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ABSTRACT
We investigate the problem of designing a scalable over-
lay network to support decentralized topic-based pub/sub
communication. We introduce a new optimization problem,
called Minimum Topic-Connected Overlay (Min-TCO), that
captures the tradeoff between the scalability of the overlay
(in terms of the nodes’ fanout) and the message forwarding
overhead incurred by the communicating parties. Roughly,
the Min-TCO problem is as follows: Given a collection of
nodes and their subscriptions, connect the nodes using the
minimum possible number of edges so that for each topic t,
a message published on t could reach all the nodes interested
in t by being forwarded by only the nodes interested in t.

We show that the decision version of Min-TCO is NP-
complete, and present a polynomial algorithm that approxi-
mates the optimal solution within a logarithmic factor with
respect to the number of edges in the constructed overlay.
We further prove that this approximation ratio is almost
tight by showing that no polynomial algorithm can approx-
imate Min-TCO within a constant factor (unless P=NP).
We show experimentally that on typical inputs, the fanout
of the overlay constructed by our approximation algorithm
is significantly lower than that of the overlays built by the
existing algorithms, and that its running time is just a small
fraction of the analytical worst case bound. As Min-TCO
can be shown to capture several important aspects of most
known overlay-based pub/sub implementations, our study
sheds light on the inherent limitations of the existing sys-
tems and provides an insight into the best possible feasible
solution.

Finally, we introduce a flexible framework that general-
izes Min-TCO and formalizes most similar overlay design
problems that occur in scalable pub/sub systems. We also
briefly discuss several examples of such problems, and show
some results with respect to their complexity.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’07, August 12–15, 2007, Portland, Oregon, USA.
Copyright 2007 ACM 978-1-59593-616-5/07/0008 ...$5.00.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Network Topology ; G.2.2 [Mathe-
matics of Computing]: Graph Theory—Network prob-
lems

General Terms
Algorithms, Theory, Experimentation

Keywords
pub/sub, overlay networks, peer-to-peer, application-level
multicast, optimization problems

1. INTRODUCTION
Publish/subscribe (pub/sub) [13] is a popular communi-

cation paradigm allowing the users to interact in a decou-
pled fashion by publishing their messages on logical channels
and receiving the messages off the channels to which they
are subscribed. The pub/sub systems are classified as ei-
ther topic-based or content-based. In topic-based pub/sub,
the channels are specified through unique identifiers, called
topics; whereas in content-based pub/sub, the channels are
specified through a collection of attributes that could be ar-
bitrary data types. Due to its simple interface and inherent
scalability, pub/sub is commonly used to support many-to-
many communication in a wide variety of popular Internet
applications, such as stock-market monitoring engines [20],
RSS feeds [16], on-line gaming, and many others. There are
also numerous implementations of the pub/sub middleware
in both industry [1, 7, 15] and academia [2, 3, 4, 6, 8, 9, 10,
14, 17, 18, 19, 20, 21, 22].

In this paper, we focus on fully decentralized implemen-
tations of the topic-based pub/sub systems (see e.g., [4, 10,
17, 18, 21]) where the parties do not rely on intermediate
agents of any kind (such as servers or message brokers) to
forward their messages but rather communicate in a peer-
to-peer fashion, effectively forming an application-level or
an overlay network. In this environment, an efficient pub-
lication routing protocol becomes a major factor affecting
the pub/sub performance. We can thus judge the quality
of a constructed overlay in terms of the complexity of the
best possible routing scheme that can be implemented on
top of it. Intuitively, this complexity is minimized if all the
nodes interested in the same topic t can be organized into a



dissemination tree which both (1) consists of only the nodes
interested in t, and (2) has a low diameter. In this paper,
we only deal with (1), and leave (2) for future work (see
Section 9).

Let G be an overlay network. The necessary pre-requisite
enabling (1) is the following property of the overlay, which
we call topic-connectivity: for each topic t, the sub-graph of
G induced by the nodes interested in t is connected. Note
that while it is straightforward to achieve topic-connectivity
by creating a separate overlay structure (such as a tree or
ring) for each topic in the system, this will result in an over-
lay where the number of connections maintained by each
node grows linearly with the node’s subscription size (being
on average roughly twice as big as that). There are how-
ever, several significant costs to edges in practical overlay
systems.

First, maintaining the overlay topology requires each node
to continuously monitor the availability of each of its neigh-
bors thus incurring the cost of heartbeats and keep-alive
state for each connection. Furthermore, if sequential-diff-
based compression scheme is used (e.g., for efficient trans-
mission of bulk data), there is an extra cost associated with
a recent history table for each link. Next, for efficiency rea-
sons, messages posted on multiple topics are typically aggre-
gated into a single compound message thus amortizing the
header cost, which otherwise, can be quite high for small
messages. Since each message forwarded over a particular
link requires a separate header, the more links there are, the
fewer topics can be routed over each individual links, thus
diminishing the cross-topic aggregation benefits. In addi-
tion, if the edges are maintained using connection-oriented
transport, such as TCP, there is the cost of connection state
for each edge. Hence, it is desirable to reduce the number of
connections maintained by each node to the extent possible,
and in particular, try to improve upon the upper bound of
twice the node subscription size.

Intuitively, this should be possible if the individual node
subscriptions are well-correlated since in this case, one can
improve connectivity of several topics at once by choosing
to connect a pair of nodes which are both interested in
these topics. Indeed, several recent empirical studies sug-
gest that correlated workloads are common in practice, and
in particular, occur in such popular pub/sub applications
as RSS [16] and stock-market monitoring engines [20]. It
is therefore interesting to inquire whether it is possible to
devise a practical algorithm to exploit subscription corre-
lation for constructing a scalable overlay for pub/sub with
provable performance guarantees.

To study this question formally, we introduce a new opti-
mization problem, called Minimum Topic-Connected Over-
lay (Min-TCO), which is roughly as follows: given a collec-
tion of nodes V , a set of topics T , and the node interest
assignment, connect the nodes in V into an overlay network
G using the least possible number of edges such that G is
topic-connected. We show hardness of Min-TCO by prov-
ing that the decision version of Min-TCO (called TCO) is
NP-complete. We show this in two steps: First, we define a
single node version of TCO where the degree constraint is
only placed on a single given node (and not on all nodes as
in TCO), and show that Set Cover is polynomially reducible
to single node TCO. Since the latter can be shown to be
polynomially reducible to TCO, NP-hardness of Set Cover
implies the same for TCO.

On the positive side, we show that it is possible to effi-
ciently approximate Min-TCO using a simple greedy algo-
rithm, called Greedy Merge (GM), that proceeds by adding
edges to the overlay until the overlay is topic-connected
while ensuring that each newly added edge merges the previ-
ously disjoint connected components for the largest number
of topics. Note that a naive implementation of this scheme
leads to runtime complexity as big as O(|V |4|T |). In Sec-
tion 6, we utilize dynamic programming ideas to derive a
much more efficient version of GM that has a running time
of just O(|V |2|T |). We further show that the number of links
created by GM is within a logarithmic factor of that created
by the optimal solution. We prove that in most practical
cases, this approximation ratio is almost tight by showing
that no polynomial algorithm can approximate Min-TCO
within a constant factor (unless P=NP). Our study thus
demonstrates that subscription correlation can indeed be
efficiently leveraged for constructing topic-connected (and
thus optimal with respect to the routing cost) overlay topol-
ogy with provable and (almost) tight scalability character-
istics.

Note that although the Min-TCO and Set Cover problems
appear to be related, they are nevertheless, fundamentally
different due to an additional topological constraint (topic-
connectivity) imposed by Min-TCO and not found in Set
Cover. As a result, we cannot re-use the known approx-
imability results for Set Cover directly for proving similar
bounds for Min-TCO. Nevertheless, we benefit from the
ideas used to obtain those results to derive similar bounds
for Min-TCO.

We show experimentally (see Section 8) that exploiting in-
terest correlation indeed results in a substantial scalability
improvement. To this end, we compare the average degrees
of the overlays created by GM and by a protocol in which
topic-connectivity is achieved by maintaining a separate log-
ical ring, ordered by the node identifiers, for each topic. We
show that under subscription patterns derived from several
common well-correlated topic popularity distributions, such
as exponential and Zipf, using GM results in a significant
reduction in the average overlay degree (almost 3-fold when
we increase the number of nodes and upto 8-fold when we
increase the number of topics). In addition, our measure-
ments indicate that, under the above workloads, GM’s run-
ning time is just a small fraction (in the order of 10−3) of
the worst case analytical bound (O(|V |2|T |)) thus further
attesting to the practicality of GM in common settings.

Finally, although topic-connectivity is essential for mini-
mizing the routing cost, it might not always be achievable
in practice (e.g., because of hard limits imposed on the node
degrees due to bandwidth limitations). It is therefore inter-
esting to explore the tradeoff between scalability and routing
complexity in the case, we are ready to compromise topic-
connectivity to some extent. To give a precise sense to this
tradeoff we introduce a flexible framework that generalizes
Min-TCO and allows for defining new problems that for-
mally capture a multitude of constraints (such as, the node
degrees, transmission rates on different topics, bandwidth
and computing power available to each node, etc.), and op-
timization objectives, such as per-topic latency of the mes-
sage dissemination, per-topic filtering overhead, etc. We
illustrate our framework by giving examples of several rep-
resentative problems, and mention some results with respect
to their computational complexity.



2. RELATED WORK
The existing work on overlay-based pub/sub has mainly

focused on implementing practical distributed systems [2,
3, 4, 5, 6, 9, 10, 17, 18, 21, 22], and to the best of our
knowledge, the problem of designing an optimal overlay has
never been rigorously studied.

Topic-connectivity is an explicit requirement in [4, 9, 12,
21]. In [4, 9, 21], it is achieved using a distributed protocol
that maintains a separate overlay, such as a multicast tree [9]
or a ring [21], for each topic. These systems however, do not
attempt to minimize the average degree of the overlay, which
as a result, would be roughly equal twice the average sub-
scription size, regardless of the correlation degree exhibited
by the individual node subscriptions in most inputs. Since
as we argued in Section 1, many typical subscription pat-
terns tend to exhibit a high degree of correlation, we expect
that these solutions could benefit from the link reduction
techniques developed in this paper. Furthermore, our GM
algorithm could also be used as a baseline to estimate how
close to the optimal solution their overlays are in terms of
their size.

In [12], we showed experimentally that on many practical
workloads exhibiting well-correlated subscription patterns,
a simple distributed heuristic can be effective for construct-
ing topic-connected overlays whose average degree is signifi-
cantly smaller than twice the average subscription size. The
results in [12] are however, mostly empirical.

Other systems [2, 3, 5, 10] focus on reducing the number
of non-interested relays without explicitly requiring topic-
connectivity. Relaxing topic-connectivity can potentially re-
duce the overlay degree as the nodes are no longer required
to have every topic in their subscription being represented
in the subscription of some of their neighbors. These sys-
tems however, do not explicitly address the tradeoff between
the amount of extra overhead incurred by the nodes as a re-
sult of forwarding unwanted messages (such as the routing
table size, and dissemination and filtering costs) and the
overlay degree. In Section 9, we formally capture this trade-
off by introducing a parameterized family of overlay design
problems, called SOC. Rigorous study of the SOC problems
however, remains by and large the subject of future work.

3. PRELIMINARIES
To simplify the presentation, we do not distinguish be-

tween publishers and subscribers. In other words, in order
to publish data on a topic t, a node has first to subscribe
to t. We model the nodes’ subscriptions formally as follows:
Given a set of nodes V and a set of topics T , we define an
interest function over V ×T to be a Boolean-valued function
over domain V × T . Subsequently, given an interest func-
tion Int , we say that a node v is interested in a topic t iff
Int(v, t) = true.

An overlay network (or simply, an overlay) over a set of
nodes V is a graph of the form (W, E) such that W = V and
E ⊆ V ×V . Given an overlay network G over V , an interest
function Int over V × T , and a topic t ∈ T , we define the
topic-connected components of G for t to be the connected
components of the subgraph of G induced by the nodes {v ∈
V : Int(v, t)}1. We say that G is topic-connected if for each

1The subgraph of G = (V, E) induced by V ′ ⊆ V is the
graph G′ = (V ′, E′), where E′ contains an edge in E iff
both endpoints of this edge are in V ′.

topic t, there is at most one topic-connected component of
G for t.

4. THE MINIMUM TOPIC-CONNECTED
OVERLAY (MIN-TCO) PROBLEM

The Minimum Topic-Connected Overlay (Min-TCO) prob-
lem is to minimize the number of links needed to create a
topic-connected overlay for the given interest assignment.
Formally, given a set of nodes V , set of topics T , and an
interest function Int over V × T , an instance of
Min-TCO(V, T, Int) is defined as follows

Definition 4.1 (Min-TCO(V, T, Int)). Construct a
topic-connected overlay network G = (V, E) such that |E| =
minE′⊆2E{|E′| : (V, E′) is topic-connected}.

We also define TCO(V, T, Int , k), the corresponding deci-
sion problem of Min-TCO, which is to determine if it is pos-
sible to connect the nodes in V into a topic-connected over-
lay network G using the given number of edges k > 0. For-
mally, define a language LTCO = {〈V, T, Int , k〉 : there exists
an overlay network G = (V, E) which is topic-connected for
T and Int , and |E| = k}.

Definition 4.2 (TCO(V, T, Int , k)). Given
inp = 〈V, T, Int , k〉, decide whether inp ∈ LTCO.

Note that the above problems are defined in a central-
ized setting and assume that all of V , T , and Int are fixed
in advance, and do not change throughout the execution.
We discuss the distributed version of Min-TCO, handling
dynamic changes, and the other issues arising in practical
distributed systems (e.g., partial knowledge of the node in-
terests) in Section 6.4.

5. COMPLEXITY OF TCO
We prove that TCO(V, T, Int , k) is NP-complete. First,

it is easy to see that the topic-connectivity property for
a given graph can be verified in polynomial time. Hence,
TCO(V, T, Int , k) ∈ NP . Next, we prove the following

Lemma 5.1. TCO(V, T, Int , k) is NP-hard.

The proof of Lemma 5.1 consists of two main steps: First,
we define an auxiliary problem, called Single Node Min-TCO
(SN-TCO(V, T, Int , v, d)), which is given a node v ∈ V and
the degree limit d > 0, decide if there is a topic-connected
overlay G = (V, E) such that degreeG(v) ≤ d. Note that SN-
TCO is identical to TCO except that it places a constraint
on the degree of a single given node rather than all the
nodes. The following statement can be proved by reduction
from Set Cover (see Appendix A for a detailed proof):

Lemma 5.2. SN-TCO(V, T, Int , v, d) is NP-hard.

We next show in Appendix A that SN-TCO(V, T, Int , v, d)
is polynomially reducible to TCO(V, T, Int , k), which con-
cludes the proof of Lemma 5.1. Since TCO(V, T, Int , k) ∈
NP , we conclude that the following holds:

Theorem 5.3. TCO(V, T, Int , k) is NP-complete.



6. SOLVING MIN-TCO
We now present a greedy algorithm that provides an ap-

proximated solution to the Min-TCO problem, and analyze
its complexity and approximation ratio. For the rest of this
section, we fix V , T , and Int be a set of nodes, a set of
topics, and an interest function over V × T respectively.

6.1 The Greedy Merge (GM) Algorithm
The algorithm starts with the overlay network G = (V, ∅)

so that for each topic t ∈ T , there are |{v : Int(v, t)}|
singleton topic-connected components of G (i.e., there are
P

t∈T
|{v : Int(v, t)}| singleton topic-connected components

overall). The algorithm proceeds by adding edges to G,
thus merging topic-connected components until the result-
ing overlay contains at most one topic-connected compo-
nent for each t ∈ T , i.e., G is topic-connected. The edge
added at each step is an edge that maximally reduces the
total number of topic-connected components. We keep track
of the topic-connected components using array Nodes over
V × T , where Nodes[v][t] holds the set of nodes belong-
ing to the same topic-connected component for t as v (see
Algorithm 1).

For each new candidate edge (v, w) to be added to the
overlay, let T(v,w) ⊆ T be the set of topics such that for
each t ∈ T(v,w), (1) Int(v, t)∧ Int(w, t), and (2) nodes v and
w are the members of two different topic-connected com-
ponent for t, i.e. Nodes[v][t] and Nodes[w][t] are disjoint.
The addition of (v, w) causes two topic-connected compo-
nents for each t ∈ T(v,w) to be merged into a single con-
nected component Ct = Nodes[v][t] ∪ Nodes[w][t]. Thus,
the contribution of (v, w) to the reduction in the number of
topic-connected components for the topics t ∈ T(v,w) is ex-
actly |T(v,w)|. Once edge (v, w) is added to the overlay, the
sets Nodes[u][t] for each u ∈ Ct are updated accordingly by
setting Nodes[u][t]← Ct.

At each iteration, the algorithm finds the edge (v, w) that
maximizes |T(v,w)|, and adds it to the overlay. Clearly, ev-
ery edge addition causes the merge of at least two topic-
connected components (for at least one topic) thus reduc-
ing the overall number of topic-connected components by
at least 1. Whenever an edge with |T(v,w)| > 0 cannot be
found, the algorithm stops, because this condition implies
that the subgraph Gt ⊆ G induced by the subscribers of
topic t is connected, for every t ∈ T .

Instead of naively searching for the next best edge, the
implementation presented here (see Algorithms 1, 2, and
3) uses an auxiliary array LinkContrib, whose elements
LinkContrib[i] are the subsets of the set of all possible
edges V×V with contribution i, i.e., (v, w)∈LinkContrib[i]
iff i = |T(v,w)|. Note that for each edge e ∈ V ×V , the initial
contribution of e is equal to the size of the mutual interest
of the nodes it connects. Thus, finding the next best edge
e = (v, w) to add to the overlay is easy (Algorithm 3, line
3). However, after adding e to the overlay and removing it
from LinkContrib, the contributions of other edges must
be updated (lines 6–11). This update can be done efficiently
as it is only needed to replace the edges that connect the
components that have become connected due to the addi-
tion of e. For each such edge, its corresponding entry in
LinkContrib can be found in O(1) time if we maintain a
pointer to this edge’s entry in LinkContrib along with each
edge. The Nodes sets are then updated as explained above
(lines 12–14) to reflect the topic-connected components that

Algorithm 1 Data Structure

I OutputOverlayEdges: a set of overlay edges, initially ∅.

I Nodes: a 2-dimensional array over V × T whose elements are

subsets of V such that for each v ∈ V , t ∈ T : (1) Int(v, t) = true,

and (2) for each w ∈ Nodes[v][t]: Int(w, t) and both w and v belong

to the same topic-connected component for t.

I LinkContrib: an array of size |T | with elements being sets of

edges chosen from V × V . If edge e ∈ LinkContrib[i], then e /∈

OutputOverlayEdges, and adding e to the overlay at the current

iteration will reduce the number of topic-connected components by

i (where 1 ≤ i ≤ |T |).
I HighestContrib: holds the biggest i for which LinkContrib[i] 6=

∅.

have been merged. Once LinkContrib[i] = ∅ for all i, the
algorithm terminates.

Algorithm 2 Data Structure Initialization
1: for all node v do

2: for all topic t such that Int(v, t) do

3: Nodes[v][t] ← {v}

4: for all edge e = (v, w) do

5: contrib← |{t ∈ T : Int(v, t) ∧ Int(w, t)}|

6: if contrib > 0 then

7: add e to LinkContrib[contrib]

8: HighestContrib← max(i|LinkContrib[i] not empty)

Algorithm 3 Overlay Construction

1: OutputOverlayEdges← ∅

2: while HighestContrib> 0 do

3: e← some edge (v, w) from LinkContrib[HighestContrib]

4: OutputOverlayEdges← OutputOverlayEdges
S

{e}

5: delete e from LinkContrib[HighestContrib]

6: for all topic t such that Int(v, t) ∧ Int(w, t) do

7: for all v′ ∈Nodes[v][t], w′ ∈Nodes[w][t], (v′, w′) 6= (v, w)

do

8: locate i such that (v′, w′) ∈ LinkContrib[i]

9: delete (v′, w′) from LinkContrib[i]

10: if i > 1 then

11: add (v′, w′) to LinkContrib[i− 1]

12: new connected component list ← Nodes[v][t]∪ Nodes[w][t]

13: for all u ∈ new connected component list do

14: Nodes[u][t]← new connected component list

15: while HighestContrib> 0 and LinkContrib[HighestContrib]

is empty do

16: HighestContrib← HighestContrib-1

17: output (V,OutputOverlayEdges) and halt

The following lemma follows immediately from the pseu-
docode:

Lemma 6.1. For every topic t, all the nodes interested in
t are organized in a single connected component in the output
overlay.

Next, we analyze the GM’s running time.

Lemma 6.2. The algorithm terminates within
O(min(|V |2,

P

t∈T
|{v ∈ V |Int(v, t)}|)) iterations.

Proof. It is easy to see by induction on the number of
iterations that at each iteration of the algorithm, for each
topic t, the subgraph induced by the nodes interested in t
is a forest. Therefore, when the algorithm terminates, there
is a tree for each topic t ∈ T . Since exactly 1 edge is added
at each iteration, and the number of edges in a tree is the



number of nodes −1, the number of iterations for each topic
is bounded by |{v ∈ V |Int(v, t)}| − 1. Summing over all the
topics t ∈ T , we get the result.

Corollary 6.3. The output overlay contains
O(min(|V |2,

P

t∈T
|{v ∈ V |Int(v, t)}|)) edges.

The running time of GM is given by the following

Lemma 6.4. The running time of Algorithm 3 is
O(

P

e=(v,w),e∈E
|{t ∈ T |Int(v, t)∧Int(w, t)}|) = O(|V |2|T |).

Proof. The cost of the GM’s initialization (Algorithm 2)
is dominated by the calculation of individual edge contribu-
tion in line 5. If the interest of each node is stored as a list of
topics, the total complexity of this computation for all the
edges will be O(

P

e=(v,w),e∈E
|{t ∈ T |Int(v, t)∧ Int(w, t)}|).

The cost of the overlay construction (Algorithm 3) is dom-
inated by the loop in lines 6-14 that updates the contribution
of edges as a result of adding an edge to the overlay. The
update of each individual edge can be performed in O(1),
e.g., if the elements of LinkContrib are implemented as
a doubly-linked list, and there are two pointer kept along
with each edge, one pointing to i, and the other one point-
ing to the location of the edge in LinkContrib[i]. In order
to calculate the total count of individual edge updates at
all the iterations, it is sufficient to notice that every update
decrements the contribution of the edge by one (lines 8–
11). Algorithm 3 starts when the total contribution of all
the edges is O(

P

e=(v,w),e∈E
|{t ∈ T |Int(v, t) ∧ Int(w, t)}|)

and terminates when the contribution of all the edges is re-
duced to zero. Therefore, the runtime of the algorithm is
O(

P

e=(v,w),e∈E
|{t ∈ T |Int(v, t) ∧ Int(w, t)}|).

6.2 Approximation Ratio
The approximation ratio of GM is given by the following

Lemma 6.5. GM has an approximation ratio of at most
log(Σv∈V |{t ∈ T |Int(v, t)}|) compared with the optimal so-
lution.

Proof. The proof is similar to the proof of the approx-
imation ratio for the set cover problem. Consider an in-
stance of the Min-TCO problem, and let k be the number
of overlay links produced by the optimal solution. Note
that the total number of connected components is Cs =
Σv∈V |{t ∈ T |Int(v , t)}| when Algorithm 3 starts and Ce =
|{t|t ∈ T ∧ ∃v ∈ V such that Int(v, t)}| when it terminates.
Let n1 = Cs, and let ni be the total number of connected
components before the i-th iteration of the algorithm. De-
note Lgi the set of links added to OutputOverlayEdges
by Algorithm 3 prior to iteration i, LO the set of links in the
optimal solution, and LOi = LO − Lgi. Obviously, adding
all the links of LOi to Lgi (which would result in the output
overlay LOi

S

Lgi) would reduce the total number of con-
nected components to Ce. Since |LOi| ≤ k, there exists a
link e ∈ LOi such that adding e to Lgi (i.e., making Lgi+1 to
be Lgi

S

{e}) would reduce the number of connected compo-
nents by at least (ni−Ce)/k. Since Algorithm 3 is greedy, it
picks a link that reduces at least as many connected compo-
nents. Hence ni − ni+1 ≥ (ni−Ce)/k, which can be rewrit-
ten as ni+1 −Ce ≤ (1− 1/k)(ni −Ce). This shows that the
number of iterations used by the greedy algorithm does not
exceed the smallest l that satisfies (n1 − Ce)(1− 1/k)l < 1,
which implies l ≤ k ln(Cs − Ce) ≤ k lnCs.

6.3 Tightness of Approximation Ratio
We show that the GM’s approximation ratio of

log(Σv∈V |{t ∈ T |Int(v, t)}|) established by Lemma 6.5 is
tight. To this end, we construct an input example on which
the greedy algorithm achieves an approximation ratio of
O(log |T |).

Lemma 6.6. There exist an input (V, T, Int) on which GM
achieves an approximation ratio of O(log |T |).

Proof. Our input example is parameterized by two in-
teger numbers k and m, m > 2. T consists of 2 · (2k − 1) ·m
topics, which can be visualized as organized in a cuboid of
size 2× (2k − 1)×m (see Figure 1). There exist 2 + m + k
nodes in the system with their interests as follows: the inter-
est of two nodes (denoted Stwo1 and Stwo2) is represented
by each of the two planes with (2k − 1)×m topics, respec-
tively, so that their combined interest covers all of T . The
interest of k nodes can be described by splitting a 2×(2k−1)
plane into k pairwise disjoint sets Sk1, . . . , Skk with sizes
2, 4, 8, . . . , 2k respectively, and expanding each of the sets in
the dimension of m. Therefore, the resulting size of these k
interest sets is (2×m), (4×m), . . . , (2k ×m), respectively.
The interest of the last m nodes Sm1 to Smm is represented
by each of the m planes with 2× (2k − 1) topics.

Observe that the following overlay induces a single con-
nected component for every topic on this input: each of
Stwo1 and Stwo2 nodes is connected to every Smi and to
every Ski nodes. This solution uses 2m+2k links. In fact, it
is easy to see that this is the optimal solution for Min-TCO,
even though this fact is not necessary for establishing the
upper bound.

Consider the behavior of GM on this input.The intersec-
tion between each Ski and Smj is 2i topics while the inter-
section between each Ski and Stwoj is m2i−1 topics. The
latter is larger because m > 2. Therefore, the algorithm
will choose (Stwo1, Skk) and (Stwo2, Skk) links at the first
two iterations. Furthermore, it will connect each Stwoi with
each Skj at the first 2k iterations. At this point, however,
it will start being suboptimal and connect each of Smi with
Skk rather than with Stwo1 and Stwo2. Eventually, each
of Smi will be linked to each of Skj , at which point the al-
gorithm will stop. The total number of links added by this
algorithm will be 2k + km.

Therefore, the approximation ratio for this input will be
(2k+km)/(2k+2m). If we choose k = m, then |T | = O(2k),
and the ratio becomes (2 + k)/4 = O(k) = O(log |T |).

6.4 Practical Considerations
Due to its relatively low time complexity (which as we

show in Section 8, is only a small fraction of the worst case
bound under well-correlated subscription patterns), the cen-
tralized version of the GM presented above can be used in
practice, e.g., for network planning in the systems where
subscriptions are relatively stable, and do not change fre-
quently. It could also be used as a baseline for evaluating
scalability of the existing overlay-based pub/sub implemen-
tations.

Note also that it is straightforward to devise a distributed
version of GM, that would be exactly as above, provided
each node is given a view of the other node interest assign-
ments. However, the correctness of GM in this case rests
upon the completeness and consistency of the individual
node views, which could be problematic, especially in large
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Figure 1: A geometrical illustration for specific values of k = 3 and m = 4.

and highly dynamic settings. This calls for further study to
investigate the possibility of devising more adaptive variants
of GM (such as e.g., an on-line version) where only a small
portion of the overlay has to be re-built in response to the
dynamic changes.

We also observe that it is possible to improve connectivity
and reduce diameter of the topic-connected components con-
structed by GM, by running GM several times (depending
on the desired connectivity level), with (V × V ) \E (where
E is the set of edges already in the overlay) being the set
of edges considered for inclusion at the beginning of each
individual run. The precise analysis of this algorithm and
its guarantees is the subject of future study.

7. INAPPROXIMABILITY OF MIN-TCO
We now show that for all practical applications, the ap-

proximation ratio achieved by GM is almost tight by estab-
lishing the following general inapproximability result:

Lemma 7.1. There exists no polynomial algorithm that
achieves a constant factor approximation for Min-TCO un-
less P = NP .

Proof. Assume that such an algorithm A exists. We
show how to use A to achieve a constant factor approxima-
tion for the minimal set cover problem, which is known to
be impossible if P 6= NP .

Take an instance (U, S) of the minimal set cover problem.
Denote Sopt ⊆ S an optimal solution for this instance (Sopt

cannot be found algorithmically in polynomial time if P 6=
NP ). We build an instance Min-TCO(V, T, Int) using a
construction technique that is similar to the example above
and that is also parameterized by integer m: we take T
with m × |U | topics so that each element u of universe U
corresponds to m topics that are denoted ti(u), 1 ≤ i ≤ m.
We take V of size |S|+m: V includes m new nodes vmi, 1 ≤
i ≤ m and |S| nodes so that each set s ∈ S corresponds one-
to-one to node v(s). Int is constructed as follows: ∀i, 1 ≤
i ≤ m, vmi is interested in

S

u∈U
ti(u) and ∀s ∈ S, v(s) is

interested in
S

u∈s,1≤i≤m
ti(u).

Consider the following overlay for Min-TCO(V, T, Int):
∀i, 1 ≤ i ≤ m,∀s ∈ Sopt, there is a link between vmi and
v(s). In addition, there is a link between every pair of v(s),
v(s′) nodes, s, s′ ∈ S. This overlay uses |Sopt|m + |S|2 links
and induces a single connected component for every topic.
This gives an upper bound on the number of links in an op-
timal solution for Min-TCO(V, T, Int). Since A achieves a
constant factor approximation, ∃c such that A will produce
a number of links that is ≤ c(|Sopt|m + |S|2).

Observe that any solution for Min-TCO(V, T, Int) can be
used to derive m set covers for U as follows: assume an over-
lay G = (V, E) that induces a single connected component
for each topic. For each i, 1 ≤ i ≤ m, let Ei = {(vmi, v(s)) ∈
E|s ∈ S}. By topic-connectivity, each Ci = {s|(vmi, v(s)) ∈
Ei} is a set cover of U . Since all Ei’s are pairwise disjoint,
any algorithm guarantees that

Pm

i=1 |Ci| ≤ |E|. There-
fore, there exists at least one i such that |Ci|m ≤ |E|.
Hence, A can be used to produce a set cover SA for the
original instance of the minimal set cover problem so that
|SA|m ≤ |E| ≤ c(|Sopt|m + |S|2). Thus, |SA| ≤ c(|Sopt| +
|S|2/m). If we take m = |S|2, the latter expression becomes
c(|Sopt| + 1) ≤ 2c|Sopt|. Therefore, A allows us to obtain
a constant factor approximation for the minimal set cover
problem.

8. EVALUATION
We implemented a centralized version of GM as appears

in Algorithm 3. As in other studies, e.g., [17], in each of
our experiments, both the number of topics and the number
of nodes are fixed. We varied the number of topics from
100 to 200, and the number of nodes from 1000 to 10, 000.
Each node is subscribed to s topics. We run experiments
with several values of s and we got similar trends in all the
experiments. Due to space limitations, we only report on
the experiments with s=10, except for Section 8.3 in which
we also report on the experiments with s=20.

We construct our workloads as follows: given a collection
of topics T , each topic ti ∈ T is associated with probability
pi,

P

i
pi=1, so that each node subscribes to ti with a prob-

ability pi. The value of pi is distributed according to a Zipf,
an exponential, or a uniform distribution. We use a Zipf
distribution with α = 0.5 (i.e., pi∝

1
i0.5 ). Our choice of this

topic popularity distribution is based on a recent study [16]
that shows it faithfully describes the feed popularity distri-
bution in RSS. In the exponential distribution we use, the
probability to choose one of the 10% most popular topics is
set 0.55. This distribution was shown in [20] to be a good
predictor of stock popularity in the New York Stock Ex-
change (NYSE). Below, we study the effects of the number
of nodes and topics and the topic popularity distribution on
the average node degree (see Section 8.1), and the running
time (see Section 8.2). In Section 8.3, we study scalability
benefits of exploiting subscription correlation.

8.1 The Average Node Degree
Figure 2 depicts the average node degree (i.e., 2 × overall

number of edges/number of nodes) in experiments with GM.
As the figure shows, with all the topic popularity distribu-
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Figure 2: Average node degree for different number

of nodes and topic popularity distributions.

tions, the average node degree decreases with the number
of nodes. The reason for that lies in the randomness of the
subscription patterns. In particular, increasing the num-
ber of nodes increases the chances for a given node to find a
neighbor with a bigger interest overlap thus reducing overall
number of neighbors needed to maintain topic-connectivity.
Likewise, the overlay constructed in the experiments with
the exponential popularity distribution is smaller than that
in the experiments with uniform and Zipf distributions be-
cause of a substantially higher subscription correlation ex-
hibited by the exponential workload. We also observe that
increasing the number of topics also increases the average
node degree as that results in a workload with less corre-
lated subscriptions.

8.2 The Running Time
Recall that the running time of GM is O(|V |2|T |). Fig-

ure 3 depicts the actual number of processing steps it takes
GM until termination divided by |V |2|T |. Remarkably, in all
of our experiments, GM’s running time is just a small frac-
tion (in the order of 10−3) of the worst case analysis bound.
This implies that GM is feasible for many practical work-
loads. In addition, we observe that the GM’s running time
behaves like |V |2, and decreases with the number of topics.
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Figure 3: Running time for different number of

nodes and topic popularity distributions.

This is because, as we noted in the previous section, increase
in the number of topics with the rest of the parameters being
fixed results in less correlated subscriptions. We also note
that, interestingly, for a given number of nodes and topics,
although exponential workload results in a smaller overlay
(see Figure 2), the GM’s running is nevertheless the high-
est on this workload. The reason for that lies in a higher
subscription correlation exhibited in the exponential work-
load which results in a higher cost of updating the connected
components after each individual edge addition.

8.3 Scalability Benefits of Exploiting
Subscription Correlation

To see that exploiting interest correlation could indeed
result in a substantial scalability improvement, we compare
the average degrees of the overlays created by GM and by
the Ring-Per-Topic (RingPT) protocol (similar to [21]) in
which topic-connectivity is achieved by maintaining a sep-
arate logical ring, ordered by the node identifiers, for each
topic.

We compare the average node degrees obtained in the ex-
periments with GM with those in obtained with RingPT.
Due to space limitations, we only report on experiments with
the Zipf topic popularity distribution (similar results were
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obtained for the exponential and the uniform distributions
as well). As Figure 4(a) shows, the average node degree in
the experiments with RingPT is roughly 3 times the average
node degree in the experiments with GM. In Figure 4(b), we
study the effect of the average subscription size on the av-
erage node degree. Remarkably, with GM, increasing the
number of subscriptions per-node from 10 to 20 results in
just 25% increase in the average node degree at the worst,
whereas with RingPT, doubling subscription size results in
roughly doubling the average node degree. This further at-
tests to our claim that maintaining topic-connectivity with-
out exploiting correlation results in the average node degree
being roughly equal to twice the average subscription size.

9. OTHER OVERLAY DESIGN PROBLEMS
FOR PUB/SUB

The Min-TCO problem discussed so far focuses on a single

(though important) aspect of the overlay design for pub/sub
systems, namely, constructing a topic-connected overlay us-
ing the least possible number of links. It is a natural ques-
tion to ask to what extent we could improve scalability if
we are ready to compromise the full topic connectivity to
some extent. It is also interesting to further investigate this
tradeoff with respect to additional parameters affecting the
message routing efficiency, such as propagation latency, fil-
tering overhead, robustness, etc. In this section, we propose
a formal framework that extends and generalizes Min-TCO
to capture a multitude of the objectives and constraints
affecting performance and scalability of the overlay-based
pub/sub systems. Namely, we introduce a parameterized
definition of the Scalable Overlay Construction (SOC) prob-
lem for pub/sub with multiple topics, discuss several repre-
sentative SOC problems, and outline complexity results for
some of them.

The SOC Problem: Intuitively, the objective of the
SOC problem is to capture a tradeoff between the overlay
scalability, represented as an abstract degree function δ, and
the cost of message dissemination, represented as an ab-
stract routing cost function ρ. Formally, let V , T , Int be
a set of nodes, set of topics, and an interest function over
V × T respectively. Fix δ to be a function from all possible
overlay networks over V to R; and ρ to be a function map-
ping pairs (overlay over V , Int) to R. An instance of the
SOC decision problem, SOC(V, T, Int , d, C, δ, ρ), is to deter-
mine if there is an overlay network G over V such that (1)
δ(G) ≤ d and (2) ρ(G, Int) ≤ C.

We believe that the SOC problem will be a valuable tool
for formally studying various overlay design problems for
pub/sub, whose definition and analysis is mostly the subject
of future work. Below, we give two representative examples
of the problems that can be derived from the general SOC
problem above:

Filtering: Determine if there is an overlay G over V whose
average (or maximum) degree ≤ d, and the cumulative
cost of message filtering taken over all the topics in
T does not exceed C. Here, the filtering cost for a
topic t ∈ T is defined to be the number of nodes not
interested in t in a Steiner tree over G whose terminals
are the nodes interested in t. In the full version of the
paper [11], we prove that Filtering is NP-hard.

Diameter: Determine if there is an overlay G over V such
that the average (or maximum) degree of G ≤ d, and
the average (or maximum) topic diameter (where the
topic diameter for t ∈ T is defined to be the maximum
distance in G between any pair of nodes interested in
t) does not exceed C.

10. CONCLUSIONS
We initiated a formal study of the problem of designing

a scalable overlay network to support efficient decentralized
pub/sub communication. We introduced a new optimiza-
tion problem, Min-TCO whose objective is to minimize the
number of links needed to create a topic-connected (and thus
optimal with respect to the routing cost) overlay network.

We showed hardness of Min-TCO by proving that its de-
cision version (TCO) is NP-complete. On the positive side,
we presented the Greedy Merge (GM) algorithm, which has
a polynomial running time and a logarithmic approximation



ratio. We proved that GM is almost tight for most practical
uses by showing that no polynomial algorithm can approxi-
mate Min-TCO within a constant factor (unless P=NP).

Our experimental results demonstrate that under realistic
workloads, the overlay networks constructed by GM are sig-
nificantly more scalable than those constructed by straight-
forward implementations of topic-connectivity. Our results
also highlight the impact of interest correlation among the
nodes and emphasize the fact the GM algorithm exploits
this correlation in a manner that improves scalability.

In order to formally study scalability of overlay construc-
tions in the context of other parameters affecting pub/sub
performance, we introduced a new parameterized family of
decision problems, called SOC, and gave examples of two
representative problems. The further study of the SOC
problems as well as extending GM to dynamic and/or dis-
tributed settings is the subject of future work.
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APPENDIX

A. NP-HARDNESS OF TCO
Proof of Lemma 5.2. The proof goes by reducing the

problem of set cover to SN-TCO. The decision problem of
set cover is defined as follows: given a universe set U and
a collection S of subsets of U , a set cover is a subcollection
C ⊆ S such that

S

s∈S
s = U . The problem is given a tuple

(U, S, k), k ∈ N to determine if there is a set cover C of size
|C| = k. The set cover problem is one of the first problem
discovered to be NP-complete.

Given an instance (U, S, k) of the set cover problem, we



construct an instance SN-TCO(V, T, Int , v, d) in the follow-
ing way: we take T with topics that one-to-one correspond
to the elements of U . We take V of size |S|+ 1: V includes
one special node v and |S| nodes that one-to-one correspond
to the elements of S. We build the interest binary relation
Int in the following way: v is interested in all |T | topics.
For any other node w, we construct its interests based on
the data of the corresponding subset s ∈ S: w is interested
in a topic t iff s includes an element u ∈ U that corresponds
to t. Finally, we take d = k. We now prove that there is
an overlay matching this instance of the SN-TCO problem if
and only if there is a set cover matching the original instance
of the set cover problem.

Suppose there is an overlay G such that degreeG(v) ≤ d
and for every topic, all the nodes interested in this topic
create a single connected component of G. Denote by V N
the set of neighbors of v in G: V N = {w|w ∈ V, (v, w) ∈ E}.
Consider C = {s|s ∈ S, s corresponds to w, w ∈ V N}. Note
that ∀t ∈ T,∃w ∈ V, w 6= v, Int(w, t) because

S

s∈S
s = U .

Therefore, ∀t ∈ T,∃w ∈ V N, Int(w, t) because otherwise v
and the other nodes interested in t will not form a single
connected component. Hence,

S

s∈C
s = U , and C is a set

cover. Furthermore, |C| = |V N | = degreeG(v) ≤ d = k (it
is possible to add other elements of S to C to make |C| = k
if necessary).

Suppose there is a set cover C of size k. Consider an over-
lay G in which all nodes other than v are connected to each
other: ∀w ∈ V,∀w′ ∈ V, w 6= v, w′ 6= v → (w, w′) ∈ E, and
v connected to those and only those nodes that correspond
to the elements of C. Obviously, degreeG(v) = |C| = k = d.
Furthermore, for every topic t, there is a neighbor of v that
is interested in t because

S

s∈C
s = U . Therefore, all the

nodes interested in t create a single connected component of
G.

While this concludes the proof, it is interesting to note
that there is a similar reverse reduction from SN-TCO to
the set cover problem. Thus, the two problems are isomor-
phic.

Proof of Lemma 5.1. The proof goes by reducing the
problem of SN-TCO to TCO. Assume d ≥ 3 (in the special
case of d ≤ 2, SN-TCO is trivially in P). Given an instance
(V, T, v, Int , d) of the SN-TCO problem, we construct an
instance (V ′, T ′, Int ′, d′) of the TCO problems as follows.
We take T ′ = T and d′ = d. V ′ includes v and every other
node w 6= v of V duplicated |V | − 1 times. Thus, the size of
V ′ is 1+(|V |−1)×(|V |−1). Denote Gr(w) the set of |V |−1
duplicated nodes in V ′ that correspond to the node w of V .
We will call w the spawning node of w′, w′ ∈ Gr(w) and
denote it by spawning(w′). Int ′ is constructed as follows:
Int ′ retains the interests of v in Int so that ∀t ∈ T, Int ′(v, t)
iff Int(v, t). For all nodes of V ′ other than v, their interests
are identical to those of their spawning nodes in V : ∀t ∈
T, ∀w′ ∈ V ′, w′ 6= v, Int ′(w′, t)↔ Int(spawning(w′), t).

We now prove that there is an overlay matching this in-
stance of the TCO problem if and only if there is an over-
lay matching the original instance of the SN-TCO prob-
lem. Suppose there is an overlay G′ = (V ′, E′) such that
degree(G′) ≤ d and for every topic, all the nodes interested
in this topic create a single connected component of G′.
Consider G = (V, E) wherein E is constructed by connect-
ing all nodes of V other than v to each other and connecting
v as follows: ∀w ∈ V, w 6= v, (v, w) ∈ E iff ∃w′ ∈ V ′ such
that w = spawning(w′) ∧ (v, w′) ∈ E′. In other words, we
obtain the edges of v in G by grouping the edges of v in
G′ and make a full clique of all nodes of G other than v.
Note that degreeG(v) ≤ degreeG′(v) ≤ d. Assume there is
a topic t such that all the nodes interested in t do not create
a single connected component in G. This is only possible
if Int(v, t) ∧ ∃w ∈ V, w 6= v, Int(w, t) ∧ ∀w ∈ V, Int(w, t) →
(v, w) 6∈ E. Then, ∃w′ ∈ V ′, w′ 6= v, Int ′(w′, t) ∧ ∀w′ ∈
V ′, Int ′(w′, t)→ (v, w′) 6∈ E′. Therefore, all the nodes of G′

interested in t do not create a single connected component
in G′, which is a contradiction.

Suppose there is an overlay G=(V, E) such that degreeG(v)
≤ d and for every topic, all the nodes interested in this
topic create a single connected component of G. Consider
G′ = (V ′, E′) wherein E′ is constructed in the following
manner. For each w ∈ V, w 6= v, all |V | − 1 nodes of Gr(w)
are connected to form a cycle. Let us impose an order on
the cycles and on the nodes within each cycle. Each node of
Gr(w) may only have a single edge besides the two edges of
the cycle, so that ∀w′ ∈ V ′, w′ 6= v, degreeG′(w′) ≤ 3 ≤ d.
Specifically, for every two cycles Gri and Grj , we connect
node wj

i of Gri with node wi
j of Grj . This way, for every

topic t, all the nodes of G′ other than v that are interested in
t form a single connected component. For every cycle Gri,
its node wi

i , which does not have an edge to any other cycle,
is used to form a connection to v: ∀w ∈ V, w 6= v, Gri =
Gr(w), (v, wi

i) ∈ E′ iff (v, w) ∈ E.
Note that degreeG′(v) = degreeG(v) ≤ d. Since for every

other node, its degree in G′ is limited by 3, degree(G′) ≤ d.
Assume there is a topic t such that all the nodes of G′ in-
terested in t do not create a single connected component
in G′. This is only possible if Int(v, t) ∧ ∃w′ ∈ V ′, w′ 6=
v, Int ′(w′, t) ∧ ∀w′ ∈ V ′, Int ′(w′, t) → (v, w′) 6∈ E′. Then,
∃w ∈ V, w 6= v, Int(w, t) ∧ ∀w ∈ V, Int(w, t) → (v, w) 6∈ E.
Therefore, all the nodes of G interested in t do not form
a single connected component in G, which is a contradic-
tion.


