Bringing Life to Dead Spots

Grace Woo

Pouya Kheradpour, Dawei Shen, and Dina Katabi

Many APs But Still Poor Coverage

Poor Coverage Is Not No Coverage! 010101011X11 01 101011011 oss Currently/High Bit Error Spatial Diversity → Persistent Loss → APs are unlikely to → Dead Spot have same bit error Can recover a correct packet if we combine the correct bits from these receptions

But Which AP Got the Right Bit?

- Clearly can't have per bit checksum
- Prior work (MRD) tries all block combinations to satisfy checksum

- Exponential Complexity
- Works for a few bit errors But not dead spots

SOFT

- Recovers a correct packet from its faulty receptions at APs
- Leverages physical layer hints to identify correct bits
- SOFT's delivery rate is up to I0x higher than current WLANs and MRD

SOFT Architecture

Physical Layer Knows More!

PHY already estimates a confidence in its 0-1 decision → Soft Value

Larger absolute soft values -> More confidence in bit

We Use the Soft Values

 SOFT changes the PHY interface to expose the soft values to higher layers

SOFT combines the soft values of a bit to decode it

 The combiner forwards the decoded packet if it satisfies the 802.11 checksum

How Do We Combine Soft Values?

Say for a particular bit, we got

How do we decode the bit?

- Maximum soft value → Bit is "1"
- Majority vote → Bit is "0"
- Average → Bit is "1"

Different Combining Methods → Different Answers!

SOFT Combining Algorithm

Intuitively, we want to favor less noisy channels

Let σ_i^2 be the noise variance on the channel to AP_i Let S_{ij} be the soft value of bit j reported by AP_i

SOFT decision rule:

$$\sum_{i} \frac{S_{ij}}{\sigma_{i}^{2}} \ge 0 \implies \text{Bit } j \text{ is "1" else "0"}$$

For AWGN and dead spots rule is proven optimal.

But, How Does SOFT Get the Noise Variance?

Randomness in soft values is caused by channel noise

Estimate σ_i^2 from the PDF of the soft values in packet

How About Overhead?

- PHY soft values can be 32-bit float
 - → Excessive Ethernet traffic

Solution

- Invoke SOFT only when associated AP can't decode
- Quantize soft values (we used 3 bits)

What About the Downlink?

Use Time Diversity

Combine a packet with its retransmission

Performance

SOFT Implementation

- Software GNURadio codebase
- Hardware USRP frontend
- GMSK and DBPSK modulations
- Soft values are inputs to the slicer
- Poor Coverage:
 - SNR 5 12 dB
 - BER about 10⁻³

Experimental Setup

- 13 GNURadio nodes
- Compared
 - Current 802.11 WLAN (user associates with best AP)
 - MRD
 - SOFT
- Each Experiment
 - 3 random APs
 - Random source
 - Transmit 500 packets

SOFT's delivery rate can be 10x higher

SOFT on Downlink

CDF over 50,000 packets

Number of Retransmissions Until Correct Packet

SOFT on Downlink

CDF over 50,000 packets

Much Higher Throughput!

Combining Method Is Important

SOFT Outperforms MAX and MAJORITY

Effect of Quantization

SOFT Average Delivery Rate

Overhead on Wired Ethernet is Acceptable

Related Work

- Soft and softer handoff in cellular networks
- Theoretical Maximum Ratio Combining (MRC) [Brennan55, Yang99]
- H-ARQ & Chase Combining [ASX03]
- Partial Packet Recovery [Jam07]

Conclusion

- WLAN can have better coverage if the interface to the PHY exposes soft values
- Delivery rate can be up to 10x higher
- Ethernet overhead is acceptable
- The new architecture, SOFT, can co-exist with unmodified 802.11 cards and APs