
An Adaptive Totally Ordered Multicast Protocol
that Tolerates Partitions

�

G. V. Chockler N. Huleihel
D. Dolev

Institute of Computer Science, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
E-mail:

�
grishac,nabil,dolev � @cs.huji.ac.il,

http://www.cs.huji.ac.il/
���

grishac,
�
nabil,

�
dolev �

���	��
������

In this paper we present a novel algorithm that implements a totally
ordered multicast primitive for a Totally Ordered Group Commu-
nication Service (TO-GCS). TO-GCS is a powerful infrastructure
for building distributed fault-tolerant applications, such as totally
ordered broadcast, consistent object replication, distributed shared
memory, Computer Supported Cooperative Work (CSCW) appli-
cations and distributed monitoring and display applications.

Our algorithm is adaptive, i.e., it is able to dynamically alter
the message delivery order in response to changes in the transmis-
sion rates of the participating processes. This compensates for dif-
ferences among participant transmission rates and therefore mini-
mizes fluctuations in message delivery latency. Our algorithm is
thus useful for soft real-time environments where sharp fluctuations
in message delivery latency are not acceptable.

Our solution provides well-defined message ordering seman-
tics. These semantics are preserved even in the face of site and
communication link failures.

�����	
��������	��
������
A group communication service with a totally ordered multicast
primitive, Totally OrderedGroup Communication Service (TO-GCS),
is a powerful infrastructure for building distributed fault-tolerant
applications. Some of these are totally ordered broadcast [1, 8,
10, 14, 12], consistent object replication [1, 12], distributed shared
memory [8], Computer Supported Cooperative Work (CSCW) appli-
cations [18] and distributed monitoring and display applications [14].
Due to its importance for distributed computing, TO-GCS has in-
spired a great number of research projects in universities and re-
search institutions world-wide. Isis [3], Horus [20], Totem [2, 16],
Transis [7], Amoeba [11], RMP [22], Delta-4 [17] are only some
of the systems that support TO-GCS.

This work was supported by ARPA grant number 030-7310

In this paper we present a novel total ordering algorithm for
TO-GCS. Our algorithm is adaptive: It is able to dynamically alter
the message delivery order in response to changes in the transmis-
sion rates of the participating processes. This adaptation ability
compensates for differences among participant transmission rates
and thus minimizes fluctuations in message delivery latency. Many
soft real-time applications make certain assumptions about mes-
sage delivery latency, and therefore, sharp fluctuations in message
delivery latency can wreak havoc in these cases. Our algorithm is
thus useful for such applications.

Another important feature of our solution is that it provides
well-defined message ordering semantics. These semantics are re-
quired by existing TO-GCS based applications [1, 8, 12] and are
preserved in spite of both site and communication link failures.
They were first formulated within the framework of the Extended
Virtual Synchrony model [15] and elaborated in [8, 12, 21]. Further
discussion of our algorithm's features appears in Section 1.2.

�"!#� $%�����"& '�(*)+'-,.�	��
������
A group communication service (GCS) classically consists of two
main parts: a membership service and a set of multicast services.
The task of the membership service is to maintain a listing of the
currently active and connected processes and to deliver this infor-
mation to the application whenever the membership changes. The
output of the membership service is called a view. The multicast
services deliver messages to the current view members.

The GCS multicast service suite typically consists of a set of
primitives with different ordering/reliability guarantees. The most
important among these is the totally orderedmulticast service, which
guarantees to deliver messages to the current view members in a
consistent order. A GCS with a totally ordered multicast primi-
tive is called a Totally Ordered Group Communication Service(TO-
GCS).

In this paper we concentrate on implementing an efficient to-
tally ordered multicast service within the group communication
framework. We assume that the underlying communication layer is
represented by a basic view synchronous GCS that provides mem-
bership and FIFO multicast services. The minimal requirements of
the underlying GCS appear in Section 2.

The principal correctness requirements imposed by our service

1

are listed below. They are motivated by existing TO-GCS based
applications [1, 8, 12]:

� A logical timestamp is attached to every message delivered
by TO-GCS;

� The same timestamp is attached to a message at every pro-
cess that delivers that message. This timestamp is unique
system-wide and remains unique in face of network parti-
tions;

� Every process delivers messages in the order of their times-
tamps;

� The timestamp order complies with the global causal order
on messages [13], � , defined to be the reflexive transitive
closure of the following:

1. �����
�

if there exists a process � such that � was
sent at � before �

�
;

2. �����
�

if there exists a process � such that �
�

was
sent at � after � has been delivered at � .

Note that the above requirements imply that (1) any two mes-
sages are delivered in the same order at any process that delivers
both of them, and (2) the message delivery order complies with the
global causal order on messages.

In addition, the service implementation should satisfy the fol-
lowing liveness requirement:

� If a process � receives from the underlying communication
layer an infinite number of messages from every operational
and connected process, then � will eventually deliver ev-
ery message supplied to it by the underlying communication
layer or crash. (We further elaborate on TO-GCS liveness
requirements in Section 3.2).

Note that the above problem is weaker in several ways than
the well-known Atomic Broadcast (AB) problem found in the lit-
erature [10]. In particular, we do not require that each message
multicast by a correct process will eventually be delivered by all
correct processes; nor do we require that each message delivered
by a correct process will be eventually delivered by all correct pro-
cesses.

Our service is similar to the partitionable group communication
service specified by the VS-machine of [8]. However, there are a
few distinctions:

� Unlike [8], our service delivers application messages labeled
with timestamps. The use of timestamps is motivated by the
fact that TO-GCS with timestamps is useful for various TO-
GCS based applications, e.g., it is utilized by the Consistent
Object Replication Layer described in [12].

� The VS-machine of [8] provides safe indications, whereas
TO-GCS does not. However, semantics similar to those achi-
eved with safe indications can easily be achieved at the appli-
cation level using end-to-end acknowledgments. This tech-
nique was demonstrated in [12].

�"!�� $%���"
�������&
	 ' �
��"��' �
In this section we consider the main features of our total ordering
protocol and discuss related work.

�"!���!#�)�����"(��� � �"�	
��
������
Because a totally ordered multicast service is so useful, the effi-
ciency of its implementation has become an important issue. A
well-known technique for providing a totally ordered multicast de-
lays delivery of a received message until the process has: (a) de-
livered all received messages which precede the message in ques-
tion within the total order; and (b) learnt that every message that
could preceded it will never arrive. This results in high latency in
message delivery when not all the participant processes are uni-
formly active. Total ordering protocols which are based upon this
technique are called symmetric. Another approach implemented by
sequencer [3, 4, 11, 22] or token [16] based protocols uses extra
messages (ordering messages or token requests) and is therefore
less efficient under high loads [19].

The protocol presented in this paper is dynamically adaptive:
Messages are assigned a wide range of priorities which are adjusted
“on-the-fly” to reflect ongoing changes in process activities. Mes-
sages are then delivered in order of priority. The protocol testing
results (see Section 6) show that after a short adaptation period the
average message delivery latency incurred by our protocol is close
to that of the underlying communication layer. Furthermore, the
variance of the post-adaptation message delivery latency exhibited
by our protocol is extremely low.

By contrast, under the same load patterns the latency incurred
by traditional (non-adaptive) total ordering protocols is close to the
transmission rate of the slowest process in the group. Moreover,
these protocols exhibit sharp fluctuations in message delivery la-
tency. This makes the message delivery latency incurred by such
protocols much less predictable, causing problems for soft real-
time applications. Our protocol is thus a solution for these prob-
lems.

Some systems differentiate between only two process activity
levels. For example, [9] addresses the adaptivity issues by classify-
ing group members as active or passive according to whether they
have any messages to send or not; the right to multicast messages
is then evenly distributed among all currently active processes. In
the Hybrid protocol of [19], assignment of active or passive process
status is based upon the relation between the process' transmission
rate and the network delay: active processes run a symmetric pro-
tocol, while passive processes run a token-based one. Processes
dynamically switch between active and passive states. The obvi-
ous limitation of the approach exemplified by these two protocols
is that all the active (passive) processes are treated equally, while
in practice it is rare that all of the active (passive) processes are
uniformly active (passive).

In the ToTo protocol of [5] messagesare delayed until messages
are received from a majority of group members. ToTo achieves
good latency only when: (a) the currently active members of the
group form a majority, and (b) the processes that make up this ma-
jority broadcast their messages at approximately the same rates.

2

VS layer

TO-GCS

Applicat ion

A T O P

appl icat ion messages

mul t icast messages
FIFO ordered messages

and v iews

total ly ordered messages wi th
t imestamps and v iews

Figure 1: The TO-GCS System Components and Interfaces

�"! � ! � $����
�������"�"& '�� ' ("��
����-�
Additional implementation challenges are raised by the fact that
the service requirements stated in Section 1.1 should be satisfied
in environments where multiple concurrent network components
are allowed to coexist and where processes in each component are
treated as non-faulty. With many existing group communication
systems [3, 5, 11, 22] the following scenario is possible: Suppose
that two processes disconnect from each other, while some com-
mon non-delivered messages remain in their buffers. If these mes-
sages' order has not yet been negotiated, they may either be de-
livered in an inconsistent order or be discarded. Either way, the
service requirements are violated.

Special care is needed to prevent such situations from occur-
ring. Common practice [16] is to attach some ordering information
to each newly multicast message. This information should be suf-
ficient to allow each process to consistently order the message so
that the need to communicate with other processes is eliminated.

Things become more complicated if the message delivery flow
is allowed to be dynamically adaptive. This is because message
delivery order may be altered as a result of the adaptation deci-
sion. We must therefore be careful to preserve the message de-
livery semantics by guaranteeing the atomicity and uniformity of
the adaptation decision. This is a main challenge of incorporating
adaptation into a total ordering algorithm.

The technique presented in this paper allows various external
adaptation policies to be combined with the total ordering protocol.
The resulting multicast service combines two valuable features:
suitable performance for soft real-time applications and sound par-
titionable semantics.

�����	'����	� ������� (' �	
�
 ��� ' &
We assume an asynchronous distributed environment. Further, we
assume that processes can fail and restart, and that the network can
partition into several disjoint components which can re-merge later
on. The environment is equipped with a view-synchronous group
communication layer, called the VS (View-Synchronous) layer. This
layer guarantees reliable FIFO delivery of messages that have been
multicast within a group of connected and active processes. An-
other VS layer objective is to provide failure detection: Possible

changes in network connectivity and in failure status of the pro-
cesses are relayed via special membership change reports, called
views. The layer is called view synchronous because messages are
guaranteed to be delivered in the view in which they were origi-
nated. Our Adaptive Total Ordering Protocol (ATOP) is built on top
of the VS layer. The layer structure of the Totally Ordered Group
Communication Service (TO-GCS) is depicted in Figure 1.

��!#�����	'
VS �-' ���+�����"�	
�' ' �

For the rest of this paper, we denote the following: � is a totally or-
dered finite set of processes; � is a message alphabet; ���������������! ,
a totally ordered set of view identifiers with initial view identifier
��� ; "#��$�%'&)(*�,+�-	. , the set of pairs consisting of a view identi-
fier together with a set of processes; If "0/1"#��$�%'& , we write "�2 ��3
and "�2 &4$65 to denote the view identifier and set components of "
respectively.

We define the current view at a process � to be as follows: if
the VS layer has delivered any views at � , then the current view at
� is the last such view; otherwise, it is a pair consisting the distin-
guished initial view identifier �7� and the process universe � . We
say that a message � is sent (delivered) in a view " at � if � is sent
(delivered) at � when the current view at � is " .

The VS layer is required to satisfy the following requirements:

View Identifier Identity: Views with different process sets have
different identifiers.

Initial View Identifier Uniqueness: The identifier of any view de-
livered by the VS layer at any process differs from the initial
view identifier �8� .

Local View Identifier Monotony: Views are delivered in the view
identifier order at each process .

Self Inclusion: For any view " delivered by the VS layer at a pro-
cess � , �0/9"�2:&�$65 .

Message Integrity: For any message � delivered at a process � in
a view " , there is a preceding send event at some process ; .
Moreover, � is sent in " at ; .

No duplication: Every message delivered by the VS layer at a pro-
cess � is delivered only once at � .

3

Reliable FIFO Delivery: For any two messages � , �
�
, processes

� , ; , and a view " : If � is sent before �
�
in " and ; delivers

�
�
, then ; delivers � before �

�
.

�����	' ����� ��� � � ' ��� ,����
������
��!���� �"� ��' �-
���' ���
In addition to the message ordering properties outlined in Sec-
tion 1.1, we require that TO-GCS satisfies the following:

View Properties are similar to the first four guarantees provided
by the VS layer (see Section 2.1);

Basic Message Delivery Properties:

1. For every message delivered by TO-GCS to the appli-
cation there is a preceding send event. Furthermore,
this send event occurs in a view whose identifier is not
greater than that of the view in which the message is
delivered;

2. Each message is delivered in the same view at any pro-
cess at which the message is delivered;

3. The sender of a message is always a member of the
view in which the message is delivered.

��! � �:� ' �	' � �
We require of TO-GCS to satisfy the same liveness specifications
as those guaranteed by the VS layer. Since the liveness specifica-
tion of the VS layer is out of the scope of this paper (the interested
reader may refer to [8, 21]), we only require that for every pro-
cess � , ATOP at � preserves the liveness semantics provided by the
underlying VS layer. More precisely, we require the following:

1. Every application message sent through ATOP is eventually
transferred to the underlying VS layer unless a crash occurs;

2. If the VS layer delivers an infinite number of messages to
ATOP from every member of the current view, then ATOP
will eventually deliver every message that the VS layer has
passed to it, or crash;

3. If the VS layer informs ATOP about a new view " , then ATOP
will eventually deliver " or crash. Moreover, ATOP at � is
bound (unless it crashes) to eventually deliver every message
that the VS layer has transferred to it before " .

The first two properties together ensure that if all members of
the current view keep sending messages, then ATOP at a process �
preserves every liveness guarantee provided by the VS layer at net-
work stability periods. For example: if, during the network stability
periods, applications at all processes in the current stable compo-
nent send infinite number of messages and the VS layer guarantees
to deliver all messages sent through it (as required in [8]), then
TO-GCS also guarantees to deliver every application message.

Note that the requirement that every process in the current view
should issue an infinite number of messages may seem unrealistic.
We require it only for the sole purpose of simplifying the protocol

presentation. In the actual implementation, this precondition can
be enforced by ATOP itself: it can simply multicast special dummy
messages when its application becomes “silent” (see discussion in
Section 5).

The third property ensures that if the VS layer provides addi-
tional liveness guarantees at times of new view installations, then
ATOP will preserve them.

� ����' � �"�	
��:� ')� �"
�"&	� ���"'�������
 $ ���
����-��&	��� ��� $�
In this section we describe the Adaptive Total Ordering Protocol
(ATOP) which implements TO-GCS using the VS layer. The adap-
tive total ordering protocol at each process consists of two modules:
the module implementing an adaptive total ordering mechanism
(ATOM) and the module implementing an adaptation policy (AP).
Such decoupling allows various external adaptation algorithms to
be easily plugged into ATOP. The service structure is depicted in
Figure 2.

��!#�����	' � $
 �����"& '
The AP module is an implementation of an external adaptation pol-
icy. It thus keeps track of messages and views delivered by the
VS layer, in order to learn about the transmission rate distribution
among the current view members. From time to time (depending
on the adaptation policy implemented) AP at � delivers a distribu-
tion, 3 �7& 5 , to the ATOM module. A distribution is defined to be
a pair consisting of: the distribution identifier, 3 � &!5 2:��3 , taken out
of a totally ordered set of distribution identifiers ���,������� 3#�! with
an initial distribution identifier 3 � ; and a vector, called the weights
vector and denoted 3 �7& 5 2:% , with an entry for each ;)/ � such that�����

. 3 �7&!5 2 %�� ;�� (�� .Let " be the current view at a process � . We require that the
following be satisfied by every distribution 3 �7&!5 delivered by AP at
� in " :

� for each ;,/ "�2 &�$�5 , 3 �7&!5 2 %�� ;����(� , and for each ;!�/ "�2 &�$�5 ,
3 �7& 5 2:%"� ;�� (#� ;

� Let 3 �7&!5 � be a distribution delivered by $ � at ; in " . If
3 �7& 5 � 2 ��3)(3 �7&!5 2 �83 , then 3 �7&!5 � 2 % (3 �7&!5 2 % . This means that
every distribution delivered at any process in the same view
has a unique identifier;

� 3 �7& 5 2:��3%�(3#� .
��!��
 ' ��� &
"''� ��� ' �����&
!(������
)+����
������"�	
������	�
The ATOM module controls the message ordering using two dis-
tributions: the first one, called the sending distribution, is used
to tag each newly multicast message; and the second one, called
the ordering distribution is used to order incoming messages. In
Section 4.3 we describe in detail how these distributions are main-
tained.

In addition, ATOM at each process has a copy of a pre-defined
pseudo-random number generator) . This generator along with the
current ordering distribution's weights vector fix a deterministic se-
quence of process identifiers. Messages tagged with a distribution

4

distributions

ATOP

totally ordered messages
with timestamps and views

application
messages

ATOM

multicast
messages

FIFO ordered messages
and views

AP

Figure 2: The ATOP Implementation

3 �7&!5 are delivered when the current ordering distribution is equal to
3 �7&!5 and ordered by the sequence generated by) and 3 �7&!5 2 % .

This is illustrated by the following example: Let processes � , ;
and � be members of the current view. Assume that the sequence
produced by) and the current ordering distribution's weight vector
starts with � , ; , � , ; , � , � , � , � , 2�2�2 . (Note that in this sequence, �
apparently has a larger weight than �).

According to this sequence the first slot in the total order for
the current view should be reserved for � 's message. � 's turn will
be skipped only if the next pending � 's messages is tagged with a
different distribution; or if there are no more undelivered messages
sent by � and there is a new view delivered by the VS layer. Like-
wise, the second slot in the total order should be reserved for ; 's
message, the third slot again for � 's message, and so on. Thus, for
each slot, the protocol either waits for a message from the appro-
priate process or guarantees that no such message can be delivered
in this slot, in which case it is skipped.

A detailed desctiption of the totally ordered delivery algotrithm
is given in the next section.

��! � ����' � ���)

 �����"& '
The responsibilities of the ATOM module are as follows:

� To associate application messages with distributions;

� To guarantee that the delivery order of messages is deter-
mined by the distributions associated with them;

� To preserve the semantics provided by the underlying VS

layer (see Section 2.1) in all aspects concerned with view
delivery, the relative order of messages and views, and the
reliable FIFO order within each view. This facilitates the
achievement of the View and Basic Message Delivery prop-
erties of TO-GCS (outlined in Section 3);

� To extend the VS layer's FIFO delivery order within each view
to the total delivery order in that view, so that the ordering
semantics of Section 1.1 are satisfied.

ATOM associates distributions with messages by giving each
newly multicast message a tag consisting of the maximal identifier

among all distributions known to this instance of ATOM. The AP
modules at participating processes must therefore make sure that
the distribution with the maximal identifier corresponds to the most
recent process transmission rate distribution. The adaptation policy
described in Section 6 achieves this by allowing the AP module at
only a single process (within the current view) to inject new distri-
butions. This process is chosen deterministically from among the
current view members. Other possible ways to implement the AP
module are discussed in Section 7.

Within each view, message delivery order is determined by the
distribution with the minimal identifier among all distributions at-
tached to this view's yet-undelivered messages. This distribution is
called the ordering distribution.

ATOM guarantees that the next message to be delivered is tag-
ged with the current ordering distribution identifier. Since the AP
module guarantees that every distribution has a unique identifier
within each view (see Section 4.1), this means that the delivery or-
der of each message is determined by the same distribution at any
process that delivers this message.

Thus, within each view, every message is delivered in the same
order at all processes that deliver this message (even at those pro-
cesses that may become disconnected). Furthermore, since views
are delivered in the same order at every process and each message
is always delivered in the same view, ATOM guarantees the global
total delivery order of messages.

The message timestamp assigned by ATOM is thus a triple con-
sisting of the identifier of the view in which the message is de-
livered, the identifier of the current ordering distribution and the
sequence number of the message within the current ordering dis-
tribution. We can easily see that the timestamp assigned in such a
way satisfies the TO-GCS ordering requirements (see Section 1.1):

1. The timestamp is globally unique because: (1) the VS layer
View Identifier Identity property guarantees that each view
has a unique identifier, and (2) every distribution has a unique
identifier within each view;

2. Each message has the same timestamp at every process that
delivers this message because: (1) each such process delivers
the message in the same view; (2) within each view, the mes-
sage is assigned the distribution identifier when it is initially

5

sent; and (3) within each view, messages which are stamped
with the same distribution identifier, are delivered in the same
order;

3. Messages are delivered in the order of their timestamps be-
cause: (1) the VS layer Local View Identifier Monotony prop-
erty ensures that views are delivered in the order of their
identifiers, and (2) the identifier of the current ordering dis-
tribution increases monotonically within each view;

4. Each message �
�
sent by � after the delivery of another mes-

sage � cannot be delivered before � at � . Therefore, when
�
�

is delivered it is given a timestamp greater than that of
� . Since ATOM preserves the VS layer's FIFO delivery or-
der, thus the timestamp order satisfies causality.

Finally, to satisfy the TO-GCS liveness requirements, ATOM
should not arbitrarily deliver any new views, nor should it arbitrar-
ily change the current ordering distribution: instead, ATOM may
deliver a new view only after it has validated that no more new
messages belonging to the last view delivered to the application
will ever arrive, and it may change the current ordering distribution
only after it validates that no more messages tagged with the current
ordering distribution will ever be received in the current view.

If this is not observed, then the following situation is liable to
arise: suppose that a message � belonging to a view " were to ar-
rive after a newer view had been delivered to the application. In
this situation, correctness can only be preserved if we discard � .
This, however, violates the liveness requirements. A similar situa-
tion will occur if a message tagged with some distribution identi-
fier arrives after the current ordering distribution has been reset to
a newer value.

We utilize the VS layer's Message Integrity property in order
to tell that no more messages will be delivered by the VS layer in
some view. This property implies that after the VS layer delivers a
view " , it will not deliver any message sent in any view delivered
before " in the future.

We make use of the VS layer's Message Integrity and Reliable
FIFO delivery properties in order to verify that no more messages
tagged with some distribution identifier 3 will be delivered in the
current view. These properties imply that: if for each member of
the current view the VS layer has delivered either (1) some message
tagged with a distribution identifier greater than 3 or (2) a new view,
then the VS layer will never deliver any message stamped with 3
within the current view.

A detailed description of the ATOM module algorithm is given
below.

��' �	�"����

 ' ����&
 ' �
The ATOM module at a process � learns about new distributions
either directly from � 's AP or from messages sent by ATOMs at
other processes.

Let " be the current view at � . We define the sending distribu-
tion at � to be the distribution with the maximal identifier among
distributions received at � in " , if any, otherwise it is a distribution
3 �7&!5�� , called the default distribution for " , such that 3 �7&!5���2:��3 (3 �

and 3 �7& 5�� 2 %�� ;�� (� ��� " � for each ;0/ "�2 &�$�5 , and 3 � &!5���2:%"� ;�� (��
otherwise.

The following attributes are attached by the ATOM module at a
process � to each newly multicast application message:

� sender: the � 's identifier;

� dist id: the identifier of the current sending distribution at � ;

� seqno: the sequence number of this message within the cur-
rent sending distribution at � .

The first message to be tagged with a distribution's identifier
will also bear the weights vector component of this distribution.
(This is in addition to the above mentioned values.)

� ������,
 ' ��� &
"' "���	�+��'�
)+' & �:� '�� �
ATOM buffers messagesand views delivered by the VS layer. Views
are stored in the set � $�� 3 ������)��$6% & . Messages delivered by the
VS layer in a view " are stored in the set � $�� 3 ���� � &�� & � "�2:��3 � .

Views delivered by ATOM are taken from the � $�� 3 ������)��$6% &
set. The next view chosen for delivery is the view with the min-
imal identifier among the views currently in the � $�� 3 ������ �8$6%'&
set. Delivered views are deleted from the � $�� 3 ������ �8$6%'& set. Ob-
viously, since the VS layer guarantees to deliver views in the order
of their identifiers, the same is true for ATOM as well.

If " is the last view delivered by ATOM to the applica-
tion, then the next message to be delivered is taken from the
� $�� 3 �����	� &�� & � "�2:��3 � set. ATOM suspends delivery of new views
as well as of messages sent in these views until both conditions
shown in Figure 3 are true.

1. � $�� 3 �������)��$�%'& �(�� ;

2. � $�� 3 �����	� &�� & � "�2:��3 � (�� ;

Figure 3: The Conditions for the New View Delivery

Since the VS layer guarantees that each message � is delivered
in the same view at every process that delivers � , then there exists
a view identifier � such that � /9� $�� 3 �����	� &�� & � � � at any process
that received � from the VS layer. Thus each ATOM module that
delivers � to the application, delivers � in the same view.

 ' � ��&
 ')+'�& �:� '�� ��
 ��
������ ��+��'�

Let �	� � be an enumeration of process identifiers in � . Let %
be a weights vector as defined in Section 4.1 and)�� be a pseudo-
random number generator which produces Num � �! with probabil-
ity %�� ��� on each invocation. We denote a pseudo-random number
obtained on the � th invocation of)�� by)�� ���7 , � �#� .

The ATOM module at each process � maintains the following
data structures:

� ordDist holds the current ordering distribution. It is initial-
ized to be the default distribution for ��� � ���� ;

6

� � $�� 5 � ; � is the total number of messages sent by ; which have
been ordered by � ��3 � �7&!5 . Initially, � $�� 5 � ; � is set to be � for
each ;)/9� .

Clearly, the sum of � $�� 5 � ;�� for each ; / � holds the total
number of messages that have been ordered by � ��3 � � &!5 so

far. We define 5��#5�� �	� �43#$ ��$!3

���
(����� . � $�� 5 � ; � .

� TS is a timestamp attached to every message delivered to the
application. At any state of the protocol ��� is defined to be
a triple consisting of the current view identifier, � ��3 � �7& 5 2:��3
and 5�� 5�� ��� ��3#$ ��$ 3 variables. The order on timestamps is
lexicographic;

� G is an instance of a pseudo-random number generator
known by all processes in � . Initially,) is set to be
)���������������� �! #" � and is initialized to some predefined seed
agreed upon by all processes in � .

Let " be the view which was most recently delivered by ATOM
to an application at a process � , if any, or ���7��� �� otherwise. We
first consider how � ��3 � �7& 5 is maintained. � ��3 � �7&!5 is initially set
to be the default distribution for ���7�#���� . Whenever ATOM deliv-
ers a new view to the application � ��3 � �7&!5 is set to be the default
distribution for this view. Within each view � ��3 � � &!5 is reassigned
a new distribution when all the conditions depicted in Figure 4 are
true.

1. � $�� 3 ���� � & �	& �:"�2 ��3 � does not contain any message
tagged with � ��3 � �7&!5 2 �83 ;

2. There is some message � /*� $�� 3 ����	� &��	& � "�2 �83 �
such that � 2 3 � &!5 ��3%$&� ��3 � �7& 5 2:��3 ;

3. For each ; / "�2 &4$65 , there is a message � sent
by ; such that � 2 3 � &!5 ��3 $ � �43 � �7&!5 2 ��3 , or
� $�� 3 ������)��$6% & �(�� .

Figure 4: The Conditions for Changing the Ordering Distribution

Whenever the value of � ��3 � � &!5 changes (as a result of either
a new view delivery or fulfillment of conditions in Figure 4) the
following steps are performed:

1. � ��3 � �7& 5 is assigned that distribution whose identifier is
minimal from among the identifiers of all distributions at-
tached to the messages currently in � $�� 3 ���� � & �	& �:"�2 ��3 � .
Note that because the VS layer guarantees the reliable
FIFO delivery within a view, there is always a message in
� $�� 3 ���� � &�� & � "�2:��3 � which contains the new distribution's
weights vector;

2. � $�� 5 � ; � is set to � for each ; /�� ;

3.) is set to be)�')()� �*������" � and is initialized to some seed
agreed upon by all members of " .

The ATOM module delivers a pair � �0�+��� on the next in-
vocation of its delivery procedure iff the conditions sketched in
Figure 5 are satisfied. Note that these conditions imply that (1)

the next message to be delivered (from among messages currently
in � $�� 3 �����	� &�� & � "�2:��3 �) is determined according to the weights
vector of the distribution in which this message was sent; and (2)
the message delivery order is consistent with the order of message
sending, i.e., the message delivery order preserves FIFO.

1. � / � $�� 3 ���� � &�� & �:"�2 ��3 � ;
2. � is tagged by � ��3 � �7&!5 2 ��3 ;

3. � is sent by a process ; such that) ')()���,������" � ��5��#5�� � �)$ � � "�$ ��$!3 (�	� � �7;6 ;
4. � 2 &�$!;��-� (� $�� 5 � ;�� .
Figure 5: The Conditions for the Delivery of � � �)���

Whenever a pair � �0�)��� is delivered to the application the
following steps are performed:

1. � is removed from � $�� 3 �����	� &�� & � "�2:��3 � ;
2. � $�� 5 � � 2 &4$�� 3#$ ��� is incremented;

If none of the conditions in Figures 3, 4 and 5 are satis-
fied, ATOM blocks unless the conditions in Figure 6 are true.
These conditions indicate that no more new messages stamped
with � ��3 � �7&!5 2 ��3 , which were sent by a process ; such that
)�')()���,������" � ��5��#5�� � �)$ � � "�$ ��$!3 (�	� �0�7;� in " , will ever be re-
ceived from the VS layer. We can therefore try to deliver another
message in � $�� 3 ���� � &�� & �:"�2 ��3 � labeled with � ��3 � �7& 5 2:��3 (if such
a message exists).

1. � $�� 3 �����	� &�� & � "�2:��3 � does not contain any message
� sent by a process ; such that)�')()���,������" � ��5��#5�� � �)$ � � "�$ ��$!3 (�	� � �7;6 ;

2. There is a message �
� / � $�� 3 ���� � &�� & � "�2:��3 �

sent by ; such that �
� 2 3 �7&!5 ��3.$/� ��3 � �7&!5 2 ��3 , or

� $�� 3 �������)��$�%'& �(�� ;

3. There is another message in � $�� 3 ���� � &�� & � "�2:��3 � la-
beled with � �43 � �7&!5 2 ��3 .

Figure 6: The Conditions for Skipping the Current Timestamp

In this case, ATOM increments � $�� 5 � ;�� , and thus skips a mes-
sage that could have been sent by a process ; and tagged by the cur-
rent values of � ��3 � � &!5 2:��3 and � $�� 5 � ;�� . This way other messages
in � $�� 3 ����	� &��	& � "�2 �83 � which are stamped with � ��3 � �7&!5 2 �83 and
have not yet been delivered, get a chance to be delivered in one of
the successive delivery attempts.

Finally, if all the conditions in Figures 3, 4, 5 and 6 are false,
ATOM blocks until the VS layer delivers either a new message or
a new view, which would in turn cause one of the aforementioned
conditions to become true.

0 1�'�(�32�� ���
��	' � � � $ $�'��	4 �"� ("�	��' ���	 ��"��
�' ' �
There are two important issues that were intentionally left out of
consideration in the ATOP protocol definition in the previous sec-

7

tion: They are flow control and failure detection. This simplifi-
cation allowed us to better concentrate on subtleties of achieving
adaptive total ordering in partitionable environments. However,
this inevitably weakened our performance claims.

For example, since changing the ordering distribution requires
a message tagged with a greater distribution identifier from each
member of the current view (see Figure 4), a single process (or a
group of processes) that has no application messages to send may
substantially slow down switching to the new ordering distribution.
In this case, an appropriate flow control mechanism will enforce
each such “silent” process to issue a dummy message tagged with a
new distribution identifier, thus speeding up the agreement.

Unfortunately, in distributed asynchronous systems with fail-
ures there are situations in which no flow control algorithm can
help much. In particular, the performance of ATOP depends in
great extent on how fast the underlying VS layer delivers messages
and how fast faulty processes are removed from the view. For ex-
ample, if the VS layer fails to guarantee timeliness of failure de-
tection, the ATOP protocol may be subject for significant delays
during network instability periods.

The above problems can be addressed by combining the adapta-
tion policy, failure detection and flow control mechanisms together
within the same module. For example, the failure detector can use
distributions produced by the AP module to guarantee that each
process either transmits messages in the rate corresponding to its
weight or is taken out of the current view.

Thus, for example, an instance of the failure detector at a pro-
cess � will take care of situations in which � has no application
messages to send by issuing special dummy messages in the rate
corresponding to the current � 's weight. Subsequently, if an in-
stance of the failure detector at ; fails to hear messages from � in
the rate which roughly corresponds to the current � 's weight it will
suspect � and initiate the view change. Note, that since the adap-
tation policy is based on application messages (and not on dummy
ones), this mechanism would not affect the adaptation decision.

�����	' � ��� $ ��("& '�(' �	
��
������ "��� $�'���4 �"� ("����' 1.' � �"&
��
In order to evaluate the performance of ATOP, we implemented a
simple adaptation policy. This is described in Section 6.1 below.
The resulting protocol was implemented over the Causal Multicast
Service (CMS) of the Transis GCS [7] which satisfies the VS layer
correctness specifications presented in Section 2.

��!�� �+� � �"�	
��
������ $���& ��� � � (& ' ('���
��
������
In the adaptation policy we implemented, only the AP module at
a single process deterministically chosen among the current view
members, called a book-keeper, has the right to inject new distribu-
tions. The book-keeper's algorithm is as follows.

Let " be the current book-keeper's view. The book-keeper
maintains a sliding window of messages delivered by the VS layer
in " . The size of the window is ��� � "�2:&�$65 � , where � /���� � is
the protocol's parameter called the window size factor. Let � � ���
denote the number of messages sent by a process � from among the
messages currently in the sliding window.

Let � be a small positive real number. The book-keeper main-
tains a vector, % $6� �	� 5 & , with an entry for every process in � such
that at any instant, %�$�� �
� 5 & � � � (��� � ������� ��� "�2 &�$�5 � ������ if ��/
"�2 &4$65 , and � otherwise. Thus, the % $6� �	� 5�& vector approximates the
distribution of the process transmission rates among the members
of "�2:&�$65 . The parameter � is needed to avoid assignment of zero
weights to the "�2:&�$65 members. Note that

�
(
�
� " ���)� % $6� �	� 5�& � ��� (� at all times.

The 3 �7&!5 �-� variable counts distributions that have been output
in the current view. Whenever a new distribution is output, 3 �7&!5 �-�
is incremented and the content of the %�$6� �
� 5 & vector is saved in
another vector called

� � &!5 % $6� �	� 5�& . If no distribution has yet been
produced,

� � &!5 % $6� �	� 5�& � ���'(� ��� "�2 &�$�5 � for each � / "�2:&�$65 , and
� otherwise. Periodically, the distributions stored in % $6� �	� 5�& and� � &!5 % $6� �	� 5�& are compared. If the difference between these dis-
tributions exceeds a predefined threshold, a distribution 3 �7&!5 such
that 3 �7&!5 2 ��3)(3 �7&!5 �-� and 3 �7&!5 2 % (%�$�� �
� 5 & is output.

��!�� ���	' � ' �
����&
����#� �������"('���

We tested our protocol on 6 Pentium-120 machines running the
BSD/OS operating system and connected by a 10 MBit/second Eth-
ernet LAN. Of these, two machines multicast at a rate of approxi-
mately 10 messages/sec and 1 machine that multicast at a rate ap-
proximately 20 messages/sec. The remaining 3 machines multicast
at substantially lower rate which varied from one experiment to an-
other. The message size was 50 bytes. During the testing period
all the machines were connected and active. The observed message
loss was negligible.

A potential weakness of this testing environment is that the
transmission rates of participating machines was preset in advance
and was static during each experiment. In the future we intend to
analyze the performance of our protocol in more dynamic settings
(see Section 7).

��!���!#� $�'��	4 �"� ("�	��' 1�' � �"&
�� �+��"& � �����
In our experiments we compared the performance of ATOP with
a non-adaptive symmetric total ordering protocol, All-Ack [6], as
well as with the Transis CMS. The Transis CMS guarantees only
that the message delivery order satisfies the causal partial order on
messages. Thus, in the Transis CMS, message order should not be
agreed upon by all processes before delivery. Therefore, The Tran-
sis CMS (in the absence of message loss) has an average message
delivery latency close to that of the underlying network, as well as
a low message delivery latency variance. We thus chose the results
of the Transis CMS message delivery latency analysis as references
for the best achievable by any total ordering protocol.

In the first experiment series, we ran the All-Ack, ATOP and
Transis CMS protocols while in each new experiment the trans-
mission rate of each slow machine was smaller than it was in the
previous experiment. We observed that (1) in each experiment the
average message delivery latencies incurred by ATOP after adap-
tation and Transis CMS were close to one another (the average la-
tency of ATOP was slightly greater); and (2) the latency of the All-
Ack protocol steadily increased from one experiment to another.

8

The conclusion is that the average latency of All-Ack, unlike that
of ATOP, varies according to the transmission rate of the slowest
process and therefore cannot be predicted in advance.

In the second group of experiments we fixed the transmission
rate of each of the slow processes to be approximately 1 message
every 3 sec, and measured the variance in the message delivery
latency. To do this, we compared the delivering rate of messages
sent by a particular process, with the sending rate of those same
messages. We observed for each of the tested protocols, that while
the average delivery rate for messages sent by each process is close
to the transmission rate for that process, the message delivery rate
variance of All-Ack (see Figure 7(b)) is much greater than that of
ATOP (after the adaptation) (see Figure 7(a)).

Figure 8(b) illustrates that in the All-Ack protocol, the message
delivery blocks until a message from the slowest process arrives.
Then, all pending messages are delivered at once. By contrast the
post-adaptation message delivery rate of ATOP (see Figure 8(a)) is
almost constant and close to the sender's transmission rate.

� �
��	' �+� �"�	
��
������ $���& ������' �
The adaptation policy described in Section 6 is suited for LAN
environments, where all connected processes see more or less the
same picture. The same is not true for wide area networks, where
the variance in the message round trip time among different pro-
cesses might be significant, and different processes do not neces-
sarily observe the same distribution for process transmission rates.
Here, it is not a good idea to give the book-keeping responsibilities
to a deterministically chosen process.

A better adaptation policy would instead dynamically reas-
sign book-keeping responsibilities, while taking into account inter-
process round trip delay times. The process with the minimal vari-
ance of inter-process round trip delays would obviously be the best
candidate for current book-keeper.

Further challenges are presented by scenarios in which one or
more participating processes may occasionally pause and then re-
sume communication before being taken out of the current view.
Clearly, such perturbing processes can easily cause the adaptation
policy of Section 6 to not stabilize. An adaptation policy that would
result in better performance would thus identify such perturbing
processes and assign them weights which would rapidly decrease
the influence of their past transmission activity (e.g., one can use
the exponential backoff technique).

A completely different approach is to make the adaptation pol-
icy application dependent. For example, the application can specify
possible message transmission rate distribution patterns in advance.
The adaptation policy can thus recognize these patterns earlier and
correspondingly change the current ordering distribution. In par-
ticular, this is useful in environments where message transmission
rate distribution pattern depends on the time of day.

� � 2 ���
 & ' �
�('���
��
We are thankful to Dahlia Malkhi, Gil Neiger, Yehuda Afek and
anonymous referees for their valuable comments which helped
us to substantially improve the presentation quality. Idit Keidar

greatly contributed to this work with her original ideas and insight.
We would like to thank Tal Anker and Ohad Rodeh for suggesting
interesting testing ideas. We are grateful to Aviva Dayan for proof
reading our drafts and helping to improve the overall presentation
quality.

1�'�4 '���'����-' �
[1] AMIR, Y. Replication Using Group Communication Over a

Partitioned Network. PhD thesis, Institute of Computer Sci-
ence, The Hebrow University of Jerusalem, Israel, 1995.

[2] AMIR, Y., MOSER, L. E., MELLIAR-SMITH, P. M., AGAR-
WAL, D. A., AND CIARFELLA, P. The totem single-ring or-
dering and membership protocol. ACM Trans. Comp. Syst.
13, 4 (November 1995).

[3] BIRMAN, K. P., SCHIPER, A., AND STEPHENSON, P.
Lightweight Causal and Atomic Group Multicast. ACM
Trans. Comp. Syst. 9, 3 (1991), 272–314.

[4] CHANG, J. M., AND MAXEMCHUCK, N. Realiable Broad-
cast Protocols. ACM Trans. Comput. Syst. 2, 3 (August 1984),
251–273.

[5] DOLEV, D., KRAMER, S., AND MALKI, D. Early Delivery
Totally Ordered Broadcast in Asynchronous Environments.
In 23rd Annual International Symposium on Fault-Tolerant
Computing (June 1993), pp. 544–553.

[6] DOLEV, D., AND MALKI, D. The design of the transis sys-
tem. In Theory and Practice in Distributed Systems: In-
ternational Workshop (1995), K. P. Birman, F. Mattern, and
A. Schipper, Eds., Springer, pp. 83–98. Lecture Notes in
Computer Science 938.

[7] DOLEV, D., AND MALKI, D. The Transis Approach to High
Availability Cluster Communication. Communications of the
ACM 39, 4 (April 1996).

[8] FEKETE, A., LYNCH, N., AND SHVARTSMAN, A. Specify-
ing and Using a Partionable Group Communication Service.
In 16th Annual ACM Symposium on Principles of Distributed
Computing (August 1997).

[9] FRIEDMAN, R., AND VAN RENESSE, R. Packing Messages
as a Tool for Boosting the Perfomance of Total Ordering Pro-
tocols. TR 95-1527, dept. of Computer Science, Cornell Uni-
versity, August 1995.

[10] HADZILACOS, V., AND TOUEG, S. Fault-Tolerant Broad-
casts and Related Problems. In chapter in: Distributed Sys-
tems, S. Mullender, Ed. ACM Press, 1993.

[11] KAASHOEK, M. F., AND TANENBAUM, A. S. An evaluation
of the Amoeba group communication system. In Proceedings
of the 16th International Conference on Distributed Comput-
ing Systems (May 1996), pp. 436–447.

9

Message#

D
el

iv
er

y
In

te
rv

al

400350300250200150100500

2500

2000

1500

1000

500

100

(a) The Post-Adaptation Delivery Rate of ATOP

Message#

D
el

iv
er

y
In

te
rv

al

400350300250200150100500

2500

2000

1500

1000

500

100

(b) The Delivery Rate of All-Ack

Figure 7: Delivery Rates for Messages Sent at � 10 msgs/sec

Sender

Receiver
26000

(a) ATOP After Adaptation

Sender

Receiver
7800520026000

(b) All-Ack

Figure 8: Message Delivery Rates vs Transmission Rates for Messages Sent at � 10 messages/sec (� 5 � ��� � ��� � � &�$ �)

[12] KEIDAR, I., AND DOLEV, D. Efficient Message Ordering
in Dynamic Networks. In 15th Annual ACM Symposium on
Principles of Distributed Computing (May 1996), pp. 68–77.

[13] LAMPORT, L. Time, Clocks, and the Ordering of Events in a
Distributed System. Comm. ACM 21, 7 (July 78), 558–565.

[14] MALKI, D. Multicast Communication for High Avalaibility.
PhD thesis, Institute of Computer Science, The Hebrow Uni-
versity of Jerusalem, Israel, 1994.

[15] MOSER, L. E., AMIR, Y., MELLIAR-SMITH, P. M., AND

AGARWAL, D. A. Extended Virtual Synchrony. In Intl. Con-
ference on Distributed Computing Systems (June 1994). Also
available as technical report ECE93-22, Department of Elec-
trical and Computer Engineering, University of California,
Santa Barbara, CA.

[16] MOSER, L. E., MELLIAR-SMITH, P. M., AGARWAL, D. A.,
BUDHIA, R. K., AND LINGLEY-PAPADOPOULOS, C. A.
Totem: A Fault-Tolerant Multicast Group Communication
System. Communications of the ACM 39, 4 (April 1996).

[17] POWELL, D. Delta-4: A Generic Architecture for Depend-
able Distributed Computing. Springer-Verlag, 1991.

[18] RODDEN, T. A survey of CSCW systems. Interacting with
Computers 3, 3 (1991), 319–353.

[19] RODRIGUES, L. E. T., FONSECA, H., AND VERISSIMO,
P. Totally ordered multicast in large-scale systems. In Pro-
ceedings of the 16th International Conference on Distributed
Computing Systems (May 1996), pp. 503–510.

[20] VAN RENESSE, R., BIRMAN, K. P., AND MAFFEIS, S. Ho-
rus: A Flexible Group Communication System. Communica-
tions of the ACM 39, 4 (April 1996).

[21] VITENBERG, R., KEIDAR, I., CHOCKLER, G. V., AND

DOLEV, D. Group Communication System Specifications:
A Comprehensive Study. Tech. rep., Inst. of Comp. Sci., The
Hebrew University of Jerusalem, 1997. In preparation.

[22] WHETTEN, B., MONTGOMERY, T., AND KAPLAN, S. A
high perfomance totally ordered multicast protocol. In The-
ory and Practice in Distributed Systems: International Work-
shop (1995), K. P. Birman, F. Mattern, and A. Schipper, Eds.,
Springer, pp. 33–57. Lecture Notes in Computer Science 938.

10

