ – see front matter 2003 Elsevier Science B.V. A
doi:10.1016/S0020-0190(02)00498-2
for communication. Thus, it is common to restr
the ways the content of replicas might diverge. Su
restrictions are known asconsistency conditions.1

As been shown in several research works, ther
an inherent tradeoff between the level of consiste
of shared objects and the communication overhead
access latency [4,5]. Moreover, conditions that p
vide very week guarantees, are too weak to solve s
fundamental problems in concurrent programming
This has inspired the definition of a large number

1 If there is only a single copy of each object in the system
no caching is used, then this copy is always consistent with it
Yet, there might be implementation optimizations that make it lo
inconsistent to applications that are using the object. This sp
case is covered by the general framework in this paper.

hts reserved.

170 R. Friedman et al. / Information Processing Letters 86 (2003) 169–176

different consistency conditions and their correspond-
ing implementations, each trying to tackle the tradeoff

it
ncy

p-
the
by
os-
re

ry
ous
ral
tial
ed
-
an-
po-

sis-
ho-
hey
res-
ntial
the
ory
ro-
ity.
ion
d is
t of
k.
re-

e
into
the
so,
be
e-
ns,
m

in
en
ct.
ery
t a

given implementation obeys the relevant basic con-
ditions rather than proving directly that it obeys the

le-
ify
in

ing
ope
m-
ns.
be
ica-
ns,

ol-
el

in-
w-
an
ent
n-
did
dif-
text
is-
rib-
the

een
n be
ac-
ted

ingle
ain-

g
ted
nd
ory
ny
ful
are

ra-
the
slightly differently. Of course, without this tradeoff
would have been possible to identify one consiste
condition that is clearly better than all others.

In this work, we try to present a more generic a
proach to consistency conditions, by looking at
question of their composability. That is, we start
presenting a formal framework that enables comp
ing a collection of consistency condition into a mo
restrictive condition. We then identify a list of six ve
basic consistency conditions, and prove that vari
compositions of these basic conditions yield seve
well-known consistency conditions, such as sequen
consistency [10], causal memory [2], and Pipelin
RAM (PRAM) [11]. Moreover, we list several applica
tions that can benefit from weaker consistency sem
tics than PRAM that are easily expressed as a com
sition of a small set of the basic conditions.

We would like to emphasize that sequential con
tency, causal memory, and Pipelined RAM were c
sen since they are well known and widely used. T
also represent three interesting points in the exp
siveness vs. performance tradeoff. That is, seque
consistency provides a logical illusion of executing
operations on a truly non-replicated shared mem
(or objects). Yet, its implementations require synch
nization which hurts its performance and scalabil
Pipelined RAM is the weakest consistency condit
that was offered for distributed shared memory an
still claimed to be useful for a reasonably large se
applications. Yet, for many applications it is too wea
Causal ordering is somewhere in the middle with
spect to both concerns.

From a theoretical point of view, looking at som
basic consistency conditions and composing them
higher level ones presents an important insight into
differences between the high level conditions. Al
for a given set ofn consistency conditions, there can
2n possible compositions. The composability fram
work gives us access to all of these combinatio
without having to formally define each one of the
independently.

From a practical point of view, this has two ma
advantages: First, it can simplify proving that a giv
implementation of a high level condition is corre
Specifically, the basic conditions we propose are v
simple. Thus, it is likely to be easier to show tha
corresponding high-level condition. In case an imp
mentation is incorrect, it may be possible to ident
the errors when considering the simpler conditions
a more effective and accurate way than when look
directly at the composed condition. Second, we h
that our work can be used to devise flexible, co
posable, implementations of consistency conditio
In such an ideal system, each basic condition will
implemented as a layer of code. When a given appl
tion needs a specific high-level consistency conditio
it could simply pick the layers that implement the c
lection of basic conditions from which the high-lev
condition is composed of.

The basic consistency conditions that we list are
spired by the work on the Bayou project [13]. Ho
ever, in Bayou the conditions were specified in
informal, operational and implementation depend
way, while our definitions are formal and impleme
tation independent. Moreover, the work on Bayou
not address the issues of composability. Another
ference between Bayou and our work is the con
of each work: Bayou is mainly concerned with d
tributed databases while we are interested in dist
uted shared objects. In distributed databases often
requirement is to ensure ordering semantics betw
complete transactions, where each transaction ca
composed of several operations and may even
cess multiple objects. In shared objects and distribu
shared memory each operation only accesses a s
object, and the ordering guarantees should be m
tained between individual operations.

Our work was motivated from a CORBA cachin
service, called CASCADE, that we have implemen
[6]. However, for the sake of generality, the model a
claims in this paper refer to distributed shared mem
in general. Also, in this paper we do not discuss a
implementation. The implementation of some use
combinations of the basic consistency conditions
described in [7].

2. Definitions and conventions

2.1. Basic definitions

In this paper, we are only interested in the ope
tions invoked by client processes that may access

R. Friedman et al. / Information Processing Letters 86 (2003) 169–176 171

distributed shared memory concurrently. The exact de-
tails of how it is implemented, whether it is replicated

are

ol-

ed

me
of
p-
ays
-

n

re

he

s
nts

,

tial
to

rns.
y

di-

same as the value written by the last write operation
that accesses the same object beforer in H .

ntial

e

all

s.

an-
es,
n by
ing

s of
ven
es
he
tual
the
of

ne
egal

is-
ypi-
rial-
the
ra-
di-
or not, and how the replication mechanism works
outside the scope of this work.

Formally, consider a system consisting of a c
lection ofclient processes, or simplyprocesses, num-
beredp1, . . . , pn, communicating by invokingopera-
tions on a collection ofobjects. Each operationop is
composed of an invocation eventinv(op) and a corre-
sponding response eventresp(op), both occurring at
the same process, denoted bypr(op). Moreover, each
operationop is restricted to a single object, denot
by obj(op); we say thatop accesses obj(op). The in-
vocation event may take an input parameterival(op)
and the response event may return an output para
ter oval(op), both defined over some allowed range
valuesV . Here we only consider read and write o
erations; for read operations the input value is alw
a special value⊥, while for write operations the out
put value is always⊥. For a given read operationr,
we say thatr returns v (or readsv) if oval(r) = v.
Similarly, we say that a write operationw writes v if
ival(w) = v.

We define ahistory to be a sequence of invocatio
and response events. Awell formed historyis a history
in which for each invocation eventinv(op) there is a
corresponding response eventresp(op). For the rest
of this paper, we will assume that all histories a
well formed. Asequential historyis a history in which
each invocation event is immediately followed by t
matching response event. For a given historyH and
processpi , we denote byH |pi the restriction ofH
to events of processpi , H |w the restriction ofH to
write operations, andH |pi + w the restriction ofH
to events of processpi and events of write operation
by any process. A history that only includes eve
of a single process is calledlocal history; clearly, for
any historyH , H |pi is a local history. In this work
we assume that for any historyH and processpi ,
H |pi is sequential. This corresponds to a sequen
execution model in which a process is not allowed
issue a new operation before a previous one retu
A serialization Sof a historyH is a sequential histor
containing all the operations ofH .

Legality is a central concept in consistency con
tions. We define a sequential historyH to be legal if
the value returned by each read operationr in H is the
-

Given a sequence of operations, or a seque

history,S, we denoteo1
S−→ o2 wheno1 precedeso2

in S. A history H induces a partial order,
H−→, on

the operations that appear inH : o1
H−→ o2 if o1

H |pi−→
o2 for someH |pi . Moreover, we slightly abuse th
notations and for a given sequential historyH and a
given serializationS we denote byH = S the fact that
H andS include the same set of operations, and
operations are ordered the same inH and inS.

2.2. Composability framework

We define aconsistency condition(or simply,con-
sistency) as a set of restrictions on allowed historie
We say that consistencyA is strongerthan consistency
B if the set of allowed histories underA is contained
in the set of histories allowed underB.

Note that in order for shared objects to be a me
ingful tool for communication between process
every write operation by any process must be see
all other processes. This is captured by the follow
property:

Eventual Propagation. For every processpi and
history H , there exists a legal serializationSpi of
H |pi + w.

This requirement essentially expresses livenes
update propagation: For a given history and a gi
write operation in this history, if some process invok
an infinite number of queries, it will eventually see t
result of this write. We therefore assume that Even
Propagation holds for all histories considered in
rest of this paper. Fig. 1 gives a simple example
a historyH with two processesp1 and p2 and two
objectsx and y. Each of the processes issues o
read and one write operation. Fig. 1 also presents l
serializationsS1 andS2 of H |p1 + w andH |p2 + w,
respectively.

Note that traditional definitions of strong cons
tency conditions, such as sequential consistency, t
cally require the existence of some special legal se
ization of the history. This serialization represents
logical order by which all processes view the ope
tions. On the other hand, definitions of weaker con

172 R. Friedman et al. / Information Processing Letters 86 (2003) 169–176

one
rds,
ra-
se

ol-

l

iza-
re-

sis-
ri-
ns.
pli-
ns,
nt
at

g a
st

he

s

ions
et.

n

A obeys a condition set(or a single consistency
condition) X is every history generated byA is

that
ting
s set
dif-
os-
ns
sis-
ard
ns.

s

s

Fig. 1. Example of a history and its legal serializations.

tions, such as PRAM, only require the existence of
special serialization for each process. In other wo
such definitions allow each process to view the ope
tions in a different logical order. In order to relate the
definitions in a single framework, we introduce the f
lowing definition:

Definition 1. A serialization set ofH is a set of lega
serializations ofH |pi + w one for each processpi .

Due to Eventual Propagation, at least one serial
tion set exists for a given history. In the example p
sented in Fig. 1,{S1, S2} is a serialization set ofH .

We then define that a history preserves a con
tency condition by requiring the existence of a se
alization set that obeys certain ordering restrictio
Moreover, as described in Section 3.3.1, some ap
cations can do with very weak consistency conditio
in which the view of each process may be differe
in a very fundamental way. This leads us to define
least some of the consistency conditions by requirin
serialization set in which different serializations mu
obey different restrictions.

Formally, we define consistency conditions in t
following way. For a given consistency conditionX,
a given historyH , a serialization setS of H , and a
serializationSpi ∈ S, we define what the condition
that Spi needs to obey in order topreserveX are.
We then say that a serialization setS = {Spj } globally
preservesX if it preservesX for all the historiesH |pi .
For a given historyH , a serialization setS = {Spj }
globally preserves some set of consistency condit
if S globally preserves each condition in this s
Finally, we say that a historyH is consistent with
respect to a condition set (or a single condition)X

if there exists a serialization setS of H such thatS
globally preservesX. We say that an implementatio
consistent with respect toX.

3. Consistency conditions

3.1. Basic consistency conditions

We now present a set of elementary conditions
can be used as basic building blocks for construc
more composed consistency guarantees. While thi
is in no sense complete and it can be extended in
ferent ways, it proves a good example of the comp
ability approach: By combining the basic conditio
in this set we can express both widely known con
tency conditions of varying strength and non-stand
conditions that are shown to be useful for applicatio

Read Your Writes. For a given historyH and a
processpi , a serialization setS = {Spj } preserves
Read Your Writes for the local historyH |pi if for
every two operationso1 and o2 in H |pi such that

o1 = WRITE, o2 = READ, and o1
H |pi−→ o2, implies

o1
Spi−→ o2.

FIFO of Reads. For a given historyH and a proces
pi , a serialization setS = {Spj } preservesFIFO of
Reads for the local historyH |pi if for every two
operationso1 ando2 in H |pi such thato1 = READ,

o2 = READ, ando1
H |pi−→ o2, implieso1

Spi−→ o2.

FIFO of Writes. For a given historyH and a proces
pi , a serialization setS = {Spj } preservesFIFO of
Writes for the local historyH |pi if for every two
operationso1 ando2 in H |pi such thato1 = WRITE,

o2 = WRITE, ando1
H |pi−→ o2, holds∀j o1

Spj−→ o2.

Reads Before Writes. For a given historyH and a
processpi , a serialization setS = {Spj } preserves
Reads Before Writes for the local historyH |pi if
for every two operationso1 and o2 in H |pi such

thato1 = READ, o2 = WRITE, ando1
H |pi−→ o2, implies

o1
Spi−→ o2.

R. Friedman et al. / Information Processing Letters 86 (2003) 169–176 173

Local Causality.2 For a given historyH and a proc-
esspi , a serialization setS = {Spj } preservesLocal

f
cal
er
in

ther

t

ll

ion

l
ore

o2 reads a result written byo1. Let
∗−→ denote the

H

a

of
if
e

ds
ave
fore
he
lies
al
gful

ees
not
ads

ow
ions
ncy

ct
lso

is
al
tent
ree

in

,

Causality for the local historyH |pi if for every three
operationso1, o2 and o3 such thato2 and o3 are
in H |pi , o1 = WRITE, o2 = READ, o3 = WRITE, o2

reads a result written byo1 and o2
H |pi−→ o3, implies

∀j o1

Spj−→ o3.

As noticed in [13], Read Your Writes, FIFO o
Reads and Reads Before Writes only affect the lo
histories for which they are provided. On the oth
hand, Local Causality and FIFO of Writes conta
guarantees with respect to the local histories of o
processes.

Total Order. For a given historyH , a serialization se
S = {Spj } globally preservesTotal Order if for every
two serializationsSpi andSpj in S, Spi |w = Spj |w.

3.2. Examples of known consistency conditions

The following is a list of several important and we
known consistency conditions.

Sequential Consistency (SC) [10]. A historyH is se-
quentially consistent if there exists a legal serializat

S of H such that for each processpi , o1
H |pi−→ o2 im-

plieso1
S|pi−→ o2.

PRAM Consistency [11]. A history H is PRAM
consistent if there exists a serialization setS such
that for every serializationSpi ∈ S and operationso1

and o2 in H |pi + w for which o1
H−→ o2, implies

o1
Spi−→ o2.

Causal Consistency [2]. For the definition of causa
consistency we assume that no value is written m
than once to the same variable. Given a historyH , an

operationo1 directly precedeso2 (denotedo1
H−→ o2)

if either o1
H−→ o2 or o1 = WRITE, o2 = READ, and

2 This is similar to the condition calledWrites Follow Reads
in [13].
transitive closure of−→.
A history H is causally consistent if there exists

serialization setS such that every serializationSpi ∈ S

respects
∗−→, i.e., if o1 ando2 are two operations in

H |pi + w ando1
∗−→ o2, theno1

Spi−→ o2.

3.3. Examples of useful compositions

Any single condition that relates two events
the same type is trivial by itself. For example,
we only require FIFO of Reads, then naturally w
can always find legal serializations in which all rea
are ordered in FIFO order. This is because we h
not placed any requirements on writes, and there
we have the freedom to order the writes in t
serialization so all the reads are legal. This app
similarly to FIFO of Writes, Local Causality and Tot
Order. Thus, these guarantees become meanin
only in combinations that contain several guarant
of different types. The only guarantees that are
trivial by themselves are Read Your Writes and Re
Before Writes.

We now present several theorems that show h
some combinations of the basic consistency condit
relate to each other and to other known consiste
conditions.

Theorem 1. Any history that is consistent with respe
to Total Order and Reads Before Writes is a
consistent with respect to Local Causality.

Proof. Assume, by way of contradiction, that there
a historyH , which is consistent with respect to Tot
Order and Reads Before Writes, but is not consis
with respect to Local Causality. Thus, there are th
operationso1 = WRITE, o2 = READ, ando3 = WRITE,
such thato1 was issued bypi , o2 and o3 issued by

pj , and o2 reads the result ofo1, and o2
H |pj−→ o3,

yet there is a serialization setS of H that globally
preserves Total Order and Reads Before Writes

whicho3
Sk−→ o1 for some processpk . By assumption

for the serializationSpj ∈ S, o2

Spj−→ o3, ando1

Spj−→
o2. However, sinceS obeys Total Order,∀k o1

Spk−→ o3.
A contradiction. ✷

174 R. Friedman et al. / Information Processing Letters 86 (2003) 169–176

The order in which operations of some process
pi appear inH |pi is also known in the literature

,
fore
r to
of

ads
ot

ct
es
.

set

to
es

at

r

ore

d
lso

nt
let

ire-
at
set
ic-
ast
-

f

a sequence of operationsop1, . . . ,opl such thato1 =
op1, o2 = opl , and∀q 0 � q � 1l, op2·q+1 = WRITE,

nd

or-

nt
lso

nt
ere

ow

rder
g

nd
ng

ad

y
the
ny
ast
f

l

d
d
e

f

as process order. The conditions FIFO of Writes
FIFO of Reads, Read Your Writes, and Reads Be
Writes can be seen as limitations of process orde
the corresponding operations. For example, FIFO
reads only requires preserving process order for re
Given this observation, the following theorem is n
surprising.

Theorem 2. Any history that is consistent with respe
to FIFO of Writes, FIFO of Reads, Read Your Writ
and Reads Before Writes is also PRAM consistent

Proof. We need to show that there is a serialization
such that in each serializationSpj , H |pj = Spj |pj ,
and all write operations of any other processpi are
ordered in the same order as inH |pi . Consider a given
serialization setS that is consistent with respect
FIFO of Writes, FIFO of Reads, Read Your Writ
and Reads Before Writes, any serializationSpj ∈ S,
and any processpi . By FIFO of writes, every two
write operations ofpi are ordered inSpj in the same
order as inH |pi . Thus, we only need to show th
every pair of operations bypj of which at least one
is a read are ordered inSpj according to their orde
in H |pj . However, this trivially holds forSpj due to
FIFO of Reads, Read Your Writes and Reads Bef
Writes. ✷
Theorem 3. Any history that is PRAM consistent an
is consistent with respect to Local Causality is a
causally consistent.

Proof. Let H be a history that is PRAM consiste
and consistent with respect to Local Causality, and
S be the serialization set that obeys all the requ
ments of PRAM and Local Causality. We claim th
S also obeys the requirements of the serialization
of causal consistency. Assume, by way of contrad
tion, that it does not. Thus, there must exist at le
one serializationSpi in S for which there are two op

erationso1 ando2 such thato1
∗−→ o2, buto2

Spi−→ o1.
By the PRAM guarantees,o1 ando2 are operations o
two different processespj and pk , such thatk �= j ,
k �= i, andj �= i. By the definition ofSpi , botho1 and

o2 are write operations. Given thato1
∗−→ o2, there is
.

2
op2·q = READ, op2·q reads the result ofop2·q−1, and
bothop2·q andop2·q+1 occur in the same process a
in that order. Thus, for each couple of writesop2·q and
op2·q+2, Local Causality guarantees that they are

dered in this order onSpi . By transitivity,o1
Spi−→ o2.

A contradiction. ✷
Theorem 4. Any history that is PRAM consiste
and is consistent with respect to Total Order is a
sequentially consistent.

Proof. Let H be a history that is PRAM consiste
and consistent with respect to Total Order. Thus, th
exists a serialization setSS of H that obeys both the
requirements of PRAM and Total Order. We we n
show how to construct a legal serializationS of H

such that for every processpi , H |pi = S|pi . Due to
Total Order, all the writes are ordered in the same o
in all serializations inSS. Thus, we start by creatin
a serializationS of all writes in H ordered in the
order they appear in all serializations. Next, we exte
S by adding the read operations in the followi
manner, performed iteratively for all processespi ∈
{p1, . . . , pn}: for each two write operationso1 ando2,
we add all read operations bypi (if any exist) that were
ordered betweeno1 ando2 in S0 and order them inS
betweeno1 ando2. Also, if there are already some re
operations by other processes betweeno1 ando2, we
place the reads ofpi immediately aftero1. In a similar
manner, we add toS all reads that are placed in an
Spi before the first write, and place them before
first write inS, and add all reads that are placed in a
Spi after the last write, and place them after the l
write in S. Note thatS now includes all operations o
H , and is thus a serialization ofH . Moreover, since al
the operations of each processpi are ordered inS in
the same relative order as inSpi , they are also ordere
in the same order as inH |pi . Finally, since each rea
by any processpi is placed inS between the sam
writes it was placed inSpi , and sinceSpi is legal, then
S is also legal. Thus,S obeys all the requirements o
sequential consistency, and hence,H is sequentially
consistent. ✷

R. Friedman et al. / Information Processing Letters 86 (2003) 169–176 175

3.3.1. Very weak conditions
When an applications obeys a known programming

an
on-
as
x-
ro-
em

ly,
pe-
ng-
, as
he
, it

e a
ss o
lve
ent

in-
O
g

ter,
w-
r-

ons

fit
a
er
our

in
ew
ites
et,
the
of
ed

e
the
rk,

or-

mance, we have created a single monolithic imple-
mentation for each chosen combination, rather than

b-
is
ted
n-
er-
of
for

one

e-
ble
re-

hy-
is

ker
e-

en
asic
that

bi-
h of

east

l
ting

t-
port
on-

sal
is-

n-
ss.

h-
98)

bil-
convention, it is often possible to run it on top of
implementation that provides a weak consistency c
dition, yet the result will be as if the application w
run with a strong condition. The most prominent e
ample of this is that executions of data-race-free p
grams on a release consistent distributed shared m
ory are in fact sequentially consistent [1]. Similar
by exploiting the semantics of the application and s
cific operations, it may be possible to obtain meani
ful correct behavior with weak ordering guarantees
proposed in [9]. The benefit of this is that since t
implementation only guarantees a weak condition
can be implemented more efficiently. Below we giv
couple of examples that demonstrate the usefulne
the basic conditions, even in combinations that invo
only a few of them, and perhaps even provide differ
guarantees to each serialization.

Consider an application in which there is only a s
gle writer. In this case, it is enough to require FIF
of Writes, and the result will be as if Total Orderin
was used. In particular, when there is a single wri
PRAM is equivalent to sequential consistency. Ho
ever, the equivalence of FIFO of Writes to Total O
dering might be useful even on weaker combinati
than PRAM.

Another interesting application that can bene
from a condition that is weaker than PRAM is
bulletin board. Here, a client is only interested in oth
client’s postings, and thus does not need Read Y
Writes.

As a final example, consider an application
which there are several simple clients and a f
supervisor clients. Each simple client reads and wr
to different objects than the other simple clients. Y
supervisors can read all objects. In this case,
serializations of simple clients should obey FIFO
Writes and Read Your Writes, while supervisors ne
FIFO of Reads.

4. Discussion

In our work on the CASCADE project, we hav
implemented several interesting combinations of
basic consistency conditions specified in this wo
as detailed in [6]. However, for the sake of perf
-

f

having a truly modular implementation. The main o
stacle in providing such a modular implementation
that some of the basic conditions can be implemen
much more efficiently when it is known that other co
ditions are also provided. The challenge is to gen
ate automatic optimizations for a given composition
conditions, based on a set of implementations, one
each condition. Such optimization can either be d
in compile time, or ideally, on-the-fly.

Another open problem is to generalize the fram
work to more generic operation types, and to be a
to capture other consistency conditions such as
lease consistency [8], entry consistency [12], and
brid consistency [4]. Also, an interesting question
whether there exists a basic condition, which is wea
than linearizability, which can be combined with s
quential consistency to yield linearizability. An ev
grander challenge is to arrive at a complete set of b
consistency conditions. That is, be able to show
any consistency condition can be provided as a com
nation of a subset of these conditions, and that eac
these conditions is necessary for implementing at l
one of the currently known consistency conditions.

Acknowledgements

We would like to thank Danny Dolev, Miche
Raynal, and the anonymous referees for interes
discussions and helpful comments.

References

[1] S. Adve and M. Hill, Sufficient conditions for implemen
ing the data-race-free-1 memory model, Technical Re
1107, Computer Science Department, University of Wisc
sin, Wisconsin-Madison, September 1992.

[2] M. Ahamad, G. Neiger, P. Kohli, J. Burns, P. Hutto, Cau
memory: Definitions, implementation, and programming, D
tributed Comput. 9 (1) (1993) 37–49.

[3] H. Attiya, R. Friedman, Limitations of fast consistency co
ditions for distributed shared memories, Inform. Proce
Lett. 57 (5) (1995) 243–248.

[4] H. Attiya, R. Friedman, A correctness condition for hig
performance multiprocessors, SIAM J. Comput. 27 (2) (19
1637–1670.

[5] H. Attiya, J. Welch, Sequential consistency versus lineariza
ity, ACM Trans. Comput. Systems 12 (2) (1994) 91–122.

176 R. Friedman et al. / Information Processing Letters 86 (2003) 169–176

[6] G. Chockler, D. Dolev, R. Friedman, R. Vitenberg, Implement-
ing a caching service for distributed CORBA objects, in: Proc.

is-

di-
a-

ber

red
ice

n:
nn.
0,

[10] L. Lamport, How to make a multiprocessor computer that
correctly executes multiprocess programs, IEEE Trans. Com-

ory,
art-

for
. of

.M.
tent
on

tin,
Middleware 2000: IFIP/ACM International Conference on D
tributed Systems Platforms, April 2000, pp. 1–23.

[7] G. Chockler, R. Friedman, R. Vitenberg, Consistency con
tions for a CORBA caching service, in: Proc. 14th Intern
tional Conference on Distributed Computing 2000, Octo
2000, pp. 374–388.

[8] P. Keleher, Lazy release consistency for distributed sha
memory, PhD thesis, Department of Computer Science, R
University, December 1994.

[9] R. Ladin, B. Liskov, L. Shrira, S. Ghemawat, Lazy replicatio
Exploiting the semantics of distributed services, in: 9th A
Symp. Principles of Distributed Computing, August 199
pp. 43–58.
put. C-28 (9) (1979) 690–691.
[11] R. Lipton, J. Sandberg, PRAM: A scalable shared mem

Technical Report CS-TR-180-88, Computer Science Dep
ment, Princeton University, September 1988.

[12] N. Neves, M. Castro, P. Guedes, A checkpoint protocol
an entry consistent shared memory system, in: ACM Proc
Distributed Systems, 1994, pp. 121–129.

[13] D.B. Terry, A.J. Demers, K. Petersen, M.J. Spreitzer, M
Theimer, B.B. Welsh, Session guarantees for weakly consis
replicated data, in: Proceedings of the IEEE Conference
Parallel and Distributed Information Systems (PDIS), Aus
TX, September 1994, pp. 140–149.

