C/Ii]'H Available at

= www.ComputerScienceWeb.com Information
mﬂ POWERED BY SCIENCE @DIRECT“ Processing
Letters
ELSEVIER Information Processing Letters 86 (2003) 169-176

www.elsevier.com/locatefipl

On the composability of consistency conditions

Roy Friedmart*, Roman Vitenberg Gregory Chocklet

@ Computer Science Department, Technion — The Israel Institute of Technology, Haifa 32000, Israel
b Institute of Computer Science, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel

Received 4 March 2002; received in revised form 25 November 2002
Communicated by F.Y.L. Chin

Abstract

This paper presents a formal framework, which is based on the notiosesfadization setthat enables to compose a set of
consistency conditions into a more restrictive one. To exemplify the utility of this framework, a list of very basic consistency
conditions is identified, and it is shown that various compositions of the basic conditions yield some of the most commonly
used consistency conditions, suchsaguential consistencgausal memoryand Pipelined RAM. The paper also lists several
applications that can benefit from even weaker semantics than Pipelined RAM that can be expressed as a composition of a smal
subset of the basic conditions.

0 2003 Elsevier Science B.V. All rights reserved.

Keywords:Concurrency; Distributed computing; Distributed systems; Formal semantics

1. Introduction care is not taken, these replicas might end up with
uncorrelated data, rendering them useless as a mean
Distributed shared objects is a common technigue for communication. Thus, it is common to restrict
for information sharing in distributed systems. Thatis, the ways the content of replicas might diverge. Such
processes communicate by updating and querying therestrictions are known amnsistency condition's
same objects. For efficiency and availability purposes, ~ As been shown in several research works, there is
most implementations of distributed shared objects, an inherent tradeoff between the level of consistency
and other forms of distributed shared memory, employ Of shared objects and the communication overhead and
replication and caching. However, once an object is access latency [4,5]. Moreover, conditions that pro-
replicated and/or cached, multiple copies of the same Vide very week guarantees, are too weak to solve some

object may exist in the system at the same time. If fundamental problemsin concurrentprogramming [3].
This has inspired the definition of a large number of

Y This work was supported in part by the Israeli Ministry of

Science grant number 1230-1-98. 1 If there is only a single copy of each object in the system and
* Corresponding author. no caching is used, then this copy is always consistent with itself.
E-mail addressesioy@cs.technion.ac.il (R. Friedman), Yet, there might be implementation optimizations that make it look
romanv@cs.technion.ac.il (R. Vitenberg), grishac@cs.huji.ac.il inconsistent to applications that are using the object. This special
(G. Chockler). case is covered by the general framework in this paper.

0020-0190/03/$ — see front mattér 2003 Elsevier Science B.V. All rights reserved.
d0i:10.1016/S0020-0190(02)00498-2

170 R. Friedman et al. / Information Processing Letters 86 (2003) 169-176

different consistency conditions and their correspond- given implementation obeys the relevant basic con-
ing implementations, each trying to tackle the tradeoff ditions rather than proving directly that it obeys the
slightly differently. Of course, without this tradeoff it corresponding high-level condition. In case an imple-
would have been possible to identify one consistency mentation is incorrect, it may be possible to identify
condition that is clearly better than all others. the errors when considering the simpler conditions in
In this work, we try to present a more generic ap- a more effective and accurate way than when looking
proach to consistency conditions, by looking at the directly at the composed condition. Second, we hope
guestion of their composability. That is, we start by that our work can be used to devise flexible, com-
presenting a formal framework that enables compos- posable, implementations of consistency conditions.
ing a collection of consistency condition into a more In such an ideal system, each basic condition will be
restrictive condition. We then identify a list of six very implemented as a layer of code. When a given applica-
basic consistency conditions, and prove that various tion needs a specific high-level consistency conditions,
compositions of these basic conditions yield several it could simply pick the layers that implement the col-
well-known consistency conditions, such as sequential lection of basic conditions from which the high-level
consistency [10], causal memory [2], and Pipelined condition is composed of.
RAM (PRAM) [11]. Moreover, we list several applica- The basic consistency conditions that we list are in-
tions that can benefit from weaker consistency seman-spired by the work on the Bayou project [13]. How-
tics than PRAM that are easily expressed as a compo-€ver, in Bayou the conditions were specified in an
sition of a small set of the basic conditions. informal, operational and implementation dependent
We would like to emphasize that sequential consis- way, while our definitions are formal and implemen-
tency, causal memory, and Pipelined RAM were cho- tation independent. Moreover, the work on Bayou did
sen since they are well known and widely used. They not address the issues of composability. Another dif-
also represent three interesting points in the expres-ference between Bayou and our work is the context
siveness vs. performance tradeoff. That is, sequential Of each work: Bayou is mainly concerned with dis-
consistency provides a logical illusion of executing the tributed databases while we are interested in distrib-
operations on a truly non-replicated shared memory uted shared objects. In distributed databases often the
(or objects). Yet, its implementations require synchro- requirement is to ensure ordering semantics between
nization which hurts its performance and scalability. complete transactions, where each transaction can be
Pipelined RAM is the weakest consistency condition composed of several operations and may even ac-
that was offered for distributed shared memory and is c€ss multiple objects. In shared objects and distributed
still claimed to be useful for a reasonably large set of shared memory each operation only accesses a single
applications. Yet, for many applications it is too weak. ©object, and the ordering guarantees should be main-

Causal ordering is somewhere in the middle with re- tained between individual operations.
spect to both concerns. Our work was motivated from a CORBA caching

From a theoretical point of view, looking at some service, called CASCADE, that we have implemented
basic consistency conditions and composing them into [6]- However, for the sake of generality, the model and
higher level ones presents an important insight into the ¢laims in this paper refer to distributed shared memory
differences between the high level conditions. Also, in general. Also, in this paper we do not discuss any
for a given set ok consistency conditions, there canbe implementation. The implementation of some useful
2" possible compositions. The composability frame- comb!natiqns of the basic consistency conditions are
work gives us access to all of these combinations, described in [7].
without having to formally define each one of them
independently. 2. Definitionsand conventions

From a practical point of view, this has two main
advantages: First, it can simplify proving that a given 2.1. Basic definitions
implementation of a high level condition is correct.

Specifically, the basic conditions we propose are very In this paper, we are only interested in the opera-
simple. Thus, it is likely to be easier to show that a tions invoked by client processes that may access the

R. Friedman et al. / Information Processing Letters 86 (2003) 169-176

distributed shared memory concurrently. The exact de-
tails of how it is implemented, whether it is replicated
or not, and how the replication mechanism works are
outside the scope of this work.

Formally, consider a system consisting of a col-
lection of client processer simplyprocessesnum-
beredps, ..., p,, cOmmunicating by invokingpera-
tions on a collection ofobjects Each operatiop is
composed of an invocation eveint/(op) and a corre-
sponding response evergspop), both occurring at
the same process, denotedryop). Moreover, each
operationop is restricted to a single object, denoted
by obj(op); we say thabp accesses olgp). The in-
vocation event may take an input parametai(op)

171

same as the value written by the last write operation
that accesses the same object befare H .
Given a sequence of operations, or a sequential

history, S, we denoter1 S, 02 whenoj precede®;

in S. A history H induces a partial order,i>, on

. . H|pi
the operations that appear hh: o1 N 02 if 01 ﬂ

o2 for some H|p;. Moreover, we slightly abuse the
notations and for a given sequential histddyand a
given serializatiors we denote byH = S the fact that

H and S include the same set of operations, and all
operations are ordered the samédrand inS.

2.2. Composability framework

and the response event may return an output parame-

ter oval(op), both defined over some allowed range of
values). Here we only consider read and write op-
erations; for read operations the input value is always
a special valuel, while for write operations the out-
put value is alwaysl. For a given read operation
we say that- returnsv (or readsv) if oval(r) = v.
Similarly, we say that a write operatian writes v if
ival(w) = v.

We define ahistoryto be a sequence of invocation
and response events.well formed historys a history
in which for each invocation eveiv(op) there is a
corresponding response evamspop). For the rest
of this paper, we will assume that all histories are
well formed. Asequential historys a history in which
each invocation event is immediately followed by the
matching response event. For a given histéryand
processp;, we denote byH |p; the restriction ofH
to events of procesg;, H|w the restriction ofH to
write operations, and/|p; + w the restriction ofH
to events of procesg; and events of write operations
by any process. A history that only includes events
of a single process is callddcal history, clearly, for
any historyH, H|p; is a local history. In this work,
we assume that for any historf and procesy;,
H|p; is sequential. This corresponds to a sequential
execution model in which a process is not allowed to
issue a new operation before a previous one returns.
A serialization Sof a historyH is a sequential history
containing all the operations &f .

Legalityis a central concept in consistency condi-
tions. We define a sequential histoky to belegal if
the value returned by each read operatiam H is the

We define econsistency conditiofor simply,con-
sistency as a set of restrictions on allowed histories.
We say that consisteneyis strongerthan consistency
B if the set of allowed histories unde¥ is contained
in the set of histories allowed undstr.

Note that in order for shared objects to be a mean-
ingful tool for communication between processes,
every write operation by any process must be seen by
all other processes. This is captured by the following

property:

Eventual Propagation. For every procesy; and
history H, there exists a legal serializatia$y, of
H|p; +w.

This requirement essentially expresses liveness of
update propagation: For a given history and a given
write operation in this history, if some process invokes
an infinite number of queries, it will eventually see the
result of this write. We therefore assume that Eventual
Propagation holds for all histories considered in the
rest of this paper. Fig. 1 gives a simple example of
a history H with two processeyg; and p> and two
objectsx and y. Each of the processes issues one
read and one write operation. Fig. 1 also presents legal
serializationsS1 andS2 of H|p1 + w andH|p2 + w,
respectively.

Note that traditional definitions of strong consis-
tency conditions, such as sequential consistency, typi-
cally require the existence of some special legal serial-
ization of the history. This serialization represents the
logical order by which all processes view the opera-
tions. On the other hand, definitions of weaker condi-

172
H Sl)
WIx I Wi+ W2(y,1)—
W2(y,I)+ RI(y.0)+— R2(x,0)--
RI(y,0)— W2(y.D—— WI(x,1)—
R2(x,0)

Fig. 1. Example of a history and its legal serializations.

tions, such as PRAM, only require the existence of one
special serialization for each process. In other words,
such definitions allow each process to view the opera-
tions in a differentlogical order. In order to relate these
definitions in a single framework, we introduce the fol-
lowing definition:

Definition 1. A serialization set of is a set of legal
serializations ofHf | p; + w one for each procegs .

Due to Eventual Propagation, at least one serializa-
tion set exists for a given history. In the example pre-
sented in Fig. 1{S1, S2} is a serialization set off.

We then define that a history preserves a consis-
tency condition by requiring the existence of a seri-
alization set that obeys certain ordering restrictions.
Moreover, as described in Section 3.3.1, some appli-
cations can do with very weak consistency conditions,
in which the view of each process may be different
in a very fundamental way. This leads us to define at
least some of the consistency conditions by requiring a
serialization set in which different serializations must
obey different restrictions.

Formally, we define consistency conditions in the
following way. For a given consistency conditiof,

a given historyH, a serialization sef of H, and a
serializationS,, € S, we define what the conditions
that S,, needs to obey in order tpreserveX are.
We then say that a serialization set= {S),} globally
preservesX if it preservesX for all the historiesH | p;.
For a given historyH, a serialization sef = {S),}

R. Friedman et al. / Information Processing Letters 86 (2003) 169-176

A obeys a condition sefor a single consistency
condition) X is every history generated by is
consistent with respect t8.

3. Consistency conditions
3.1. Basic consistency conditions

We now present a set of elementary conditions that
can be used as basic building blocks for constructing
more composed consistency guarantees. While this set
is in no sense complete and it can be extended in dif-
ferent ways, it proves a good example of the compos-
ability approach: By combining the basic conditions
in this set we can express both widely known consis-
tency conditions of varying strength and non-standard
conditions that are shown to be useful for applications.

Read Your Writes. For a given historyH and a

processp;, a serialization setS = {S,,} preserves

Read Your Writes for the local histor#f | p; if for

every two operation®1 and oz in H|p; such that
H|p; . .

01 = WRITE, 02 = READ, and o; ﬂ> 02, implies

Spi
01 —> 02.

FIFO of Reads. For a given historyH and a process
pi, & serialization se = {S,;} preservesIFO of
Reads for the local histonH |p; if for every two
operationso; and oz in H|p; such thato; = READ,

H|p; . . Sp;
02 = READ, ando1 — o2, implieso1 — o02.
FIFO of Writes. For a given history?H and a process
pi, & serialization se = {S,;} preservesIFO of

Writes for the local historyH | p; if for every two
operations1 andoy in H|p; such thato; = WRITE,

H]pi Sy
02 = WRITE, ando1 — 0y, holds¥j 01 —> 0.

Reads Before Writes. For a given historyH and a

globally preserves some set of consistency conditions processp;, a serialization setS = {Sp;} preserves

if S globally preserves each condition in this set.
Finally, we say that a historyd is consistent with
respect to a condition set (or a single condition)

if there exists a serialization s&tof H such thatS
globally preservex. We say that an implementation

Reads Before Writes for the local histo®|p; if

for every two operation®; and o2 in H|p; such
H|p; . .

thato1 = READ, 02 = WRITE, andog ﬂ> 02, implies

Spi
01 —> 09.

R. Friedman et al. / Information Processing Letters 86 (2003) 169-176

Local Causality.? For a given historyd and a proc-
essp;, a serialization sef = {S,,} preserved.ocal
Causality for the local histonH | p; if for every three
operationso1, o2 and oz such thato, and o3 are
in H|p;, 01 = WRITE, 02 = READ, 03 = WRITE, 02

. H|p; _
reads a result written by, and oz gl o3, implies

. Pj
Yj o1 —> o3.

As noticed in [13], Read Your Writes, FIFO of
Reads and Reads Before Writes only affect the local
histories for which they are provided. On the other
hand, Local Causality and FIFO of Writes contain
guarantees with respect to the local histories of other
processes.

Total Order. For a given historyH , a serialization set
S = {Sp,} globally preserve3otal Orderif for every
two serializationss,, andsS,; in S, Sy, |w =S, [w.

3.2. Examples of known consistency conditions

The following is a list of several important and well
known consistency conditions.

Sequential Consistency (SC) [10]. A history H is se-

guentially consistent if there exists a legal serialization
H|p; .
S of H such that for each procesgs, o1 Hipi 02 im-

. S|pi
plieso; — o2.

PRAM Consistency [11]. A history H is PRAM
consistent if there exists a serialization setsuch
that for every serializatios,, € S and operations;
and o in H|p; + w for which 01 5 05, implies

Sp;
01 —> 02.

Causal Consistency [2]. For the definition of causal
consistency we assume that no value is written more
than once to the same variable. Given a histéryan

. . H
operatiorp; directly precedes, (denoteth; —> 02)
. . H
if either oy — 02 or o1 = WRITE, 02 = READ, and

2 This is similar to the condition callediVrites Follow Reads
in [13].

173

02 reads a result written by1. Let % denote the

transitive closure of .
A history H is causally consistent if there exists a
serialization sef such that every serializatids), € S

respectsi>, i.e., if o1 andoy are two operations in

Sp.
H|p; + w andos N 02, theno; BN 02.
3.3. Examples of useful compositions

Any single condition that relates two events of
the same type is trivial by itself. For example, if
we only require FIFO of Reads, then naturally we
can always find legal serializations in which all reads
are ordered in FIFO order. This is because we have
not placed any requirements on writes, and therefore
we have the freedom to order the writes in the
serialization so all the reads are legal. This applies
similarly to FIFO of Writes, Local Causality and Total
Order. Thus, these guarantees become meaningful
only in combinations that contain several guarantees
of different types. The only guarantees that are not
trivial by themselves are Read Your Writes and Reads
Before Writes.

We now present several theorems that show how
some combinations of the basic consistency conditions
relate to each other and to other known consistency
conditions.

Theorem 1. Any history that is consistent with respect
to Total Order and Reads Before Writes is also
consistent with respect to Local Causality.

Proof. Assume, by way of contradiction, that there is
a history H, which is consistent with respect to Total
Order and Reads Before Writes, but is not consistent
with respect to Local Causality. Thus, there are three
operation®1 = WRITE, 02 = READ, ando3z = WRITE,
such thato; was issued byp;, 02 and oz issued by

Hlp;j
pj,» and oy reads the result ob;, and o 03,

yet there is a serialization sét of H that globally
preserves Total Order and Reads Before Writes in

. Sk .
which oz —> 031 for some procesg;. By assumption,
o Sp. Sp.
for the serializationS,; € S, 02 —% 03, ando; —>

N
02. However, sinces obeys Total Ordeik o1 & 03,
A contradiction. O

174 R. Friedman et al. / Information Processing Letters 86 (2003) 169-176

The order in which operations of some process a sequence of operationg,, ..., op such that; =
p; appear inH|p; is also known in the literature op;, 02 =o0p, andvg 0 < g < %l, 0pPp.44+1 = WRITE,
as process order The conditions FIFO of Writes, op,, = READ, op,,, reads the result obp,.,_;, and
FIFO of Reads, Read Your Writes, and Reads Before bothop,., andop,.,; occur in the same process and
Writes can be seen as limitations of process order to in that order. Thus, for each couple of wri@s,. , and
the corresponding operations. For example, FIFO of op, . ,, Local Causality guarantees that they are or-
reads only requires preserving process order for reads.

o e Sp;
Given this observation, the following theorem is not deéred in this order oss,, . By transitivity, o1 — o2.
surprising. A contradiction. O

Theorem 2. Any history that is consistent with respect Theorem 4. Any history that is PRAM consistent

to FIFO of Writes, FIFO of Reads, Read Your Writes 5 is consistent with respect to Total Order is also
and Reads Before Writes is also PRAM consistent. sequentially consistent.

Proof. We need to show that there is a serialization set
such that in each serializati$},,, H|p; = Sp;|p;, Proof. Let H be a history that is PRAM consistent

and all write operations of any other procgssare and consistent with respect to Total Order. Thus, there
ordered in the same order ashf{p;. Consider agiven exists a serialization seitS of H that obeys both the
serialization setS that is consistent with respect to requirements of PRAM and Total Order. We we now
FIFO of Writes, FIFO of Reads, Read Your Writes show how to construct a legal serializatiShof H
and Reads Before Writes, any serializati§f) € S, such that for every process, H|p; = S|p;. Due to
and any procesy;. By FIFO of writes, every two Total Order, all the writes are ordered in the same order
write operations ofp; are ordered ir§,; in the same in all serializations inSS. Thus, we start by creating
order as inH|p;. Thus, we only need to show that a serializationS of all writes in H ordered in the
every pair of operations by; of which at least one order they appear in all serializations. Next, we extend
is a read are ordered ifl,; according to their order § by adding the read operations in the following
in H|p;. However, this trivially holds foiS,, dueto manner, performed iteratively for all processese
FIFO of Reads, Read Your Writes and Reads Before {p,, ... p,}: for each two write operations; andoo,
Writes. O we add all read operations py (if any exist) that were
ordered between; ando2 in Sg and order them iry
Theorem 3. Any history that is PRAM consistent and betweerv; ando,. Also, if there are already some read
is consistent with respect to Local Causality is also operations by other processes betweemndoy, we
causally consistent. place the reads qf; immediately aftep. In a similar
manner, we add t§ all reads that are placed in any
Proof. Let H be a history that is PRAM consistent g pefore the first write, and place them before the
and consistent with respect to Local Causality, and let first write in S, and add all reads that are placed in any
S be the serialization set that obeys all the require- 5 after the last write, and place them after the last
ments of PRAM and Local Causality. We claim that yrite in §. Note thatS now includes all operations of
S also obeys the requirements of the serialization set iy and is thus a serialization &f. Moreover, since all
o_f causal _consistency. Assume, by way of_contradic- the operations of each processare ordered ir§ in
tion, that it does not. Thus, there must exist at least {he same relative order as$h,, they are also ordered
one serializatiors, in S for which there are two op- i, the same order as iH | p;. Finally, since each read

erationso; andoy such thay — oz, butoz —p> o1. by any procesy; is placed inS between the same
By the PRAM guarantees; ando; are operations of writes it was placed if§,;, and sinces,,, is legal, then
two different processep; and py, such thatk # j, S is also legal. ThusS§ obeys all the requirements of

k#i,andj #i. By the definition ofS,, bothos and sequential consistency, and henég,is sequentially
0, are write operations. Given that — oy, thereis consistent. O

R. Friedman et al. / Information Processing Letters 86 (2003) 169-176 175

3.3.1. Very weak conditions mance, we have created a single monolithic imple-
When an applications obeys a known programming mentation for each chosen combination, rather than
convention, it is often possible to run it on top of an having a truly modular implementation. The main ob-
implementation that provides a weak consistency con- stacle in providing such a modular implementation is
dition, yet the result will be as if the application was that some of the basic conditions can be implemented
run with a strong condition. The most prominent ex- much more efficiently when itis known that other con-
ample of this is that executions of data-race-free pro- ditions are also provided. The challenge is to gener-
grams on a release consistent distributed shared mem-ate automatic optimizations for a given composition of
ory are in fact sequentially consistent [1]. Similarly, conditions, based on a set of implementations, one for
by exploiting the semantics of the application and spe- each condition. Such optimization can either be done
cific operations, it may be possible to obtain meaning- in compile time, or ideally, on-the-fly.
ful correct behavior with weak ordering guarantees,as Another open problem is to generalize the frame-
proposed in [9]. The benefit of this is that since the work to more generic operation types, and to be able
implementation only guarantees a weak condition, it to capture other consistency conditions such as re-
can be implemented more efficiently. Below we give a lease consistency [8], entry consistency [12], and hy-
couple of examples that demonstrate the usefulness ofbrid consistency [4]. Also, an interesting question is

the basic conditions, even in combinations that involve
only a few of them, and perhaps even provide different
guarantees to each serialization.

Consider an application in which there is only a sin-
gle writer. In this case, it is enough to require FIFO
of Writes, and the result will be as if Total Ordering
was used. In particular, when there is a single writer,
PRAM is equivalent to sequential consistency. How-
ever, the equivalence of FIFO of Writes to Total Or-
dering might be useful even on weaker combinations
than PRAM.

Another interesting application that can benefit
from a condition that is weaker than PRAM is a
bulletin board. Here, a client is only interested in other
client’s postings, and thus does not need Read Your
Writes.

As a final example, consider an application in
which there are several simple clients and a few
supervisor clients. Each simple client reads and writes
to different objects than the other simple clients. Yet,
supervisors can read all objects. In this case, the
serializations of simple clients should obey FIFO of
Writes and Read Your Writes, while supervisors need
FIFO of Reads.

4, Discussion

In our work on the CASCADE project, we have
implemented several interesting combinations of the
basic consistency conditions specified in this work,
as detailed in [6]. However, for the sake of perfor-

whether there exists a basic condition, which is weaker
than linearizability, which can be combined with se-
guential consistency to yield linearizability. An even
grander challenge is to arrive at a complete set of basic
consistency conditions. That is, be able to show that
any consistency condition can be provided as a combi-
nation of a subset of these conditions, and that each of
these conditions is necessary for implementing at least
one of the currently known consistency conditions.

Acknowledgements

We would like to thank Danny Dolev, Michel
Raynal, and the anonymous referees for interesting
discussions and helpful comments.

References

[1] S. Adve and M. Hill, Sufficient conditions for implement-
ing the data-race-free-1 memory model, Technical Report
1107, Computer Science Department, University of Wiscon-
sin, Wisconsin-Madison, September 1992.

[2] M. Ahamad, G. Neiger, P. Kohli, J. Burns, P. Hutto, Causal
memory: Definitions, implementation, and programming, Dis-
tributed Comput. 9 (1) (1993) 37-49.

[3] H. Attiya, R. Friedman, Limitations of fast consistency con-
ditions for distributed shared memories, Inform. Process.
Lett. 57 (5) (1995) 243-248.

[4] H. Attiya, R. Friedman, A correctness condition for high-
performance multiprocessors, SIAM J. Comput. 27 (2) (1998)
1637-1670.

[5] H. Attiya, J. Welch, Sequential consistency versus linearizabil-
ity, ACM Trans. Comput. Systems 12 (2) (1994) 91-122.

176 R. Friedman et al. / Information Processing Letters 86 (2003) 169-176

[6] G. Chockler, D. Dolev, R. Friedman, R. Vitenberg, Implement- [10] L. Lamport, How to make a multiprocessor computer that

ing a caching service for distributed CORBA objects, in: Proc. correctly executes multiprocess programs, |IEEE Trans. Com-

Middleware 2000: IFIP/ACM International Conference on Dis- put. C-28 (9) (1979) 690-691.

tributed Systems Platforms, April 2000, pp. 1-23. [11] R. Lipton, J. Sandberg, PRAM: A scalable shared memory,
[7] G. Chockler, R. Friedman, R. Vitenberg, Consistency condi- Technical Report CS-TR-180-88, Computer Science Depart-

tions for a CORBA caching service, in: Proc. 14th Interna- ment, Princeton University, September 1988.

tional Conference on Distributed Computing 2000, October [12] N. Neves, M. Castro, P. Guedes, A checkpoint protocol for

2000, pp. 374-388. an entry consistent shared memory system, in: ACM Proc. of
[8] P. Keleher, Lazy release consistency for distributed shared Distributed Systems, 1994, pp. 121-129.

memory, PhD thesis, Department of Computer Science, Rice [13] D.B. Terry, A.J. Demers, K. Petersen, M.J. Spreitzer, M.M.

University, December 1994. Theimer, B.B. Welsh, Session guarantees for weakly consistent
[9] R. Ladin, B. Liskov, L. Shrira, S. Ghemawat, Lazy replication: replicated data, in: Proceedings of the IEEE Conference on

Exploiting the semantics of distributed services, in: 9th Ann. Parallel and Distributed Information Systems (PDIS), Austin,

Symp. Principles of Distributed Computing, August 1990, TX, September 1994, pp. 140-149.

pp. 43-58.

