
In-Net : In-Network Processing for the Masses

Radu Stoenescu‡ Vladimir Olteanu‡ Matei Popovici‡ Mohamed Ahmed∗

Joao Martins∗ Roberto Bifulco∗ Filipe Manco∗ Felipe Huici∗ Georgios Smaragdakis†

Mark Handley• Costin Raiciu‡
† University Politehnica of Bucharest ∗ NEC Europe † MIT CSAIL • University College London

firstname.lastname@cs.pub.ro firstanme.lastname@neclab.eu gsmaragd@csail.mit.edu
m.handley@cs.ucl.ac.uk

Abstract
Network Function Virtualization is pushing network opera-
tors to deploy commodity hardware that will be used to run
middlebox functionality and processing on behalf of third
parties: in effect, network operators are slowly but surely
becoming in-network cloud providers. The market for in-
network clouds is large, ranging from content providers, mo-
bile applications and even end-users.

We show in this paper that blindly adopting cloud tech-
nologies in the context of in-network clouds is not feasible
from both the security and scalability points of view. Instead
we propose IN-NET, an architecture that allows untrusted
endpoints as well as content-providers to deploy custom in-
network processing to be run on platforms owned by net-
work operators. IN-NET relies on static analysis to allow
platforms to check whether the requested processing is safe,
and whether it contradicts the operator’s policies.

We have implemented IN-NET and tested it in the wide-
area, supporting a range of use-cases that are difficult to de-
ploy today. Our experience shows that IN-NET is secure,
scales to many users (thousands of clients on a single in-
expensive server), allows for a wide-range of functionality,
and offers benefits to end-users, network operators and con-
tent providers alike.

1. Introduction
Middleboxes have been deployed in most networks to in-
crease security and application performance, to the point
where they are visible on a large fraction of end-to-end paths
[19] and are as numerous as routers and switches in enter-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
EuroSys’15, April 21–24, 2015, Bordeaux, France.
Copyright c© 2015 ACM 978-1-4503-3238-5/15/04. . . $15.00.
http://dx.doi.org/10.1145/10.1145/2741948.2741961

prise networks [33]. Until recently, middleboxes were rather
expensive hardware appliances that were difficult to upgrade
and scale and locked in operators to hardware vendors such
as Cisco or Juniper.

Network function virtualization (NFV) aims to run the
functionality provided by middleboxes as software on com-
modity hardware, and is being embraced by network providers
because it promises to reduce costs for purchasing, upgrad-
ing and scaling middleboxes. The transition to NFV has
gained a lot of traction in standards groups: there is a NFV
group in ETSI [37] and Service Function Chaining has been
chartered as a new working group at the IETF to allow send-
ing traffic via multiple network functions. We are also start-
ing to see initial deployments: Deutsche Telekom is deploy-
ing racks of x86 servers at its regional POPs [3], and other
operators are following suit.

By deploying x86 infrastructure, network operators aim
to go further than running cheaper middleboxes: they also
want to offer processing on demand to other parties, effec-
tively becoming miniature cloud providers specialized for
in-network processing. Such a shift would re-invigorate the
business models of operators, faced with dwindling profits
from their main business of selling bandwidth.

Content providers are very keen to perform processing in
the network, close to the users, to reduce latencies and gain
performance: in the past ten years they have done so by rely-
ing on CDNs for both static and dynamic content (e.g., Aka-
mai [24, 29]) or by deploying hardware in access networks
(e.g., Google Global Cache [1, 14] or Netflix Open Con-
nect [2]). Even end-user applications deploy middleboxes
to bypass NATs, as is the case with Skype supernodes or
STUN servers. More and more mobile applications require
in-network support to achieve inbound connectivity behind
provider NATs and personalized traffic optimization to re-
duce energy consumption (e.g. by batching) and bandwidth
usage of cellular links.

There is thus a potentially large market for in-network
processing, and network operators are shaping up as the
cloud operators for such processing. Today’s clouds are
based in few locations and host millions of servers. In con-

1

trast, in-network clouds will be highly distributed, with a
few racks in each mini-cloud (PoP) and tens to hundreds of
mini-clouds per network operator.

To enable in-network clouds, the current belief is that one
can just adapt the technologies used in public clouds (e.g.
Amazon’s EC2) in the context of in-network processing.
We observe, however, that this approach is not feasible:
current approaches do not scale to a large number of tenants
per machine, and operator security or policy requirements
may be violated by unconstrained tenant processing. There
is a fundamental tension between the programming model
offered to tenants (x86 VM in public clouds) and the ability
to understand whether the tenant processing is safe to run.

Our contribution is an architecture to enable in-network
processing called IN-NET. IN-NET restricts the program-
ming model offered to tenants to Click (as in [27]) and ad-
dresses the challenges above by:

• Defining a set of security rules that ensure in-network
processing is safe to operators and the Internet.

• Defining an API that allows both operators and users to
express their policy.

• Using static analysis tools (symbolic execution) to au-
tomatically check whether client processing satisfies
provider policy and security requirements, and whether
the client’s own requirements are met.

• Optimizing ClickOS, a guest operating system that can
run Click configurations in Xen virtual machines, to sup-
port 1,000 tenants on a single physical machine.

We have built a prototype of IN-NET that encapsulates
all these contributions. We ran tests in lab environments to
understand its scaling limits (Section 6), and implemented
a range of middleboxes to see how accurate static check-
ing is in practice. In addition, we have deployed IN-NET
on a wide-area testbed, and implemented a number of dif-
ferent use cases that showcase the architecture’s potential
(Section 8). Our experiments show that IN-NET scales to
large numbers of users and brings performance benefits to
end users, operators and content providers alike.

2. Requirements and Approach
Enabling in-network cloud processing raises a number of
issues compared to traditional clouds: scale (many more
users), security and policy compliance.

Scale. In-network clouds will cater for both businesses and
(mobile) end-users, thus the number of tenants of in-network
computing is expected to be quite large. It is possible that
many of these tenants will process little traffic. As users
are mobile and processing needs to follow the user for best
performance, we also expect the churn to be much higher: in-
network clouds need to promptly handle many more requests
to start or terminate processing.

What technology shall we use to enable in-network pro-
cessing platforms? Providing x86 VMs, as used in clouds
today, will not scale: Xen can only run tens of VMs with
commodity OSes on a single machine, hitting multiple scal-
ing barriers. One limitation is memory: a stripped down
Linux VM has a 500MB memory footprint, so supporting
processing for one thousand users with one VM per user will
need in excess of 500GB, which is wasteful considering the
processing done on behalf of each user is typically very sim-
ple, and most users are only active for short periods of time.

In-network processing is specialized to packet and flow-
processing, and we can use restricted programming models
to support it much more efficiently. In previous work it has
been shown that it is possible to build a wide range of in-
network processing using the Click [23] modular router. The
same authors propose ClickOS, a guest operating system
optimized to run Click that can reach packet speeds nearing
10Gbps line-rate (14Mpps) while running tens to a hundred
of VMs on the same machine [27].

We use ClickOS as the basis of our solution to enable in-
network processing for the masses. We enhance ClickOS to
scale beyond 100 users by using two novel techniques (§5):
safely consolidating multiple users on the same VM and
instantiating virtual machines on the fly, as packets arrive.
To highlight the fact that user processing is not necessarily
instantiated as a separate VM, in this paper we term a unit of
processing on behalf of a user a processing module.

2.1 Security Requirements
Basic security issues inside a processing platform are simi-
lar to those in public clouds: virtualization offers both per-
formance and security isolation, and accountability ensures
that users are charged for the resources they use, discourag-
ing resource exhaustion attacks against platforms.

Today’s clouds rely on firewall appliances to police in-
bound traffic to their tenants’ VMs and typically allow all
reasonable outbound traffic (e.g. TCP, UDP). Inbound cloud
traffic (mostly HTTP/HTTPS request traffic) is much smaller
in size than outbound traffic, making it economical to police.
Not policing outbound traffic does have its downsides: there
are reports that “trial” accounts are used in public clouds
to launch DDoS attacks against other Internet clients. If we
applied the same security policy for in-network clouds, the
scale of the possible DDoS attacks would be much larger
and the threat posed by in-network processing for network
operators’ standard customers (e.g. home or business Inter-
net users) and the Internet at large would be unacceptable.

In-network clouds, by their distributed nature, must fur-
ther restrict what their tenants can do, or risk becoming the
ultimate network attack tool. We have devised a set of secu-
rity rules that must be obeyed by in-network tenants, ensur-
ing that such attacks are not possible.

A first requirement is that tenants can only process traf-
fic destined to them, and cannot spy on or illegally inter-
act with other tenants’ or operator traffic. To achieve this

2

requirement, we simply assign unique IP addresses to each
tenants’ processing module, and ensure that only traffic that
is destined to the processing module actually reaches it.

Should all tenants be allowed to generate outbound traffic
to any destination? The answer is obviously no—otherwise
it would be easy to launch DDoS attacks using IN-NET. We
cannot easily change the Internet to be default-off [17] and
spoofing free 1, but we can make sure that traffic generated
by IN-NET platforms obeys these principles. To implement
default-off, IN-NET requires that any third-party generated
traffic must be authorized by its destination; authorization
can be explicit or implicit.

• Explicit authorization occurs when either a) the desti-
nation has requested the instantiation of the processing
or b) the destination is a processing module belonging to
the same user. In the first case, the user will keep its net-
work operator updated with a number of addresses that
he owns and uses. In the second case, the provider needs
to implement a way to disseminate the IP addresses of a
certain user to all interested platforms.

• Implicit authorization occurs when a host A sends traf-
fic to a processing module B. If B is the destination, then
it is implicitly authorized to use A as the destination ad-
dress of the response traffic; this rule is similar in spirit
to existing firewall behavior that allows incoming traffic
corresponding to established outgoing connections. This
rule allows IN-NET platforms to reply to traffic coming
from regular end hosts (e.g., to implement a web server).

To prevent spoofing, IN-NET platforms ensure that traffic
leaving a platform has the platform’s IP as a source address
or the same address as when it entered the platform.

The set of rules above apply when the tenant is an un-
trusted customer of the in-network cloud service. The net-
work operator’s residential or mobile customers are still
subject to the anti-spoofing rules, but are also allowed to
send traffic to any destination, without the destination ex-
plicitly agreeing. This extension is natural: it allows client
in-network processing to use the same service that the client
itself receive from the operator (Internet connectivity). This
implies that such customers can also deploy explicit proxies.

Finally, the operator’s own processing modules are al-
lowed to generate traffic as they wish, reflecting the trust the
operator places in them. Static analysis only helps the opera-
tor decide whether the box is achieving its intended purpose
(i.e., correctness, as opposed to security).

2.2 Policy Requirements
Network operators apply local policy to customer traffic:
they prioritize certain traffic classes, apply application spe-
cific optimizations (e.g. HTTP middleboxes) and check
for security threats (Intrusion Detection Systems/firewalls).
When in-network clouds take off, traffic originated by the

1 All attempts to date have failed to gain any traction.

tenants must obey the same policy as all other traffic, but
applying policy is not as simple anymore, as the operator
would need to know beforehand what type of traffic the ten-
ant will generate before choosing a location to run it.

Consider the in-network cloud provider shown in Figure
3, whose policy dictates that all HTTP traffic follow the
bottom path and be inspected by the HTTP middlebox. If
a client’s VM talks HTTP, it should be installed on Platform
2 so that that the traffic can be verified by the middlebox.
Installing the client’s VM on Platform 1 would disobey the
operator’s policy.

3. Static Analysis as Basis for In-network
Processing

Before in-network processing becomes a reality, there are
also some practical hurdles: (i) how can operators mitigate
the risks of running third-party services in their core net-
works? and (ii) how can potential customers be sure opera-
tors handle their traffic and processing appropriately?

IN-NET overcomes this hurdle by enabling operators and
endpoints to reason about the operation of middleboxes
on their traffic, before instantiating the traffic or process-
ing. To do so, IN-NET treats the network (the endpoint, mid-
dleboxes and paths between them) as distributed program,
and the packets it carries as the variables of this program.
In this model, tracing the path a given packet takes in the
network is akin to modeling the control flow graph of a pro-
gram: IN-NET applies static analysis techniques from com-
pilers (in particular symbolic execution) to analyze the oper-
ations of the network with respect to the traffic it carries.

To understand how this works, consider the example in
Figure 1. The network operator runs a stateful firewall that
only allows outgoing UDP traffic, and related inbound traf-
fic. A mobile customer wants to tunnel its application data
over UDP to a server in the Internet, and needs the payload
to travel unchanged all the way to the server. Assuming the
client knows the pseudocode of the firewall (given in Figure
2.a), it could create a program snippet to model the network
configuration, and check whether its payload is unchanged:
firewall out(client)

To apply symbolic execution, a symbolic packet is cre-
ated in the client code. A symbolic packet represents a set
of packets with certain common constraints (e.g., all pack-
ets sourced by one host), and consists of a set of variables
that model header fields and the payload. Each variable can
be free or bound to a symbolic expression (another variable,
set of variables, or set of possible values). Free variables can
take any value, while bound variables express restrictions on
the values of the corresponding field.

In the example above, the packet fields (IP source, des-
tination, protocol and data) are set to the symbolic vari-
ables CLI, SRV, PROTO and DATA, all of which are free,
capturing traffic from all clients to any Internet destination.
The symbolic packet leaves the client and is fed as input to

3

Operator	

End-‐users	
Processing	 pla4orm	

Firewall	

Content	
provider	

S	

Figure 1. In-network processing example topology

the firewall out routine, which leaves existing packet
fields unchanged, but restricts the value of p[proto] to
UDP. By comparing the value of p[data] after the fire-
wall to the value before it, the client notices they point to the
same symbolic variable D. Thus, the data will not change
en-route to the server, and it will arrive as long as it is sent
over UDP.

Checking Operator Policy Compliance. Now consider a
more complex scenario, also in Figure 1. Assume the server
S responds to customers with the same packet, by flipping
the source and destination addresses, as shown in the pseu-
docode given in Figure 2.a. S wants to run its processing in
the operator’s platform to get lower latency. Is there a risk
that the provider’s clients will be attacked by S’s in-network
processing code?

One way to reassure the operator is to sandbox the pro-
cessing at runtime. However, sandboxing is not only expen-
sive (33%-70% drop in throughput in our evaluation), but
also imprecise. A better way is to use static analysis. To un-
derstand whether its policy is obeyed, the provider can apply
symbolic execution in two configurations: the original setup
where the server runs somewhere in the Internet, and plat-
form, where the server runs in the operator’s network.

The symbolic execution trace for the first case is shown in
Figure 2.b, where the symbolic packet headers are shown at
the top of the first table, and their bindings are shown below
these as we run reachability on the code shown in Figure
2.a. On every line, shaded cells denote changes in value.
For instance, when the packet exits the client, its source
address is set to unbound variable CLI and the destination
to SRV. In the firewall, p[proto] is constrained to have
value “UDP”. The symbolic packet reaching the client is
the last line of the trace. Running symbolic execution on
the platform setup yields exactly the same symbolic packet,
implying the two configurations are equivalent. Hence, it
is safe for the operator to run the content-provider’s server
inside its own network, without sandboxing.

4. The In-Net Architecture
Our discussion so far has highlighted that static analysis can
help to overcome the issues raised by in-network processing,
namely fear of running un-trusted code and understanding
interactions between customer traffic and operator process-
ing. However, we have made some major assumptions:

firewall_in(Packet	 p):	
	 if	 (p[firewall_tag])	
	 	 	 return	 p;	
	 else	 return	 NULL;	
//packet	 dropped	

IP	
SRC	

IP	
DST	 PROT	 DA

TA	
FW	
TAG	

?	 ?	 ?	 ?	

CLI	 ?	 ?	 ?	

CLI	 SRV	 ?	 ?	

CLI	 SRV	 P	 ?	

CLI	 SRV	 P	 D	

CLI	 SRV	 udp	 D	

CLI	 SRV	 udp	 D	 true	

CLI	 SRV	 udp	 D	

CLI	 SRV	 udp	 D	 true	

CLI	 CLI	 udp	 D	 true	

SRV	 CLI	 udp	 D	 true	

SRV	 CLI	 udp	 D	 true	

(a) Network model	
 (b) Symbolic execution	

client():	
	 p	 =	 create_packet();	
	 p[ip_src]	 =	 CLI;	
	 p[ip_dst]	 =	 SRV;	
	 p[proto]	 =	 PROTO;	
	 p[data]	 =	 DATA;	
	 return	 p;	

firewall_out(Packet	 p):	
	 if	 (p[proto]==udp)	
	 	 	 p[firewall_tag]=true;	
	 	 	 return	 p;	
	 else	 return	 NULL;	
	 //packet	 dropped	

server(Packet	 p):	
	 if	 (p[proto]	 ==	 “UDP”)	
	 	 	 old_dst	 =	 p[ip_dst];	
	 	 	 p[ip_dst]	 =	 p[ip_src];	
	 	 	 p[ip_src]	 =	 old_dst;	
	 	 	 return	 p;	
	 else	 return	 NULL;	
	 //packet	 dropped	

Figure 2. Static checking of the configuration in Figure 1.
The code is shown on the left-hand side, and the correspond-
ing symbolic execution trace is shown on the right.

1. It is possible to model middleboxes in a way suitable for
static checking. This is not a given, since middleboxes
are arbitrary code and inferring the needed model could
prove intractable.

2. The clients know what operator-deployed middleboxes
do. This clearly violates the operator’s need to keep its
network policy private, and would become a major stum-
bling block to adoption.

Our goal is to embed static analysis as the basis of a net-
work architecture that is deployable today, and that offers
benefits to network operators, content providers and cus-
tomers alike. The crux of our proposal is that access net-
work operators become miniature cloud providers, with a
focus on running in-network functionality for themselves,
their clients, or paying third parties.

To implement our architecture, operators will deploy a
controller that receives requests from clients and instantiates
processing on one of the processing platforms installed in
their network (see Figure 3). The controller knows the op-
erator’s topology and policy and uses a symbolic execution
tool called SYMNET [35] to statically check client requests.

To address assumptions 1 and 2, we built an API for
clients able to express the processing desired in a way that is
a) amenable to automatic static checking, b) flexible enough
to capture a multitude of in-network processing requests and
c) allows clients to check interactions with operator policies

4

Controller	

Nat&firewall	

Web	 Cache	
HTTP	 Op5mizer	

Pla+orm	 2	

Pla+orm	 3	
Internet	

End-‐users	
Pla+orm1	 	

Nat&firewall	

Legend	
Operator	 middlebox	

Web	 Cache	 Third-‐party	 middlebox	
Available	 processing	 	

Figure 3. In-Net architecture: access operators deploy pro-
cessing platforms where they run their own middleboxes and
processing for third parties. A controller installs client pro-
cessing after checking it for safety.

without knowing those policies. We next discuss each of
these items in detail, and wrap up with an example that
shows how the components work together.

4.1 The API
In-network processing is rather domain-specific - both in-
put and output are network traffic. Most operations applied
to packets are simple and include NATs, filters, tunneling,
proxies, shaping, forwarding and so on, and arbitrarily com-
plex functionality can be built by combining these basic
building blocks and by creating new ones.

As a result, IN-NET clients express processing requests
by using an extended version of the configuration language
used by the Click modular router software [23]. The Click
language has the notion of elements, small units of packet
processing such as DecIPTTL, Classifier, IPFilter
(and hundreds of others) which users interconnect into
graphs called configurations.

A key advantage of using modular programming is that
we can automatically analyze the client’s processing as long
as it relies only on known elements.

Client Requests contain two parts: (1) the configuration to
be instantiated and (2) the requirements to be satisfied (Fig-
ure 4). In an In-Net platform, a processing module is the
unit of processing, and it is the result of the instantiation
of a client-provided configuration. The configuration can es-
sentially take two forms: either a Click configuration using
well-known Click elements (please refer to the Click modu-
lar router information for more details about Click elements
and their syntax) or a pre-defined “stock” processing mod-
ules offered by the platform.

Stock modules can range from Click configurations to
software running on commodity OSes. Our prototype con-
troller, for instance, offers a reverse-HTTP proxy appliance,
an explicit proxy (both based on squid), a DNS server that
uses geolocation to resolve customer queries to nearby repli-
cas, and an arbitrary x86 VM where customers can run any
processing. The latter offers flexibility at the cost of security
and understanding of the processing: such VMs are sand-

Batcher module:
FromNetfront() ->
IPFilter(allow udp port 1500) ->
IPRewriter(pattern - - 172.16.15.133 - 0 0)
-> TimedUnqueue(120,100)
-> dst::ToNetfront()

reach from internet udp
-> Batcher:dst:0 dst 172.16.15.133
-> client dst port 1500

const proto && dst port && payload

Figure 4. Client request with a single processing module
for simple UDP port forwarding.

boxed at runtime and are more expensive to run (please refer
to Section 7.2 for more details).

Requirements allow both operators and clients to express
their policy, and we discuss them in detail next.

4.2 Requirements
Our policy language must be able to specify traffic reach-
ability for certain traffic classes between different parts of
the network, including routing via way-points. Additionally,
as packets are modified by middleboxes, we need a way to
specify what modifications are allowed.

Expressing network policy has traditionally been done
using VLANs to provide isolation, ACLs for access control,
and policy routing to specify routing not based on the desti-
nation address. This results in specifications that are difficult
to compose and verify, so we cannot use them.

Novel policy languages have been proposed in the context
of OpenFlow to describe operator policy. FML is a declar-
ative language that allows operators to use a simple syn-
tax to express predicates about groups of users, and spec-
ify how these groups can communicate [18]. FlowExp is a
lower level policy language proposed in [22] where routes
can be specified exactly or with wildcards. FlowExp also al-
lows specifying constraints (exact values or wildcards) for
packet headers. FlowExp comes fairly close to our needs,
however it cannot capture the transformations made by mid-
dleboxes to packet headers: it is not possible to specify, for
instance, that a certain header field should not be changed.

Our policy language is inspired by these two works. The
API supports reachability checks that have the form:

reach from <node> [flow]
{-> <node>[flow][const fields]}+

In the reachability check, node describes a vertex in the
network graph and can be:

• An IP address or a subnet.
• The keyword client that denotes subnets of the operator’s

residential clients.
• The keyword internet refers to arbitrary traffic originat-

ing from outside the operator’s network.

5

• A port of a Click element in a processing module (or port
0, if none is provided).

The -> denotes traffic that will flow from source to
destination. The flow specification uses tcpdump format
and constrains the flow that departs from the corresponding
node. By altering the flow definition between two nodes we
can specify how the flow should be changed between those
nodes, thus capturing the “allowed” middlebox processing
on that segment.

Clients use requirements to express how they would like
the network to behave without actually knowing the network
topology or the operator’s own policy. For instance, the
client in Figure 4 expects that Internet UDP traffic can reach
its private IP address on port 1500. This is stated by:

reach from internet udp ->
client dst port 1500

The statement above allows the operator to do any pro-
cessing as long as some UDP packets reach port 1500 of the
client. To specify that the Internet traffic is also destined to
port 1500, the client needs to add dst port 1500 to the
first line. The client could also request that Internet packets
are destined to port 2250; with such a configuration, Internet
packets will only arrive at the client if the operator changes
the destination port using some processing in its network.

The client can also specify that the UDP traffic goes
through Click element dst of processing module batcher,
on port 0, and, at that point, the IP destination should have
been changed to the client’s private IP:

reach from internet udp
-> batcher:dst:0 dst 172.16.15.133
-> client dst port 1500

To specify that a header field remains constant, the client
can specify values for it at different hops, as discussed
above; however, in certain cases the client does not know
apriori the value of the specific header (i.e. source port).
Our last construct allows users to specify invariants: packet
header fields that remain constant on a hop between two
nodes. For this, the user adds const to the header fields, in
tcpdump format, that should be invariant. In the example in
Figure 4, the client specifies that the destination port, pro-
tocol number and payload must not be modified on the hop
from the batcher processing module to the client.

Operators use the same API to describe their policy. Take
for instance the operator in Figure 3. It can express that all
HTTP traffic reaching clients must go through the HTTP
Optimizer as follows:

reach from internet tcp src port 80
-> HTTPOptimizer
-> client

4.3 The In-Net Controller
The job of the controller is to take client requests and stat-
ically verify them on a snapshot of the network; this snap-
shot includes routing and switch tables, middlebox config-
urations, tunnels, etc. Our controller relies on SYMNET, a
symbolic execution tool tailored for networks [35].

It is well known that symbolic execution does not scale
well when run on complex programs (e.g. involving loops,
dynamic memory allocation), despite the fact that existing
symbolic execution tools for C programs have made strides
into what is possible to symbolically execute [9]. Middle-
boxes are complex code, and the fact they keep per-flow state
makes the verification task even harder.

To avoid these issues, IN-NET does not check arbitrary
code: it only deals with Click configurations composed of
known elements, and it checks abstract models of the mid-
dleboxes rather than the middlebox code. SYMNET runs
symbolic execution over Haskell descriptions of the network
elements, and it scales well because our abstract models are
written to enable fast verification 2:

• They contain no loops.
• There is no dynamic memory allocation
• Middlebox flow state is modelled by pushing the state

into the flow itself, which allows SYMNET to be oblivious
to flow arrival order.

Our controller is implemented in Scala. It parses Click
configurations and outputs Haskell code that SYMNET can
verify. We have manually modeled all the stock Click el-
ements. At startup, the controller is provided with the op-
erator’s network configuration including available platforms
and their network addresses, routers and snapshots of their
routing tables. Next, the controller is provided with a set of
rules (using the API above) that must always hold. The pol-
icy is enforced by static verification performed by the con-
troller at each modification of the state of the network (i.e.,
Click module deployment), as described next.

The controller runs a SYMNET reachability check for
each requirement given. It first creates a symbolic packet us-
ing the initial flow definition or an unconstrained packet, if
no definition is given, and injects it at the initial node pro-
vided. SYMNET then tracks the flow through the network,
splitting it whenever subflows can be routed via different
paths, and checking all flows over all possible paths. For
each header in the symbolic packet, SYMNET tracks restric-
tions on its current value, and also remembers the last def-
inition of this header field (when a node last modified it).
The output of SYMNET is the flow reachable at every node
in the network, together with a history of modifications and
constraints applied at each hop.

2 More information about the abstract models used by SYMNET can be
found in [35].

6

Using this information, the IN-NET controller checks
reachability constraints by verifying that the flow specifica-
tion provided in a given node matches the one resulting from
symbolic execution. The requirement is satisfied if there ex-
ists at least one flow (symbolic) that conforms to the verified
constraints.

To check invariants, the controller simply checks whether
the header field was not defined on the last hop. For instance,
in our example in Figure 4, the invariants for fields proto,
destination port and payload hold because the corresponding
header fields in the symbolic packet are not overwritten on
the hop between batcher and the client.

Scaling the controller. In our prototype, the IN-NET con-
troller runs on a single machine and our evaluation in section
6.1 shows it can answer queries in under a second for fairly
large networks; such delays are acceptable because they only
occur when users processing modules to be installed, and not
during packet processing. However, if the load on the con-
troller increases or the network is larger, the controller may
become a bottleneck. Fortunately, most of the decisions the
controller makes are about correctness and installing indi-
vidual processing elements only affects that user’s traffic;
we conjecture it is fairly easy to parallelize the controller by
simply having multiple machines answer the queries. Care
must be taken, however, to ensure requests of the same user
reach the same controller (to ensure ordering of operations),
or to deal with problems that may arise when different con-
trollers simultaneously decide to take conflicting actions:
e.g. install new processing modules onto the same platform
that does not have enough capacity.

Client configuration. Before sending processing module
deployment requests to the IN-NET controller, the client
installs IN-NET software locally and configures it with the
client’s credentials, and with the address of the controller.
We assume this address is obtained by out-of-band methods
(e.g., register with the network operator, as in clouds today).

The client can then submit its processing requests to the
controller. The controller statically verifies if there exists
a platform where the client’s processing module can run
and adhere to both operator and client policies. To do so,
it iterates through all its available platforms, pretends it has
instantiated the client processing, checking all operator and
client requirements. If no platform is found, deployment is
not safe and the client is notified accordingly.

If a matching platform is found, the Click module is
deployed on the chosen platform and is assigned a client-
unique identifier. The client is also given an IP address, pro-
tocol and port combination that can be used to reach that
module. The controller then alters the operator’s routing con-
figuration: at the very least, it will install forwarding rules
on the target platform to ensure that the processing mod-
ule receives traffic destined for the IP address/protocol/port
combination. In our implementation, we use Openflow rules
to configure Openvswitch running on each platform for this

purpose. Finally, clients can stop processing modules by is-
suing a kill command with the proper identifier.

4.4 Checking Security Rules
Enforcing security policies relies on a mix of static analysis
and, if necessary, sandboxing.

For all clients, the controller verifies the client’s pol-
icy, but also ensures that the client does not spoof traffic.
To check against spoofing, the controller injects an uncon-
strained symbolic packet (i.e. any possible traffic input) into
the processing module and observes the output. The source
address of traffic leaving the platform must either be the ad-
dress assigned to the client by the controller, or the source
address header field should be invariant along any path from
the entry to the exit of the module.

For untrusted third-parties, the controller must further en-
sure the destination agrees with receiving that traffic. In this
case, the controller checks the destination address of packets
originating from the processing module. Conforming pack-
ets will obey one of the following rules:

• The destination address is in a white-list that is main-
tained per-client; or

• The destination address is equal to the source address of
the incoming traffic.

Checking the first rule is trivial. Checking the second
rule is possible because of the power of symbolic execution:
SYMNET will process the definitions of the destination field
such as IPdst = IPsrc by marking that IPdst is bound to the
same unknown variable IPsrc was bound to when it entered
the platform, and hence the invariant holds.

If the rules are satisfied, the module is guaranteed to be
safe, granted individual Click elements are bug-free. If the
rules are not satisfied, there are two possible outcomes: (i)
either all the traffic is not conforming, and thus the process-
ing module should not be run, or (ii) the module can generate
both allowed and disallowed traffic, and compliance cannot
be checked at install time.

In the second case, the faulty behavior may not triggered
in real life, thus leading to false positive alerts: the mali-
cious flows exposed by symbolic execution may not occur
during the functioning of the module (e.g., a tunnel is one
such case). In this case, the operator will run the processing
module in a sandbox.

Sandboxing. Arrakis [31] or IX [8] propose to use hardware
virtualization features in modern NICs that include rate-
limiting and filtering/white-listing to enable safe I/O pass-
through to virtual machines. Reusing the same mechanisms
to sandbox IN-NET clients is not possible: hardware support
is not available for stateful rules such as implicit authoriza-
tion in IN-NET. Hardware support can be used for our static
security rules, however existing NICs only support tens to a
few hundred rules, limiting the number of users supported
on a single box.

7

We rely on software sandboxing instead. We have im-
plemented a new Click element called ChangeEnforcer
that sandboxes one processing module. Its implementation
resembles that of a stateful firewall: it allows traffic from
the outside to the processing module, and only related re-
sponse traffic from the processing module to the outside
world. The sandboxing element is additionally configured
with a whitelist of addresses the processing module is al-
lowed to access.

When a processing module requires sandboxing, the con-
troller transparently instantiates an instance of the enforcer
for each interface of the processing module. This instance is
added to the client configuration when a Click configuration
is being run; this has the benefit of billing the user for the
sandboxing. The element will be injected on all paths from
the FromNetfront element to elements in the processing
module, and on all paths from the processing module to the
ToNetFront element.

When the processing module is arbitrary code (x86 VM),
the sandboxing runs in a separate VM on the same machine,
and traffic is properly directed to the sandbox using Open-
flow rules. As expected, our evaluation shows this option is
more expensive from a processing point of view.

4.5 A Unifying Example
We will use a concrete example—push notifications for
mobiles— to illustrate how to use the IN-NET architecture.
Such notifications are useful for many apps including email,
social media and instant messaging clients, and today re-
quire the mobile device to maintain a long-running TCP
connection to a cloud server with keep-alives (roughly ev-
ery minute) to ensure that NAT state does not expire. Apps
wanting to notify the mobile can do so via the cloud server.
Unfortunately, this mechanism allows applications to send
as many messages as they wish, keeping the device’s cellular
connection awake and draining its battery much quicker [6].

We can solve this problem with IN-NET. Assume the mo-
bile customer wants to batch incoming UDP notifications
on port 1500 for UDP traffic. The client request is shown
in Figure 4: traffic received on port 1500 by the processing
module is forwarded to the client’s IP address. Additionally,
the module restricts the IPs that can send notifications, and
batches traffic to save energy. Upon receiving this request
from a customer, the controller: (1) Finds a suitable plat-
form to instantiate the requested processing. At every poten-
tial platform it uses SYMNET to see if both the provider’s
and the customer’s requirements can be met. In the example
in Figure 3, only Platform 3 applies, since Platforms 1 and
2 are not reachable from the outside. (2) If there are suit-
able platforms, it instantiates the processing; otherwise, it
does nothing. In the example given the processing module is
started on Platform 3. (3) Finally, it informs the client of the
outcome (the external IP address of the processing module
in this case).

5. The In-Net Platform
IN-NET platforms are based on Xen and so inherit the iso-
lation, security and performance properties afforded by par-
avirtualization. As such, the platforms can run vanilla x86
VMs, though this is not our main target because it severely
limits the scalability of the system. For the platform to be
viable, it has to be able to support a potentially large number
of concurrent clients while ensuring isolation between them.

Consequently, the IN-NET platforms rely on ClickOS
[26], a guest operating system optimized to run Click con-
figurations. ClickOS consists of a tiny Xen virtual machine
built from combining MiniOS (a minimalistic OS avail-
able in the Xen sources) and the Click modular router soft-
ware [23]. ClickOS supports a large range of middleboxes
such as firewalls, NATs, load balancers, and DNS prox-
ies, with many more possible thanks to the over 200 Click
elements built into the ClickOS VM image; for more on
ClickOS please see [26]. Here, we focus on modifications
and experimentation we carried out to build a viable IN-NET
platform around ClickOS.

Scalability via on-the-fly middleboxes. ClickOS virtual
machines are tiny (5MB when running), allowing us to run
up to 100 of them on inexpensive commodity hardware as
explained below. Even so, an In-Net platform is likely to
have to service many more clients. One key observation is
that since ClickOS VMs can boot rather quickly (in about 30
milliseconds), we only have to ensure that the platform copes
with the maximum number of concurrent clients at any given
instant. Thus, we transparently instantiate ClickOS VMs on-
the-fly, when we see packets destined to a client configura-
tion that is not already running.

To achieve this, we modify ClickOS’ back-end software
switch to include a switch controller connected to one of its
ports. The controller monitors incoming traffic and identifies
new flows, where a new flow consists of a TCP SYN or UDP
packet going to an In-Net client. When one such flow is
detected, a new VM is instantiated for it, and, once ready,
the flow’s traffic is re-routed through it.

Suspend and resume. Creating VMs on the fly works great
as long as the client’s processing is stateless or only relevant
to the single flow the VM was created to handle. For stateful
handling, and to be able to still scale to large numbers of
concurrent clients, we add support to MiniOS to allow us to
suspend and resume ClickOS VMs; we present evaluation
results for this in Section 6.

Scalability via static checking. The one-client-per-VM
model is fundamentally limited by the maximum number
of VMs a single box can run, and on-the-fly instantiation
mitigates the problem but is no panacea. We could of course
further increase capacity with servers with large numbers of
CPU cores, or use additional servers, but this would just be
throwing money at the problem.

8

1 3 5 7 9 11 13 15
Ping ID

10−1

100

101

102

Pi
ng

tim
e

(m
s)

Figure 5. ClickOS reaction time for the
first 15 packets of 100 concurrent flows.

0 10 20 30 40 50 60 70 80 90
Flow ID

0
50

100
150
200
250
300
350

C
on

ne
ct

io
n

tim
e

(m
s)

Connection time
Transfer time

16.6
16.8
17.0
17.2
17.4
17.6
17.8

To
ta

lt
ra

ns
fe

rt
im

e
(s

ec
s)

Figure 6. 100 concurrent HTTP clients
retrieving a 50MB file through a IN-NET
platform at 25Mb/s each.

0 50 100 150 200
Number of VMs

30
40
50
60
70
80
90

100

Ti
m

e
(m

ill
is

ec
on

ds
)

resume
suspend

Figure 7. The x-axis shows the num-
ber of existing VMs when one more
VM is suspended or resumed.

It is better to run multiple users’ configurations in the
same virtual machine, as long as we can guarantee isola-
tion. To consolidate multiple users onto a VM we create
a Click configuration that contains all user configurations
preceded by a traffic demultiplexer; no links are added be-
tween different users’ configurations, and no elements in-
stances are shared. Explicit addressing ensures that a client’s
module will only see traffic destined to it, and our security
rules ensure that processing modules cannot spoof IP ad-
dresses. Standard Click elements do not share memory, and
they only communicate via packets. This implies that run-
ning static analysis with SYMNET on individual configura-
tions is enough to decide whether it is safe to merge them.

For Click elements that keep per-flow state, ensuring iso-
lation is trickier: one user could force its configuration to use
lots of memory, DoS-ing the other users. To avoid such sit-
uations we would need to limit the amount of memory each
configuration uses. Our prototype takes the simpler option
of not consolidating clients running stateful processing.

6. Evaluation
IN-NET has two major components: its scalable platform
software, and the controller. In this section we evaluate the
scalability of these two components.

Platform Scalability. To estimate the number of clients a
powerful platform might support, we first ran basic exper-
iments on one of our more expensive servers, a machine
with 4 AMD Opteron 6376@2.3GHz processors (64 cores
in total) and 128GB of RAM. In these experiments, we sim-
ply booted up as many virtual machines as we could, and
we ran both Linux and ClickOS VMs. We were able to run
upto 200 stripped down Linux VMs, each with a 512MB
memory footprint. In comparison, the memory footprint of
a ClickOS VM is almost two orders of magnitude smaller
(around 8MB), and we were able run as many as 10000 in-
stances of ClickOS on the same hardware.

These numbers are upper bounds, but we would like to
know how many concurrent users can share an In-Net plat-
form while carrying out actual middlebox processing on
modest hardware, which we believe is more representative
of practical deployments. First we test ClickOS’s ability to

quickly react to incoming traffic by instantiating on-the-fly
virtualized middleboxes. We connect three x86 servers in a
row: the first initiates ICMP ping requests and also acts as
an HTTP client (curl), the middle one acts as the IN-NET
platform and the final one as a ping responder and HTTP
server (nginx). For the actual processing we install a state-
less firewall in each ClickOS VM. All measurements were
conducted on a much cheaper (about $1,000), single-socket
Intel Xeon E3-1220 system (4 cores at 3.1 GHz) with 16 GB
of DDR3-ECC RAM running Xen 4.2.0.

In our first experiment we start 100 pings in parallel,
with each ping sending 15 probes. Each ping is treated by
the platform as a separate flow, and a new VM is started
when the first packet is seen. Figure 5 shows the results:
the first packet in a flow experiences higher delays because
of the overhead of VM creation, but its round-trip time
is still only 50 milliseconds on average. For subsequent
packets the ClickOS VM is already running and so the RTT
drops significantly. The RTT increases as more ClickOS
VMs are running, but even with 100 VMs the ping time for
the first packet of the 100th flow is 100 ms. When running
the same experiment with stripped-down Linux VMs, the
average round-trip time of the first packet is around 700ms
which is an order of magnitude higher than that of ClickOS
and unnaceptable for interactive traffic, e.g. web browsing.

Next, we conducted a more realistic experiment where
each client makes an HTTP request capped at 25Mb/s. The
requests go through an In-Net platform in order to reach an
HTTP server hosting a 50MB file, and the client processing
(plain forwarding) is booted when the SYN arrives. We mea-
sured the time it takes for the connection to be set up (i.e.,
including VM creation) as well as the total time to trans-
fer the file, and plot the results in Figure 6 (the connection
times are longer than the transfer ones because the files are
relatively small).

Suspend and resume. Starting and terminating ClickOS
VMs is ideally suited for stateless network processing, such
as a plain firewall. When VMs hold per-flow state, however,
terminating a VM would effectively terminate the end-to-
end traffic, which is unacceptable. The solution in this case
is to use suspend/resume instead of terminate/boot. To this

9

24 48 72 96 12
0

14
4

16
8

19
2

21
6

24
0

25
2

of configs per VM

8.0

8.5

9.0

9.5

10.0

C
um

ul
at

iv
e

th
ro

ug
hp

ut
(G

bi
t/s

)

Figure 8. Cumulative throughput when
a single ClickOS VM handles configura-
tions for multiple clients.

200 400 600 800 1000
clients

0
1
2
3
4
5
6
7
8

C
um

ul
at

iv
e

th
ro

ug
hp

ut
(G

bi
t/s

)

50 per VM
100 per VM
200 per VM

Figure 9. Throughput when a box has
up to 1,000 clients with different number
of VMs and clients per VM.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

1 3 7 15 31 63 127 255 511 1023

T
im

e
(s

)

Number of Middleboxes in configuration

Compilation
Checking

Figure 10. Static analysis checking
scales linearly with the size of the op-
erator’s network.

end, we have implemented suspend and resume support in
MiniOS and performed experiments varying the number of
existing VMs when we suspend and resume a single VM.
The results are shown in Figure 7 highlighting that it is
possible to suspend and resume in 100ms in total.

Aggregating multiple users onto a single virtual machine.
Another way to scale the number of clients served by a IN-
NET box is by consolidating the processing modules of dif-
ferent clients onto a single ClickOS virtual machine, with
proper demultiplexing and multiplexing of traffic (the con-
solidation is safe as long as the processing is stateless). To
understand the scalability of this optimization, we create a
single ClickOS VM and install a Click configuration con-
taining an IPClassifier element to act as a destination
IP demuxer. For each client we run individual firewall ele-
ments, and then traffic is again multiplexed onto the outgo-
ing interface of the VM.

We start up an increasing number of HTTP flows, one per
client, and measure the cumulative throughput through our
platform (Figure 8). As shown, we can sustain essentially
10Gb/s line rate for up to over 150 clients or so, after which
the single CPU core handling the processing becomes over-
loaded and the rate begins to drop. While the exact point of
inflexion will depend on the type of processing and the CPU
frequency, these results show that aggregation is an easy way
to increase the number of clients supported by a platform.

Finally, we gradually increase the number of clients up
to 1,000 by running multiple VMs and different numbers of
clients per VM (n=50, 100 or 200). Each client is down-
loading a web-file at a speed of 8Mbps and the n’th client
triggers the creation of a new VM. We measure the cumula-
tive throughput at the IN-NET platform and plot the results
in Figure 9. Even with all VMs pinned to a single core, the
platform yields 10Gbps throughput in this experiment, high-
lighting its scalability to many clients.

MAWI traces. Is 1,000 clients a realistic target? To under-
stand whether IN-NET can scale to real-world workloads,
we downloaded and processed MAWI traces [4] (the WIDE
backbone in Japan) taken between the 13th and 17th of Jan-
uary 2014. Each trace covers 15 minutes of traffic, and we

eliminate all connections for which we do not see the setup
and teardown messages. Most of the traffic we ignore is
background radiation (instances of port scanning), but some
of it is due to longer connections intersecting the 15-minute
trace period. The results show that, at any moment, there
are at most 1,600 to 4,000 active TCP connections, and be-
tween 400 to 840 active TCP clients (i.e., active openers).
The exact thresholds varies with the day of the week, but the
main take-away is that a single IN-NET platform running on
commodity hardware could run personalized firewalls for all
active sources on the MAWI backbone.

6.1 Controller Scalability
We now turn to the controller: how long does it take to re-
spond to a user’s processing request? We ran an experiment
where the client issued the request shown in figure 4. For
the provider topology in figure 3, the server needs 101ms
to compile the Haskell rules that our front-end generates,
and just 5ms to run the analysis itself; this implies that static
checking can be used for interactive traffic.

To understand how this number scales to a more realistic
operator topology, we randomly add more routers and plat-
forms to the topology shown in figure 3 and measure the
request processing time. The results in Figure 10 show that
static processing scales linearly with the size of the network.
The biggest contributor to the runtime is the time needed to
compile the Haskell configuration. In practice, the operator
will have a compiled version of its configuration, and we
only need to compile the client’s configuration and load it
dynamically. SYMNET scales well: checking reachability on
a network with 1,000 boxes takes 1.3 seconds.

Modeling stateful middleboxes—such as a stateful firewall—
has similar performance. This is because SYMNET and ver-
ification and memory costs grow linearly with the number
of stateful boxes encountered. The abstract models of Click
elements that we use for verification avoid state explosion,
unlike model-checking based techniques such as AntEater
[25] or when symbolic execution is run on actual code [12].

10

64 128 256 512 1024 1472
Packet size (bytes)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

R
X

T
hr

ou
gh

pu
t

(M
pp

s)

No sanbox
Sandbox

Figure 11. Cost of sandboxing in a IN-
NET platform.

1 10 20 30 40 50 60 70 80 90 100
Number of VMs

0

2

4

6

8

10

C
um

ul
at

iv
e

th
ro

ug
hp

ut
(G

bi
ts

/s
)

nat
iprouter
firewall
flowmeter

Figure 12. IN-NET platforms run many
middleboxes on a single core with high
aggregate throughput.

 0

 50

 100

 150

 200

 250

30 60 120 240

A
ve

ra
ge

 E
ne

rg
y

 C
on

su
m

pt
io

n
(m

W
)

Batching Interval (s)

Figure 13. Mobiles save energy when
an In-Net platform batches push traffic
into larger intervals.

7. Security
The design of the IN-NET architecture aims to strike a bal-
ance between flexibility and security. Adding flexibility to
the ossified Internet is paramount, and we achieve this by
allowing untrusted third-parties to request and instantiate
in-network processing. Avoiding abuse is done by ensur-
ing processing modules do not spoof traffic, and adhere to
the default-off principle [17]: processing platforms can only
send traffic to destinations that want to receive that traffic.

To implement default-off, we need to ensure that desti-
nations explicitly agree to receive traffic and that this agree-
ment cannot be forged by malicious third parties. If these
conditions hold, we are guaranteed that processing platforms
cannot themselves be used to launch Denial of Service At-
tacks against endpoints [17]. Additionally, IN-NET process-
ing can also be used to defend against traffic originating from
existing hosts or misbehaving platforms: destinations can in-
stantiate filtering code on remote platforms, and attract traf-
fic to those platforms by updating DNS entries.

There are however two possible caveats with the DDoS
protection offered by IN-NET, and these allow amplification
attacks and time-based attacks, which we discuss next.

The first caveat regards forging authorization to send traf-
fic by exploiting the implicit authorization rule: an attacker
can send packets to a processing module using packets with
spoofed source addresses. This implicitly (and fakely) autho-
rizes the processing module to communicate with the traffic
source. This attack can be used to launch traffic amplifica-
tion attacks prevalent today with DNS: the attacker sends a
low rate of DNS requests with the spoofed source address of
the victim, and the DNS servers amplify the attack by send-
ing large DNS response packets [5].

The operators can mitigate such attacks by applying
ingress filtering on both the Internet links and its client links.
This will ensure that operator’s clients can only attack other
clients, and that users in the Internet can only attack other
users in the Internet, and not the operator’s clients. To com-
pletely eradicate amplification attacks the operators can ban
connectionless traffic (e.g. UDP): amplification attacks are
not possible with TCP because the attacker cannot complete

the three-way handshake. In fact, operators must choose be-
tween flexibility of client processing and security.

The second caveat is that SYMNET does not model time:
implicit authorization, once given, allows the processing
module to send traffic until an explicit connection tear-
down is observed (for TCP) or forever (UDP). In practice,
stateful firewalls authorize response traffic only for a cer-
tain period of time; when the connection is idle longer than
a timeout value, authorization is revoked (this is how the
ChangeEnforcer element works). We believe this attack
is tolerable in practice.

Routing Policy Enforcement. With IN-NET, destinations
have ultimate control over the path taken by incoming pack-
ets, allowing them to implement routing policy as needed
using a mix of traffic attraction functions such as tunnels,
and NATs. It has recently been shown that a single tunnel is
enough to offer increased reliability and protection against
DDos attacks [30].

7.1 Coverage of Static Checking
Symbolic execution can give false positive answers, imply-
ing that a configuration breaks the security rules when in fact
it does not. To understand how accurate SYMNET checking
is, we implemented a range of different middleboxes using
existing Click elements or by deploying IN-NET stock pro-
cessing modules. We then used the controller to check these
for safety. In Table 1 we show the middleboxes we have
implemented, and the assessment provided by SYMNET on
their safety. The answers depend on who is requesting the
processing, as the security constraints are different for third-
party providers, clients or the operator itself. Inaccurate an-
swers are marked (s) and require sandboxing.

SYMNET gives accurate answers for most of these mid-
dleboxes, with two exceptions. The need to check x86 VMs
is obvious, however it is interesting to discuss the tunnel sce-
nario. Here, the security rules only allow the third-party cus-
tomer to send traffic to a predefined list of destinations, but
the actual destination address of packets is provided at run-
time, when packets are decapsulated at the processing mod-
ule. SYMNET finds that the processing module might send

11

Functionality Third-party Client Operator

IP Router 7 7 X
DPI 7 7 X
NAT 7 7 X
Transparent Proxy 7 7 X
Flow meter X X X
Rate limiter X X X
Firewall X X X
Tunnel X(s) X X
Multicast X X X
DNS Server (stock) X X X
Reverse proxy (stock) X X X
x86 VM X(s) X(s) X

Table 1. Running SYMNET to check middlebox safety gives
accurate results.

traffic to legitimate addresses, thus it cannot just deny the
client’s request. On the other hand, the client could reach
destinations it should not, hence the need for sandboxing.

7.2 Sandboxing
How costly is sandboxing? We use a single ClickOS VM
to receive traffic directly via a 10 Gbps NIC or through
our ChangeEnforcer sandboxing element (recall Sec-
tion 2.1) inserted in the Click configuration.

Figure 11 shows that the throughput drops by a third for
64B packets, by a fifth for 128B packets, and does not expe-
rience any measurable drop for other packet sizes. Sandbox-
ing with the enforcer running in a separate VM, in compar-
ison, is much more expensive. Throughput for 64B packets
drops to 1.5Mpps because of repeated context switching be-
tween the processing module VM and the sandboxing VM.

Today’s status quo is to run x86 VMs in sandboxes.
Our evaluation shows the total throughput of the system
drops by 70% because of sandboxing. Luckily, sandboxing
is not needed in the first place since we can statically check
whether the processing is safe for most client configurations.

8. Use Cases
We now discuss a variety of use-cases showcasing the ben-
efits that our architecture provides to the main actors of
the Internet ecosystem: operators, end-users and content-
providers. We do not claim these use-cases are novel; all we
want to show is that they can now be accessible not only to
big content and CDN providers, but to a much wider range
of organisations and end-users. The selection of use-cases
is also geared towards highlighting that IN-NET is flexible
despite its stronger security guarantees.

Software Middleboxes have become prominent with the ad-
vent of NFV, and IN-NET offers a safe and scalable way
to run many of them on low-end commodity hardware. We
deploy a number of different middleboxes on an In-Net plat-
form and measure the aggregate throughput of the box. Traf-
fic is generated by a client running curl connected via a
10 Gbps link to the platform, itself connected via a similar
link to a server running nginx and serving content from a

ramdisk. We vary the number of middleboxes on the same
core, split the client traffic evenly, and plot the aggregate
throughput. Figure 12 shows that the IN-NET platform man-
ages to sustain high throughput, regardless of the number
and type of middleboxes.

Push Notifications. We run the configuration presented in
Figure 4 using as client a Samsung Galaxy Nexus mobile
phone connected via 3G to the Internet. It takes around 3s for
the whole request to be executed by the IN-NET controller,
which finds the proper placement for the processing module,
and checks its security, the clients’ requirements and the
operator’s (this time is dominated by the time needed to
wake up the 3G interface). The reply specifies the IP address
of the newly allocated processing module. From one of our
servers, we send one UDP message with 1KB payload every
30s to the given address and port; the platform batches the
messages in the processing module and delivers them at
different intervals.

We measured the device’s energy consumption with the
Monsoon power monitor (Figure 13). Batching has a mas-
sive effect on average energy consumption, reducing it from
240mW to 140mW. In this use-case, IN-NET benefits both
the client and the cellular operator: the client can trade in-
creased delay in receiving notifications for lower energy
consumption, while the operator gets the opportunity to
monitor and perhaps filter malicious messages.

Protocol Tunneling. Consider the task of running SCTP
(or any other new protocol) over the Internet. Deploying it
natively is impossible because middleboxes block all traffic
that is not TCP or UDP. Thus SCTP must be tunneled, but
which tunnel should we use? UDP is the best choice, but it
may not work because of firewalls that drop non-DNS UDP
packets. In such cases, TCP should be used, but we expect
poorer performance because of bad interactions between
SCTP’s congestion control loop and TCP’s.

To understand the effect of such interactions, we use
iperf to measure bandwidth between two servers con-
nected via an emulated wide-area link with capacity 100Mbps
and a 20ms RTT. We also introduce random losses to under-
stand how the protocol fares under congestion scenarios.
The results in Figure 14 show how SCTP over TCP encap-
sulation dramatically reduces the throughput achieved: when
loss rate varies from 1% to 5%, running SCTP over a TCP
tunnel gives two to fives times less throughput compared to
running SCTP over a UDP tunnel.

SCTP has to be adaptive about the tunnel it uses: first
try UDP and fall back to TCP if UDP does not work, but
to make the decision we need at least one timeout to elapse
at the sender—three seconds according to the spec. Instead,
the sender could use the IN-NET API to send a UDP reacha-
bility requirement to the network. This request takes around
200ms, after which the client can make the optimal tunnel
choice much faster.

12

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 1 2 3 4 5

B
an

dw
id

th
 (

M
b/

s)

Loss (%)

TCP
UDP

Figure 14. SCTP performance when
tunneling over TCP and UDP

 0

 50

 100

 150

 200

 250

 300

 350

 0 100 200 300 400 500 600 700 800 900

R
at

e
(c

on
ns

/s
)

Time (s)

Single Server
Change

Figure 15. Defending against a
Slowloris attack with IN-NET

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500

C
D

F

Download Delay (ms)

Origin Server
CDN

Figure 16. Clients downloading a 1KB
file from the origin or our CDN.

HTTP vs. HTTPS. Mobile apps heavily rely on HTTP to
communicate to their servers because it just works, and in
many cases they are even tunneling other traffic over HTTP.
Application optimizers deployed by the network may alter
HTTP headers (e.g. accepted-encoding), breaking the appli-
cation’s own protocol. Should the applications use HTTPS
instead to bypass such optimizers? We have measured the
energy consumption of our Galaxy Nexus while download-
ing a file over WiFi at 8Mbps. The download times are al-
most identical, while the energy consumption over HTTP
was 570mW and 650mW over HTTPS, 15% higher. The
added cost of HTTPS comes from the CPU cycles needed
to decrypt the traffic.

Smaller energy consumption is a strong incentive for
mobiles to use HTTP, but this may break apps, so we are
stuck with the suboptimal solution of using HTTPS. Instead,
the client should send an invariant request to the operator
asking that its TCP payload not be modified.

DoS Protection. We use the reverse-proxy stock process-
ing module to defend against an HTTP attack tool called
Slowloris that attempts to starve all valid clients of a server
by maintaining as many open connections to that server as
possible. Slowloris trickles the HTTP request bytes at a very
slow rate, which prevents the server from timing out the con-
nection. The best known defense is to just ramp up the num-
ber of servers, and this is what we do with IN-NET. When
under attack, the web server starts a number of processing
modules at remote operators, and redirects new connections
via geolocation to those servers. In Figure 15 we plot the
number of valid requests serviced per second before, dur-
ing, and after the attack. We can see that IN-NET is able to
quickly instantiate processing and divert traffic, thus reduc-
ing the load on the origin server.

Content Distribution Network. IN-NET can safely run
legacy code in sandboxed processing modules. As our final
use case we run a small-scale content-distribution network
as follows. The origin server is located in Italy, and there
are three content caches (located in Romania, Germany and
Italy) instantiated on IN-NET platforms. Each content cache
is an x86 virtual machine running Linux and Squid, the lat-
ter configured as a reverse-proxy. The IN-NET controller

instantiates sandboxing for such machines using the mecha-
nism described in Section 2.1.

We use 75 PlanetLab nodes as clients scattered around
Europe, and we use geolocation to spread them to the caches
approximately evenly. We run repeated downloads of 1KB
files from all these clients, and we report the results in
Figure 16. We see that the CDN is behaving as expected:
the median download time is halved, and the 90% percentile
is four times lower.

9. Related Work
The idea of in-network processing is not new. Our work
builds upon a rich literature on programmable networks,
including active networks [10, 36, 39], network operating
systems [11, 15], and network virtualization [7, 34].

In active networks packets carry code that routers exe-
cute, and it has been shown how such flexibility can be used
to support multicast and mobility in IP. While sharing the
goal of adding flexibility to the network, IN-NET aims to
allow flexibility only at a few points in the Internet, rather
than at all routers as in active networks—this choice, to-
gether with ongoing deployments of commodity hardware
by operators, ensure IN-NET is deployable. Also, active net-
works focus on individual packets as the processing unit, and
thus cannot support middleboxes that maintain flow state.
IN-NET focuses on flow processing instead.

More recently, Sherry et al. [33] proposed to migrate
middleboxes from enterprises to public clouds to reduce the
cost of deployment and maintenance, addressing a number
of problems such as secure communication and attraction of
traffic to middleboxes in the cloud. While the goals of IN-
NET are similar to these works, our paper differs in two key
aspects: (1) we believe middleboxes equate to innovation,
and want access operators to offer them as a service to third
parties, and (2) we show how to use static analysis as a basis
for an in-network processing architecture.

More recently, researchers have proposed incorporating
middleboxes into the Internet architecture in the Delegation
Oriented Architecture (DOA) [38] and NUTSS[16]. The key
findings are twofold: first, explicit connection signaling is
needed to negotiate connectivity through firewalls, which
ensures policy compliance and network evolvability as it
decouples the control traffic needed to setup the connection

13

from the data traffic (which could use a different protocol).
Second, middleboxes should only process traffic explicitly
addressed to them. We adopt both principles in IN-NET.

Building scalable software middleboxes has been the fo-
cus of much research recently. Routebricks [13] shows how
to run a scalable router on a cluster of commodity servers.
CoMb [32] is an architecture for middlebox deployments
that systematically applies the design principle of consoli-
dation, both at the level of building individual middleboxes
and managing a network of middleboxes. Finally, IN-NET
platforms extend ClickOS [26] by using static analysis to
enable it to scale to thousands of client configurations on a
single machine.

Statically checking network routing is a well-established
topic, with reachability analysis as well as loop detection
the strong candidates for verification [40]. More recently,
Header Space Analysis (HSA) [20, 21] proposed a more
general version of network static analysis that can also
model arbitrary middleboxes as transformations of packet
headers from input to output. HSA could be used to check
IN-NET configurations too, but it has two important short-
comings. First, HSA does not model middlebox state and
therefore cannot capture the behavior of common middle-
boxes such as stateful firewalls or NATs. Secondly, HSA
cannot capture invariants. Recently, Dobrescu et al. [12]
used dynamic symbolic execution to build a tool that checks
middleboxes for bugs, and applied it to binary Click ele-
ments; this work is complementary to ours.

Proof Carrying Code [28] has been proposed to allow safe
execution of active networking code. PCC takes low-level
assembly code and generates automatic proofs that certain
properties hold for the code in question; these proofs can
be easily verified by third parties. Unfortunately, PCC has
only been shown to work with fairly simple programs (e.g.
no loops) and applying it to arbitrary middlebox code is not
feasible, because automatically building proofs for arbitrary
programs is a difficult open problem. Our approach of using
static analysis is similar in spirit to PCC; we rely on abstract
models of middlebox code (Click elements) and symbolic
execution to make the verification task tractable.

10. Conclusion
Network Function Virtualization has pushed network opera-
tors to deploy commodity hardware in their networks. These
will be used to run middlebox functionality and processing
on behalf of third parties: network operators are slowly but
surely becoming in-network cloud providers.

In this paper, we have shown that directly adopting cloud
technologies in the context of in-network processing is not
possible. Instead, we propose to restrict the programming
model offered to tenants and use static checking to ensure
security and policy requirements are met. We have designed
a novel API that allows clients to express their requirements,
and implemented it using symbolic execution.

Our solution cheaply ensures security and compliance
for arbitrary Click configurations provided by customers,
and supports a wide range of use cases relevant to mobile
applications, small content providers and even end-users.
We have implemented a processing platform for in-network
processing that can safely support to 1,000 users on the same
hardware. Our experiments show that this platform should
be sufficient to implement personalized firewalls for every
client of the MAWI backbone link.

By relying on static analysis, IN-NET makes it possible
for clients and network operators to reason about network
processing without resorting to active probing as is common
today [19]. This could provide a basis to elegantly solve
the ongoing tussle between network operators and endpoints
that, so far, has lead to an ongoing war of encapsulation and
Deep Packet Inspection.

Acknowledgements
This work was partly funded by Trilogy 2, a research project
funded by the European Commission in its Seventh Frame-
work program (FP7 317756). We also thank the anonymous
reviewers and our shepherd Derek Mc Auley for their in-
sightful feedback.

References
[1] Google Global Cache. http://ggcadmin.google.

com/ggc.

[2] Netflix Open Connect. https://signup.netflix.
com/openconnect.

[3] A10 Networks. Deutsche Telekom TeraStream: A Net-
work Functions Virtualization (NFV) Using OpenStack
Case Study. http://www.a10networks.com/
resources/files/A10-CS-80103-EN.pdf#
search=%22management%22, 2013.

[4] MAWI Working Group Traffic Archive. http://mawi.
wide.ad.jp/mawi/.

[5] US Cert DNS Traffic Amplification Attacks. https://
www.us-cert.gov/ncas/alerts/TA13-088A.

[6] A. Aucinas, N. Vallina-Rodriguez, Y. Grunenberger, V. Er-
ramilli, D. Papagiannaki, J. Crowcroft, and D. Wetherall.
Staying Online While Mobile: The Hidden Costs. In
CoNEXT, 2013.

[7] A. Bavier, N. Feamster, M. Huang, L. Peterson, and J. Rex-
ford. In VINI Veritas: Realistic and Controlled Network Ex-
perimentation. In SIGCOMM, 2006.

[8] Adam Belay, George Prekas, Ana Klimovic, Samuel Gross-
man, Christos Kozyrakis, and Edouard Bugnion. Ix: A pro-
tected dataplane operating system for high throughput and low
latency. In OSDI, OSDI’14, 2014.

[9] Cristian Cadar, Daniel Dunbar, and Dawson Engler. Klee:
Unassisted and automatic generation of high-coverage tests
for complex systems programs. In Proceedings of the 8th
USENIX Conference on Operating Systems Design and Im-
plementation, OSDI’08, pages 209–224, Berkeley, CA, USA,
2008. USENIX Association.

14

http://ggcadmin.google.com/ggc
http://ggcadmin.google.com/ggc
https://signup.netflix.com/openconnect
https://signup.netflix.com/openconnect
http://www.a10networks.com/resources/files/A10-CS-80103-EN.pdf#search=%22management%22
http://www.a10networks.com/resources/files/A10-CS-80103-EN.pdf#search=%22management%22
http://www.a10networks.com/resources/files/A10-CS-80103-EN.pdf#search=%22management%22
http://mawi.wide.ad.jp/mawi/
http://mawi.wide.ad.jp/mawi/
https://www.us-cert.gov/ncas/alerts/TA13-088A
https://www.us-cert.gov/ncas/alerts/TA13-088A

[10] K. Calvert, S. Bhattacharjee, E. Zegura, and J. Sterbenz. Di-
rections in active networks. In IEEE Com. Magz., 1998.

[11] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown,
and S. Shenker. Ethane: Taking control of the enterprise. In
SIGCOMM, 2007.

[12] M. Dobrescu and K. Argyraki. Software Dataplane Verifica-
tion. In NSDI, 2014.

[13] M. Dobrescu, N. Egi, K. Argyraki, B. G. Chun, K. Fall, G. Ian-
naccone, A. Knies, M. Manesh, and S. Ratnasamy. Route-
Bricks: Exploiting parallelism to scale software routers. In
SOSP, 2009.

[14] T. Flach, N. Dukkipati, A. Terzis, B. Raghavan, N. Cardwell,
Y. Cheng, A. Jain, S. Hao, E. Katz-Bassett, and R. Govindan.
Reducing Web Latency: the Virtue of Gentle Aggression. In
SIGCOMM, 2013.

[15] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McK-
eown, and S. Shenker. NOX: Towards an operating system for
networks. Computer Communication Review, 2008.

[16] S. Guha and P. Francis. An End-Middle-End Approach to
Connection Establishment. In SIGCOMM, 2007.

[17] H. Ballani and Y. Chawathe and S. Ratnasamy and T. Roscoe
and S. Shenker. Off by Default! In HotNets, 2005.

[18] Timothy L. Hinrichs, Natasha S. Gude, Martin Casado,
John C. Mitchell, and Scott Shenker. Practical declarative net-
work management. In WREN, WREN ’09, 2009.

[19] Michio Honda, Yoshifumi Nishida, Costin Raiciu, Adam
Greenhalgh, Mark Handley, and Hideyuki Tokuda. Is it still
possible to extend tcp? In IMC, 2011.

[20] P. Kazemian, M. Chang, H. Zeng G. Varghese, N. McKeown,
and S. Whyte. Real Time Network Policy Checking using
Header Space Analysis. In NSDI, 2013.

[21] P. Kazemian, G. Varghese, and N. McKeown. Header space
analysis: static checking for networks. In NSDI, 2012.

[22] Peyman Kazemian, Michael Chang, Hongyi Zeng, George
Varghese, Nick McKeown, and Scott Whyte. Real time net-
work policy checking using header space analysis. In NSDI,
nsdi’13, 2013.

[23] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.Kaashoek.
The Click modular router. ACM Trans. Computer Systems,
18(1), 2000.

[24] T. Leighton. Improving Performance on the Internet. CACM,
2009.

[25] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. Godfrey,
and S. T. King. Debugging the data plane with anteater. In
SIGCOMM, 2011.

[26] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda,
R. Bifulco, and F. Huici. ClickOS and the Art of Network
Function Virtualization. In NSDI, 2014.

[27] Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir
Olteanu, Michio Honda, Roberto Bifulco, and Felipe Huici.
Clickos and the art of network function virtualization. In 11th
USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI 14), pages 459–473, Seattle, WA, Apr
2014. USENIX Association.

[28] George C. Necula. Proof-carrying code. In POPL, POPL ’97,
1997.

[29] E. Nygren, R. K. Sitaraman, and J. Sun. The Akamai Net-
work: A Platform for High-performance Internet Applica-
tions. SIGOPS’10, 2010.

[30] Simon Peter, Umar Javed, Qiao Zhang, Doug Woos, Thomas
Anderson, and Arvind Krishnamurthy. One tunnel is (often)
enough. In SIGCOMM, SIGCOMM ’14, 2014.

[31] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, Doug
Woos, Arvind Krishnamurthy, Thomas Anderson, and Tim-
othy Roscoe. Arrakis: The operating system is the control
plane. In OSDI, OSDI’14, 2014.

[32] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi.
The Design and Implementation of a Consolidated Middlebox
Architecture. In NSDI, 2012.

[33] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Rat-
nasamy, and V. Sekar. Making Middleboxes Someone Else’s
Problem: Network Processing as a Cloud Service. In SIG-
COMM, 2012.

[34] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller,
M. Casado, N. McKeown, and G. M. Parulkar. Can the Pro-
duction Network Be the Testbed? In OSDI, 2010.

[35] Radu Stoenescu, Matei Popovici, Lorina Negreanu, and
Costin Raiciu. Symnet: Static checking for stateful networks.
In Proceedings of the 2013 Workshop on Hot Topics in Mid-
dleboxes and Network Function Virtualization, HotMiddlebox
’13, pages 31–36, New York, NY, USA, 2013. ACM.

[36] D. L. Tennenhouse and D. J. Wetherall. Towards an Active
Network Architecture. CCR, 26(2), 1996.

[37] ETSI Network Functions Virtualisation. http:
//www.etsi.org/technologies-clusters/
technologies/nfv.

[38] M. Walfish, J. Stribling, M. Krohn, H. Balakrishnan, R. Mor-
ris, and S. Shenker. Middleboxes No Longer Considered
Harmful. In OSDI, 2004.

[39] D. Wetherall, J. Guttag, and D. Tennenhouse. ANTS: A toolkit
for building and dynamically deploying network protocols. In
OpenArch’98, 1998.

[40] G. G. Xie, J. Zhan, D. A. Maltz, H. Zhang, A. Greenberg,
G. Hjalmtysson, and J. Rexford. On Static Reachability Anal-
ysis of IP Networks. In INFOCOM, 2005.

15

http://www.etsi.org/technologies-clusters/technologies/nfv
http://www.etsi.org/technologies-clusters/technologies/nfv
http://www.etsi.org/technologies-clusters/technologies/nfv

	Introduction
	Requirements and Approach
	Security Requirements
	Policy Requirements

	Static Analysis as Basis for In-network Processing
	The In-Net Architecture
	The API
	Requirements
	The In-Net Controller
	Checking Security Rules
	A Unifying Example

	The In-Net Platform
	Evaluation
	Controller Scalability

	Security
	Coverage of Static Checking
	Sandboxing

	Use Cases
	Related Work
	Conclusion

