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ABSTRACT
Due to the COVID-19 pandemic, many governments imposed lock-
downs that forced hundreds of millions of citizens to stay at home.
The implementation of confinement measures increased Internet
traffic demands of residential users, in particular, for remote work-
ing, entertainment, commerce, and education, which, as a result,
caused traffic shifts in the Internet core.

In this paper, using data from a diverse set of vantage points
(one ISP, three IXPs, and one metropolitan educational network),
we examine the effect of these lockdowns on traffic shifts. We find
that the traffic volume increased by 15-20% almost within a week—
while overall still modest, this constitutes a large increase within
this short time period. However, despite this surge, we observe that
the Internet infrastructure is able to handle the new volume, as most
traffic shifts occur outside of traditional peak hours. When looking
directly at the traffic sources, it turns out that, while hypergiants
still contribute a significant fraction of traffic, we see (1) a higher
increase in traffic of non-hypergiants, and (2) traffic increases in
applications that people use when at home, such as Web conferenc-
ing, VPN, and gaming. While many networks see increased traffic
demands, in particular, those providing services to residential users,
academic networks experience major overall decreases. Yet, in these
networks, we can observe substantial increases when considering
applications associated to remote working and lecturing.

CCS CONCEPTS
• Networks→ Network measurement.
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Figure 1: Traffic changes during 2020 at multiple vantage
points—daily traffic averaged per week normalized by the
median traffic volume of the first up to ten weeks.
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1 INTRODUCTION
The profile of a typical residential user—in terms of bandwidth us-
age and traffic destinations—is one of the most critical parameters
that network operators use to drive their network operations and in-
form investments [29, 41, 64]. In the last twenty years, user profiles
have changed significantly. We observed user profile shifts from
peer-to-peer applications in the early 2000s [23, 49, 66], to content
delivery and streaming applications in 2010s [7, 24, 35, 37, 52], and
more recently to mobile applications [32, 67]. Although changes in
user profiles are a moving target, they typically have time scales of
years. Thus, staying up to date, e.g., via measurements, was feasible.

The COVID-19 pandemic is most likely a once in a generation
global phenomenon that drastically changed the habits of millions
of Internet users around the globe. As a result of the government
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(a) ISP-CE: Hourly traffic increase and work-
day vs. weekend pattern for February 19
(Wed), February 22 (Sat), March 25 (Wed).
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(b) ISP-CE: Workday-like (bottom) vs.
weekend-like (top) January 1–June 24.
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(c) IXP-CE: Workday-like (bottom) vs.
weekend-like (top) January 1–June 24.

Figure 2: Drastic shift in Internet usage patterns for times of day and weekends/workdays.

mandated lockdowns, a large fraction of the population had to de-
pend on their residential Internet connectivity for work, education,
social activities, and entertainment. Unexpectedly, the Internet held
up to this unforeseen demand [63] with no reports of large scale
outages or failures in more developed countries. This unique phe-
nomenon allows us to observe changes that may be expected within
months or years in a matter of days.
COVID-19-induced weekly growth. We observe a significant
traffic evolution in 2020 at multiple Internet vantage points in
Figure 1. The COVID-19 outbreak reached Europe in late January
(week 4) and first lockdowns were imposed in mid March (starting
on week 11). Thus, we normalize weekly traffic volumes by the
median traffic volume of the first ten weeks of 2020 (pre-lockdown
period). We can clearly identify drastic changes in the data collected
at multiple and diverse vantage points (see Section 2 for details):
Traffic demands for broadband connectivity, as observed at an ISP
in Central Europe as well as at a major IXP in Central Europe and
an IXP in Southern Europe increased slowly at the beginning of
the outbreak and then more rapidly by more than 20% after the
lockdowns started. The traffic increase at the IXP at the US East
Coast trails the other data sources since the lockdown occurred
several weeks later. While we observe this phenomenon at the ISP
and IXP vantage points, one difference between them is that the
relative traffic increase at the IXP seems to persist longer while
traffic demand at the ISP decreases quickly towards May. This
correlates with the first partial opening of the economy, including
shop reopenings in this region in mid-April and further relaxations
including school openings in a second wave in May. Our findings
are aligned with the insights offered by mobility reports published
by Google [30] and the increased digital demand as reported by
Akamai [42, 43], Comcast [18], Google [31], Nokia Deepfield [36],
and TeleGeography [62].
Drastic shift in usage patterns. In light of the global COVID-19
pandemic a total growth of traffic is somewhat expected. More
relevant for the operations of networks is how exactly usage pat-
terns are shifting, e.g., , during the day or on different days of a
week. To this end, we show the daily traffic patterns at two of the
above mentioned vantage points in Figure 2. The Internet’s regular
workday traffic patterns are significantly different from weekend
patterns [33, 38, 59]. On workdays, traffic peaks are concentrated
in the evenings, see Figure 2a. For instance, Wed., February 19 vs.
Sat., February 22, 2020: With the pandemic lockdown in March, this
workday traffic pattern shifts towards a continuous weekend-like

pattern, as can be seen in the daily pattern for Mar. 25, 2020 in Fig-
ure 2a. More specifically, we call a traffic pattern a workday pattern
if the traffic spikes in the evening hours and a weekend pattern if
its main activity gains significant momentum from approximately
9:00 to 10:00 am. For our classification, we use labeled data from
late 2019 and use an aggregation level of 6 hours. Then, we apply
this classification to all available days in 2020. Figures 2b and 2c
show the normalized traffic for days classified as weekend-like on
the top and for workday-like on the bottom. If the classification
is in line with the actual day (workday or weekend) the bars are
colored blue, otherwise they are colored in orange. We find that up
to mid-March, most weekend days are classified as weekend-like
days and most workdays as workday-like days. The only exception
is the holiday period at the beginning of the year in Figure 2c. This
pattern changes drastically once the confinement measures are
implemented: Almost all days are classified as weekend-like. This
change persists in Figure 2c until the end of June due to the vaca-
tion period, which is consistent with the behavior observed in 2019
(not shown). In contrast, Figure 2b shows that the shift towards a
weekend-like pattern becomes less dominant as countermeasures
were relaxed in mid-May.

These observations raise the question of the cause for this signif-
icant traffic growth and shift in patterns, given that many people
are staying at home for all purposes, e.g., working from home, re-
mote education, performing online social activities, or consuming
entertainment content. The increased demand in entertainment, e.g.,
video streaming or gaming, may imply an increase in hypergiant
traffic. This is in accordance with a statement by a commissioner
of the European Union which stated that major streaming compa-
nies reduced their video resolution to the standard definition from
March 19, 2020 onward [19, 48]. According to mainstream media,
some started to upgrade their services back to high definition or 4K
around May 12, 2020 [27]. Furthermore, the need for remote working
may imply an increased demand for VPN services, usage of video
conference systems, email, and cloud services.

In this paper, we study the effect that government-mandated
lockdowns had on the Internet by analyzing network data from a
major Central European ISP (ISP-CE), three IXPs located in Central
Europe, Southern Europe, and the US East Coast, and an Spanish
educational network (EDU). This enables us to holistically study
the effects of the COVID-19 pandemic both from the network edge
(ISP-CE/EDU) and the Internet core (IXPs). We find that:
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(b) IXPs (Central Europe/US Eastcoast/Southern Europe).

Figure 3: Time series of normalized aggregated traffic volume per hour for ISP-CE and three IXPs for four selected weeks:
before, just after, after, and well after lockdown (base/March/April/June).

• Relative traffic volume changes follow user changing habits—
causing “moderate” increases of 15-20% at the height of the lock-
down for the ISP/IXPs, but decreases up to 55% at the EDU net-
work. Even after the lockdown is scaled back, some of these
trends remain: 20% at the IXP-CE but only 6% at the ISP-CE.

• Most traffic increases happen during non-traditional peak hours.
Daily traffic patterns are moving to weekend-like patterns.

• Online entertainment demands account for hypergiant traffic
surge. Yet, the need for remote working increases the relative
traffic share of many “essential” applications like VPN and con-
ferencing tools by more than 200%. At the same time, the traffic
share for other traffic classes decreases substantially, e.g., traffic
related to education, social media, and—for some periods—CDNs.

• At the IXP-level, we observe that port utilization increases. This
phenomenon is mostly explained by a higher traffic demand from
residential users.

• Traffic changes are diverse, increasing in some network ports
while decreasing in others. One example of the latter is the EDU
network, where we observe a significant drop in traffic volume
on workdays after the lockdown measures loosened, with a max-
imum decrease of up to 55%. Yet, remote working and lecturing
cause a surge in incoming traffic, e.g., for email and VPN connec-
tions. The EDU traffic shift is antagonistic, yet complementary,
to the observations made in other vantage points.

2 DATASETS
This section describes the network traffic datasets that we used for
our analysis. We utilize vantage points at the core of the Internet
(IXPs), at the backbone and peering points of a major Internet Ser-
vice Provider, and at the edge (a metropolitan university network),
all which we will describe below.
ISP-CE: Network flows from a large Central European ISP that pro-
vides service to more than 15 million fixed line subscribers and also
operates a transit network (Tier-1). The ISP does not host content
delivery servers inside its network, but it has established a large
number of peering agreements with all major content delivery and
cloud networks at multiple locations. This ISP uses NetFlow [13]
at all border routers to support its internal operations. We rely on

two different sets of NetFlow records for this paper. First, we use
NetFlow data collected at ISP’s Border Network Gateways [12] to
understand the impact of changing demands of the ISPs’ subscribers.
Second, we use NetFlow records collected at the ISP’s border routers
to gain a better understanding about how companies running their
own ASNs are affected by these changes.
IXPs: Network flows from the public peering platform of three
major Internet Exchange Points (IXPs). The first one has more than
900 members, is located in Central Europe (IXP-CE) and has peak
traffic of more than 8 Tbps. The IXP-CE is located in the same
country as the ISP-CE. The second one has more than 170 members,
is located in Southern Europe (IXP-SE) and has a peak traffic of
roughly 500 Gbps. It covers the region of the EDU network. The
third one has 250 members, is located at the US East Coast (IXP-US)
and has a peak traffic of more than 600 Gbps. At the IXPs we use
IPFIX data [16].
EDU: Network flows from the REDImadrid [53] academic network
interconnecting 16 independent universities and research centers
in the region of Madrid. It serves nearly 290,000 users including stu-
dents, faculty, researchers, student halls, WiFi networks (including
Eduroam), and administrative and support staff. The network oper-
ator provided us with anonymized NetFlow data captured at their
border routers (captured at all ingress interfaces) during 72 days in
the period of Feb 28 to May 8, 2020. The final dataset contains 5.2B
flows entering or leaving the educational network.

We augment our analysis with NetFlow records from a large
mobile operator that operates in Central Europe, with more than
40 million customers.
Normalization: Since all data sources exhibit vastly differing
traffic characteristics and volumes, we normalize the data to make
it easier to compare. For plots where we show selected weeks only,
we normalize the traffic by the minimum traffic volume. For plots
spanning a larger timeframe, we normalize the traffic by the median
traffic volume of the first ten weeks of 2020, depending on the
availability of data.
Time frame: We use two methods to reflect the developments
since the beginning of the COVID pandemic: (a) for general trends
over time we use continuous data from Jan 1, 2020—Jun 24, 2020,
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ISP-CE IXP-CE IXP-SE IXP-US EDU

base Feb 20–26 Feb 20–26 Feb 20–26 Feb 20–26 Feb 20–26
March Mar 19–25 Mar 19–25 Mar 12–18 Mar 19–25 Mar 12–18
April Apr 09–15 Apr 23–29 Apr 23–29 Apr 23–29 Apr 23–29
June Jun 18–24 Jun 18–24 Jun 18–24 Jun 18–24 n/a

Table 1: Summary of the dates used in weekly analyses.
Dates in Southern Europe vary due to different courses of
the pandemic.

(b) to highlight detailed developments we compare 7-day periods
as shown in Table 1 from before, during, after and well after the
lockdown in 2020.1

2.1 Ethical Considerations
Both NetFlow and IPFIX data provide only flow summaries based
on the packet header and do not reveal any payload information.
To preserve users privacy, all data analyses are done on servers
located at the premises of the ISP, IXPs, and the academic network.
IP addresses are hashed to prevent information leaks and raw data
being transferred. The output of the analyses are the aggregated
statistics as presented in the paper. The data at the ISP and IXPs is
collected as a part of their routine network analysis. For obtaining
and analyzing the academic network data (EDU), we obtained IRB
approval from the respective institutions.

3 AGGREGATED TRAFFIC SHIFTS
To understand traffic changes during the lockdown we first look for
overall traffic shifts before, during, and after the strictest lockdown
periods. Moreover, we take a look at hypergiant ASes vs. other ASes,
shifts in link utilization, and ASes relevant for remote working.

3.1 Macroscopic Analysis
Figure 3 plots the aggregated normalized traffic volume in bytes
at the granularity of one hour for the ISP-CE, IXP-CE, IXP-US,
and IXP-SE in four selected weeks (see Table 1). For the ISP-CE,
Figure 3a shows the time series using normalized one-hour bins.
For the IXPs, Figure 3b reports the hourly average for workdays
and weekends.

First of all, we see that the overall traffic after the lockdown
increased by more than 20% for the ISP-CE and 30%/12%/2% for
the IXP-SE/IXP-CE/IXP-US, respectively. Once the lockdown mea-
sures were relaxed, the growth started declining for the ISP-CE
but persisted for the IXP-CE and the IXP-SE. These differences are
most likely attributed to the fact that the ISP-CE traffic pattern is
dominated by end-user and small enterprise traffic—recall, we are
not analyzing any transit traffic—while the IXP-CE has a wider
customer base. Traffic persistently increased for the IXP-US where
the lockdown was put into place later.

As previously noted, the ISP-CE time series shows the same
workday to weekend traffic patterns shifts starting with the lock-
down in mid-March. In accordance with that observation, traffic
increases much earlier in the day with a small dip at lunchtime.
1Due to data availability, the ISP-CE is using Apr 09–15 which covers the Easter holiday
period. As partial lockdowns and travel restrictions were still in place, the introduced
bias may be very small.

However after lunch hours, traffic grows to roughly the same vol-
ume during the evening time, spiking late in the evening. This
change persists throughout the lockdown. Once this was relaxed,
the pattern became less pronounced and the shift to a weekend like
pattern became less dominant. Additionally, it is important to note
1) the Easter vacations in the April week, and 2) the seasonal effects
in the weekend of the June week (an increase of outdoor activities).

For all IXPs, see Figure 3b, not only do we see an increase in peak
traffic but also in the minimum traffic levels. This correlates with
link capacity upgrades of many IXP members leading to overall
increases of 3% at IXP-CE, 12% at IXP in Southern Europe and 20%
at IXP at the US East Coast. In addition, we see the increase in
traffic during daytime, which is very pronounced at the IXP-CE.
However, the differences between weekends and workdays are not
as apparent as at the ISP. Interestingly, as lockdown measures were
mandated, the daytime traffic again decreases but stays well above
the pre-lockdown level. In contrast, traffic at the IXP-US barely
changes in March and increases only in April, otherwise showing
similar effects as the other IXPs. The delayed increase in volume is
likely due to the later lockdown in the US. Overall, the effects of the
time of day at this IXP are less pronounced compared to the two
others because it (a) serves customers from many different time
zones, and (b) members are diverse and include eyeball as well as
content/service providers. In contrast, the IXP-SE interconnects
more regional networks, and as such the traffic patterns are closer
to the ones of the IXP-CE.

3.2 Hypergiants
To understand the composition of residential traffic, we investigate
who is responsible for the traffic increase at the ISP-CE. The first
step is to look at the top 15 hypergiants [5, 6, 37] (full list in Ap-
pendix A.1). Hypergiants are networks with high outbound traffic
ratios that deliver content to approximately millions of users in the
locations at which we have vantage points. The 15 hypergiants we
consider in this study are responsible for about 75% of the traffic
delivered to the end-users of the ISP in Central Europe which is
consistent with recent reports in the literature [7, 52, 64]. We note
that the fraction of hypergiant traffic vs. traffic from other ASes
does not change drastically for the ISP-CE as well as all IXPs.

Given that the overall traffic has increased, we next report the
relative increase of the two AS groups compared to the median
traffic volume during the pre-lockdown period, see Figure 4. In
detail, we focus on different times of day and days within the week.
We find that the relative traffic increase is significantly larger for
other ASes than for hypergiants.

Both sets of time series are more or less on top of each other until
the lockdown. This observation also holds for data from 2019 (not
shown). However, after the lockdown, the time series for the other
ASes present higher deviations from the reference value than those
of the hypergiants. The most visually striking difference occurs
during working hours of work-days: Hypergiants experience a 40%
increase whereas the remaining ASes grow bymore than 60%.While
this difference is significantly reduced around mid-May, the relative
increase for both sets of ASes is still substantial. In fact, except for
the working hours during work-days, the traffic surge seems to
normalize around mid-May, especially for other ASes. Notice the
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(b) Other ASes

Figure 4: ISP-CE: Normalized daily traffic growth for hypergiants vs. other ASes across time.

fluctuations during weekends mornings starting around the end of
April—they can be also observed in 2019 (not shown).

A plausible explanation for the increase of daily traffic volumes
in this vantage point are family members being forced to continue
their professional and educational activities from home. Yet, the de-
mand for entertainment content—mainly video streaming—explains
the increase in traffic volume associated with hypergiants, many
of which offer such services. The increase in traffic by the other
ASes has more facets and it requires a more thorough analysis that
incorporates traffic classification methods. Before doing that, the
next subsections investigate the impact that these ASes have on
parts of the infrastructure of some of our vantage points.

3.3 Link Utilization Shifts
We analyze to which extent the observed changes are reflected in
our link utilization dataset to assess how many networks suffer
changes in their traffic characteristics. For this, we look at changes
in relative link utilization between the base week in February and
the selected week in March. We choose IXP-CE as reference van-
tage point as it houses the greatest variety of connected ASes, thus
allowing a more complete and meaningful analysis. Our dataset
reflects link capacity upgrades as well as customers switching to
PNIs. We plot the minimum, average and maximum link utiliza-
tion for all members at IXP-CE in Figure 5. Appendix B provides
additional figures comparing link utilization in other months.

Figure 5 shows a slight shift to the left during lockdown. This
denotes a tendency towards decreased link usage across many IXP
members which could be caused by link capacity upgrades or mem-
bers switching to PNIs in response to increased traffic demand [36].
It is important to note that increased link usage of a network can
be concealed by another network upgrading its port. However, the
main takeaway is that many of the non-hypergiant ASes show
changes in their link usage due to the lockdown-induced shifts in
Internet usage. To gain a better understanding of this phenome-
non, we reconsider the non-hypergiant ASes and their role in the
Internet for further analysis.

3.4 Remote-work Relevant ASes
Having observed that the relative increase in traffic during working
hours is more pronounced for non-hypergiants ASes, we study
temporal patterns to identify which ASes are relevant for remote
work, e.g., large companies with their own AS or ASes offering
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F
ra

ct
io

n 
of

 IX
P

 c
us

to
m

er
 p

or
ts

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 20 40 60 80 100
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● February minimum link usage
February average link usage
February maximum link usage
March minimum link usage
March average link usage
March maximum link usage

Figure 5: IXP-CE: ECDF of link utilization before and during
the lockdown.

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

Difference mean volume

D
iff

e
re

n
ce

 m
e

a
n

 r
e

si
d

e
n

tia
l v

o
lu

m
e

total traffic increase
residential traffic increase

total traffic increase
residential traffic decrease

total traffic decrease
residential traffic decrease

total traffic decrease
residential traffic increase

Figure 6: ISP-CE: Heatmap of traffic shift vs. residential traf-
fic shift (Feb. vs. Mar.).

cloud-based products to be used by their employees. To this end, we
use the ISP in Central Europe dataset, including its transit traffic, to
compute the received and transmitted traffic per ASN.2 In addition,
we compute the traffic that each one of them sends and receives
to/from manually selected eyeball ASes, i.e., the large broadband
providers in the region. Using this data, we define three distinct
groups of ASes: those whose traffic ratio of workday/weekend

2We are aware of limitations of this vantage point, e.g., companies may have additional
upstream providers.
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traffic is dominated by workdays, those who are balanced, and
those in which weekend traffic patterns dominate.

We focus on the first group, as we expect companies and en-
terprise subscribers deploying remote working solutions for their
employees to fall into this class. We crosscheck their AS numbers
with the WHOIS database. We find that a small number of content-
heavy ASes also fall in this category. In Figure 6 we show the
difference in normalized traffic volumes between a base week in
February and one inMarch after the lockdown began (x-axis) vs. the
normalized difference in traffic from/to eyeball ASes. We observe
that some ASes experience major traffic shifts, but with almost no
residential traffic (scattered along the x-axis, and close to 0 in the
y-axis). However, for a majority of the ASes, there is a correlation
between the increase in traffic involving eyeball networks and the
total increase. This suggests that most of the traffic change is due to
eyeball networks. Interestingly, some ASes suffer a decrease in total
traffic, yet residential traffic grows (top-left quadrant). These are
likely companies that either offer online services that became less
popular and relevant during the lockdown or that do not generate
traffic to the Internet “internally”. When looking at the other AS
groups (not shown), the correlation still exists but is weaker.

These observations help us to put the implications of the lock-
down measures in perspective: Some ASes need to provision a sig-
nificant amount of extra capacity to support new traffic demands
in an unforeseen fashion. In the following sections, we will explore
which specific traffic categories have experienced most dramatic
changes.

4 TRANSPORT-LAYER ANALYSIS
Based on the overall traffic pattern shifts identified in Section 3, in
this section we focus on differences in raw transport port-protocol
distributions.

We analyze the shift in application traffic due to the lockdown at
two vantage points, the ISP in Central Europe (ISP-CE) and the IXP
in Central Europe (IXP-CE). At both networks, we aggregate traffic
volume statistics from four weeks described in Table 1. For each
hour of the day, we keep separate traffic volume statistics and then
compare these to the respective day and hour of the previous month,
which allows us to identify diurnal patterns, and more importantly,
changes therein.

We plot the top transport ports for each vantage point. As the
two most common ports TCP/443 and TCP/80 make up 80% and 60%
of traffic at the ISP-CE and IXP-CE, respectively, any small changes
in their traffic volume would dominate the plot. Therefore, we omit
those from Figures 7 and 8 for clarity purposes. 3 We instead focus
on the top 3–12 ports. Figure 7 depicts changes in traffic volume
per transport-layer port for the IXP-CE, and Figure 8 for the ISP-CE.
Note that we aggregate the hours of day of all working days of
a week into a single subplot. Plots for aggregated weekend days
along with plots directly comparing changes to the base week of
February are shown in Appendix C.

While both networks share similar top ports, their distribution,
and the changes in these distributions over time, are very different.

3We also consider alternative HTTP port TCP/8080, rendered in the figures, but we do
not observe any significant change in its usage.

This reflects the different types of customers present at these van-
tage points. Recall, that the ISP-CE dataset consists of subscriber
traffic, which is largely composed of end-users and small enter-
prises, while the IXP-CE one has a very diverse set of members
across the entire Internet economy exchanging traffic over its plat-
form. In general, we see a very strong increase at the IXP-CE as well
as at the ISP-CE when comparing the changes in March (leftmost
subplots), compared to the more gradual changes in the following
months (middle and rightmost subplots).

Next, we analyze in-depth specific ports to more accurately at-
tribute overall changes in diurnal patterns:

QUIC: Running on port UDP/443, QUIC is mainly used for stream-
ing purposes by e.g., Google and Akamai [55]. QUIC traffic increases
30%–80% at the ISP-CE and about 50% at the IXP-CE when compar-
ing traffic volumes in March with the base week of February. Once
the lockdown starts, we see the largest increase at the ISP-CE in
the morning hours. Moreover, at the IXP-CE the increase is more
gradually distributed over the day. This likely reflects the behavior
of entire families staying at home. In the months of April and June
the traffic volumes of QUIC remain relatively stable, with some
hours gaining traffic while other losing some.
NAT traversal / IPsec / OpenVPN: Port UDP/4500 is registered
at IANA for IPsec NAT traversal and is commonly used by VPN so-
lutions, Port UDP/1194 is OpenVPN’s default port. As more people
are working from home and using VPNs to access their company
or university network, we see an increase of both ports during
working hours at the two vantage points in March. In the following
weeks in April and June the traffic volumes for UDP/4500 stay above
the traffic volume of the February base week, whereas OpenVPN’s
volume recedes. Interestingly, GRE and ESP, which transport the
actual IPsec VPN content, decrease at the IXP-CE in March during
the lockdown, while GRE traffic sees a slight increase at the ISP-CE.
To summarize, more people are using VPNs from their homes re-
sulting in an increased need of NAT traversal, but VPN connections
between companies which are the primary source of GRE and ESP
traffic decrease over time. For an in-depth analysis of VPN traffic
shifts, see Section 6.
TV streaming: On port TCP/8200 at the IXP-CE we see, similar
to QUIC, how changes in user behavior affect the traffic profile.
This port is used by an online streaming service for Russian TV
channels. InMarch, we notice traffic volumes increasing throughout
the day, shifting away from an evening centric traffic profile. We
mainly observe this at the IXP-CE as it serves a broader and more
international customer base. Additionally, the strong increase in
March is not persisting over the following months.
Cloudflare: Port UDP/2408 is used by the CDN Cloudflare for
their load balancer service [17]. We verify that the traffic indeed
originates from Cloudflare prefixes. During our observation period,
we see an increase in Cloudflare load balancer traffic at the IXP-CE
in March and in June.
Video conferencing: The video communication tool Skype and
the online collaboration service Microsoft Teams both use port
UDP/3480, most likely for STUN purposes [44, 45]. We confirm
this by verifying that the addresses reside in prefixes owned by
Microsoft. Additionally, we find a small number of non-Microsoft
addresses in our data. During the lockdown in March, we see a
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Figure 7: IXP-CE traffic difference by top application ports: normalized aggregated traffic volume difference per hour compar-
ing the workdays of February, March, April, and June. We omit TCP/80 and TCP/443 traffic for readability purposes.
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Figure 8: ISP-CE traffic difference by top application ports: normalized aggregated traffic volume difference per hour compar-
ing the workdays in February, March, April, and June. We omit TCP/80 and TCP/443 traffic for readability purposes.

large increase in UDP/3480 traffic at the IXP-CE, especially dur-
ing working hours on workdays. At the ISP-CE it does not show
up among the top 12 transport layer ports. Zoom, another video
conferencing solution, uses UDP/8801 for its on-premise connector
which companies can deploy to route all meeting traffic through
it [20]. At the ISP-CE this traffic increases by an order of magnitude
from February to April. Since Zoom only became popular in Europe
due to the lockdown, this drastic increase reflects the adoption of a
new application by companies deploying connectors in their local
network. These changes once again underline the fact that people
working from home do change the Internet’s traffic profile. Zoom
traffic decreases again in June, which might also be related to the
vacation period resulting in fewer online office meetings.
Email: At the ISP-CE, especially during working hours, we find a
60% increase in TCP/993, which is used by IMAP over TLS to retrieve
emails. While the overall amount of traffic is small compared to,
e.g., QUIC, it is nevertheless an additional indicator for people
conducting their usual office communication from their homes.
Unknown port: We could not map TCP/25461 to any known pro-
tocol or service. The addresses using this port mostly reside in
prefixes owned by hosting companies.

To summarize, we find significant changes in the traffic profile
for some popular transport-layer ports at both vantage points. This

highlights the impact of drastic human behavior changes on traffic
distribution during these weeks. We see an increase in work-related
as well as entertainment-related traffic, reflecting the lockdown
where people had to work and educate from home. This rationale is
supported by the significant shift in workday patterns, especially at
the ISP-CE from February to March when the lockdown began. As
more people stay at home, the traffic levels which are dominated by
residential customers increase steeply in the morning, compared to
the steady growth observed over the whole day in February.

5 APPLICATION CLASSES
Building on the analysis of the raw ports presented in the previous
section, we now provide a more in-depth analysis of traffic shifts
for different application classes. This is especially relevant for traffic
using protocols such as HTTP(S), where a single transport-layer
port number hides many different applications and use cases.

To investigate application layer traffic shifts, we apply a traffic
classification based on a combination of transport port and traffic
source/sink criteria. In total, we define more than 50 combinations
of transport port and AS criteria based on scientific-related work
[6, 60], product and service documentations [15, 28, 44, 45], and
public databases [47, 51].
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We aggregate the filtered data into 8 meaningful application
classes representing applications consumed by end-users on a daily
basis (See Table 4): Web conferencing and telephony (Web conf) cov-
ers all major conferencing and telephony providers, Collaborative
working captures online collaboration applications, Email quanti-
fies email communication, Video on Demand (VoD) covers major
video streaming services, Gaming captures traffic from major gam-
ing providers (cloud and multiplayer), Social media captures traffic
of the most relevant social networks, Educational focuses on traffic
from educational networks, and Content Delivery Networks (CDN)
classifies content delivery traffic. Note that social networks, e.g.,
Facebook, also offer video telephony and content delivery services
for their own products, which may be captured by this class but
not by the more specific other classes.

Figure 9 showcases the Gaming class at the IXP-SE vantage
point. For this application class, we filter data of five gaming soft-
ware/services providers and 57 typical gaming transport ports in
various combinations (see Table 4). We then analyze the changes
in usage behavior using two metrics: (1) the number of distinct
source IP addresses, as a way to approximate the order of house-
holds, and (2) the traffic volume. Figure 9 shows clear changes
when comparing multiplayer and cloud games before and during
the lockdown. From week 10 on, i.e., when the local government
imposed a lockdown, the number of unique IPs seen in the trace as
well as the delivered volumes rose steeply with substantial gains of
the daily minimum, average, and maximum. Notably, during the
first lockdown week, the accounted volume plunges for two days
to the lowest values observed in that time frame. We verified that
this is not a measurement artifact. Instead, the drop correlates with
an outage of a large gaming provider, which may be related to the
sudden increase in users.

We perform the application classification for the different IXP
vantage points (IXP-SE, IXP-CE, IXP-US) and for the ISP-CE.4 To
clearly present the large amount of information, we transform the
data as follows.
Week-wise comparison: We focus our analysis on four weeks, a
base week well before the lockdown, to which we compare three
weeks representing the different stages of the COVID-19 measures
as they were imposed throughout Europe—see Table 1 in Section 2.
Normalization and filtering: After normalization as outlined in
Section 2, we remove the early morning hours (2–7 am). The total
volume of the vantage points hits its daily minimum during these
hours, but does not change much during the lockdown. Removing
these hours allows us to visualize more details of traffic shifts during
the day in order to compare application classes of different traffic
volumes as well as the relative growth between the base week and
the other weeks.
Difference to base week: We visualize each week as the differ-
ence of the respective week and the base week. This enables quick
visual identification of increased/decreased application class usage
compared to pre-COVID times. We remove any growth above 200%
and any decrease below 100%.

4In case of the ISP-CE we analyzed upstream as well as downstream traffic. As the
differences between the weeks manifest in both directions in a very similar fashion
we only show the downstream direction.
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Figure 9: IXP-SE: Application class Gaming before and dur-
ing lockdown. It shows a steep increase in # IPs and traffic
volume.

The condensed timelines of the different application classes are
shown in Figure 10 for all four vantage points. We highlight our
main observations next:
Communication-related applications: At all vantage points,Web
conferencing applications show a dramatic increase of more than
200% during business hours, and at the ISP-CE, IXP-SE, and the IXP-
US also on the weekends. In this category the ISP-CE experiences
the largest growth in March right after the lockdown across all
hours of the day. In June this trend is less pronounced, which corre-
sponds with people slowly going back to their offices. Collaborative
working mainly increases at the IXP-SE and the IXP-US, at the ISP-
CE we see a vast increase on Thursday and Friday morning which
persists until June—this might be due to coordination between work
partners before the weekend. While in a lockdown situation one
might expect a lot of additional Email communication, we see a dif-
ferent trend. At the IXP-CE and the IXP-SE Email actually declines
during the lockdown and in June remains on a lower level than
before the lockdown. Instead, Email rises at the ISP-CE it, but not
as high as other traffic classes as Web conferencing. One possible
explanation could be that many companies start connecting their
remote employees via Virtual Private Networks (VPNs) and users
connect to the mail systems via the VPN. We discuss VPN traffic in
Section 6. For the IXP-US the trend is less pronounced, and we see
phases of usage increase and decrease over time.
Entertainment related applications: VoD streaming application
usage shows high growth rates at the European IXPs of up to 100%.
Interestingly, ISP-CE only sees a slight growth of about 10% during
the lockdown, while in June – well after the lockdown – the traf-
fic volume drops back to the February level. Recall that the major
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Figure 10: Heatmaps of application class volume for three different IXP locations and the ISP-CE.

streaming companies reduced their streaming resolution in Europe
by mid-March [48] for 30 days. In the case of the ISP-CE that covers
the March as well as the April week.5 In the US, the trend is the
other way around. Notably, this may be a biased measurement, as at
the IXP-US the measurement of the VoD class is based on only three
ASes, one of which is very large. Consequently, the decrease may
reflect a traffic engineering decision of the large AS, e.g., establish-
ing a private network interconnect instead of peering. The strong
growth of gaming applications is more coherent across all three IXP
vantage points, especially during the day. While the ISP-CE shows
a significant increase during morning hours, it generally leans to-
wards declining. Note, that this effect is mainly caused by unusually
high traffic levels in this category in February. Gaming applications,
typically used in the evening or at weekends, are now used at any
5The necessary measurements to quantify the impact of the resolution change by the
VoD providers are beyond the scope of this work.

time. The trend starts to flatten in June—this may in relation with
people going on vacation or spending more time outside. Moreover,
we see an increase at the IXPs for Social media application traffic
during theMarch week, while the effect quickly diminishes in April.
In March the ISP experiences a 70% growth, which slows down in
April but not as drastic as at the IXPs. The effects in this class corre-
late with the gradual de-escalation of the lockdown restrictions in
Europe: as people are allowed to leave their homes freely again and
resume social live, this traffic decreases. In June, social media usage
has returned to figures slightly below the level of March across all
vantage points.
Other applications: Educational networks and applications be-
have completely different at all vantage points. At the IXP-CE, their
traffic remains relatively stable —as would be expected given stu-
dents attending classes from home—, but at the ISP-CE, instead, it
drastically increases by up to 200%. This growth could be attributed
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to some European educational networks providing video confer-
encing solutions, which are now being used by customers of the
ISP-CE. Due to the lack of connected educational networks at the
IXP-US, we omit this category at this vantage point. See Section 7
for an in-depth study of the traffic shifts in a large educational net-
work. Likewise, CDN traffic increases in Europe, but does not grow
much—even decreasing at times—in the US. Similar to VoD, there is
a skewed distribution of CDNs present at the vantage point. Thus,
a rerouting decision of a large player may explain the moderate
loss of CDN traffic at the IXP-US.

To summarize, the use of communication-related applications
increase during working hours, especially in Web conferencing. En-
tertainment related applications such as gaming and VoD are also
consumed at any time of the day, as the becomemore demanded dur-
ing the lockdown. Social media shows a strong initial increase which
flattens over time. These observations complement and strengthen
those made in Section 4. Together, they demonstrate the massive
impact that the drastic change in human behavior caused by the
COVID-19 pandemic had on application usage.

6 VPN TRAFFIC SHIFT
As a response to the pandemic, many institutions asked their em-
ployees to work from home. A typical way to access internal com-
pany infrastructure from home is by using VPN services. As a result,
we expect VPN traffic to increase after the lockdown.
Port-based classification. We apply a twofold approach to iden-
tify VPN traffic. First, we classify traffic as VPN traffic if the well-
known transport ports and protocols are used exclusively by a
VPN service. We only focus on major VPN protocols and identify
IPsec (port 500, 4500), OpenVPN (1194), L2TP (1701), and PPTP
(1723)—both on TCP and UDP.
Identifying VPN usage on TCP/443. Since there are, however,
many VPN services using TCP/443 to tunnel VPN traffic, a pure
port-based identification approach cannot distinguish this traffic
from HTTPS. To limit the potential for misclassification, we employ
a second approach using DNS data to identify IPs labeled as *vpn*
but not as www. in the DNS. That is, we identify potential VPN do-
mains by searching for *vpn* in any domain label left of the public
suffix [46] (e.g., companyvpn3.example.com) in (1) 2.7B domains
from TLS certificates that appeared in CT Logs during 2015–2020
and (2) 1.9B domains from Rapid7 Forward DNS queries of reverse
DNS, zonefiles, TLS certificates from the end of March 2020, and (3)
8M domains found in the Cisco Umbrella toplist in 2020. We resolve
all matching domains to 3M candidate IP addresses. In order to get
a conservative estimate of VPN traffic over TCP/443, we then also
resolve the domains from the same public suffix prepended with
www (e.g., www.example.com). If the returned addresses of the *vpn*
domain and the www domain match, we eliminate them from our
candidates. This approach limits misclassifying Web traffic destined
to the www domain as VPN traffic to the *vpn* domain, if they share
the same IP address. After removing shared IP addresses, we end up
with 1.7M candidate VPN IP addresses. We classify TCP/443 traffic
to these VPN addresses as VPN traffic.
VPN traffic on the rise. In Figure 11 we report our findings us-
ing the port-based and domain-based VPN traffic identification
approach. We use four weeks of flow data from the IXP in Central

Europe and aggregate them into workdays and weekends. Interest-
ingly, we see almost no change in port-based VPN traffic before and
after the lockdown. When looking at the VPN traffic identified with
the domain-based technique, we see a significant increase in VPN
traffic. During workdays at working hours, VPN traffic increases by
more than 200% in March compared to the base week in February.
The increase on weekends is not as pronounced as during workdays,
further indicating that these traffic shifts occur due to changes in
user behavior (i.e., people working from home). When looking at
the week in April, we still see a gain in VPN traffic compared to
February, although not as large as in March. In June, VPN traffic
decreases further compared to previous months, although its traffic
volume on workdays remains well above the levels observed for the
base week of February. This is likely due to the gradual lifting of
lockdown restrictions in Central Europe and the beginning of the
summer holiday season, resulting in fewer people working from
home in June compared to March.

In conclusion, we see a clear pattern of VPN traffic increase
during working hours due to lockdown restrictions. Moreover, as
the visible increase of VPN traffic was limited to TCP/443 on *vpn*
domains, we argue that VPN identification solely on a transport
port basis vastly undercounts actual VPN traffic. To mitigate this
problem, we propose to identify seemingly HTTPS flows as VPN
traffic using domain data. This allows for a more accurate picture
of the VPN landscape.

7 EDUCATIONAL NETWORK
In this section, we study the drastic changes induced by the lock-
down measures as seen by a large European educational and re-
search network, which connects 16 independent universities and
research centers in the metropolitan region of Madrid.

As a response to the pandemic, on March 9, 2020 the regional
government announced the closure of the entire educational sys-
tem from March 11 onward. Consequently, users of this network
(e.g., students, faculty, researchers, staff) were forced to adjust and
continue their teaching and research activities from home. Only
staff for critical maintenance tasks and security were allowed to be
on-premises. Soon after, on March 13, the National Government
declared the national state of emergency, which was effective the
next day. This drastic change in the activities performed at every
institution caused traffic shifts that differ noticeably from those
observed in any other vantage point we studied before.
Traffic volume analysis. We study the impact of the lockdown
measures on traffic volumes at the academic network by comparing
three key weeks: (1) one week before announcing that the research
and educational system will be closed down (February 27 to March
4), serving as baseline, (2) the week when the lockdown happened
(March 12–18) to observe the transitioning effect, and (3) a week
one month after lectures moved to a fully online model for most
universities (April 16–22).6

6As opposed to the previous sections, we did not include the results of our traffic
analysis of the June week. At this time, Madrid was still in an intermediary stage of
the de-scalation process. Overall, EDU traffic dropped dramatically from mid-June as
most lectures and academic activities ended for the semester. Unfortunately, we lack
access to historical traffic captures in summer time to quantify the impact that the
confinement measures had in academic traffic.



The Lockdown Effect: Implications of the COVID-19 Pandemic on Internet Traffic IMC ’20, October 27–29, 2020, Virtual Event, USA

0 5 10 15 20
Hour of day in February

−20

−10

0

10

20

No
rm

al
ize

d 
tra

ffi
c 

vo
lu

m
e Port Domain

0 5 10 15 20
Hour of day in March

−20

−10

0

10

20

0 5 10 15 20
Hour of day in April

−20

−10

0

10

20

0 5 10 15 20
Hour of day in June

−20

−10

0

10

20

Figure 11: VPN traffic at the IXP-CE: normalized aggregated traffic volume per hour at the IXP-CE vantage point for four
selected weeks. Aggregated workdays are shown as positive values, aggregated weekends as negative values. VPN servers are
identified by ports and *vpn* label in the domain name.

Figure 12a shows the normalized total traffic volume for the
three weeks considered. We observe a significant drop in traffic
volume on working days between the baseline week and the two
other weeks, with a maximum decrease of up to 55% on Tuesday and
Wednesday. Traffic on weekends, however, increased slightly: 14%
and 4% on Saturday and Sunday, respectively. The traffic reduction
on working days is expected since users no longer use the academic
network on campuses and in research facilities. We again observe
that work and weekend days are becoming more similar in terms of
total traffic. This can be the result of a new weekly working pattern
with less distinction between both types of days due to lockdown.
Similarly, a close inspection of the hourly traffic pattern reveals
a traffic increase from 11% to 24% between 9 pm and 7 am. This
could be due to users working more frequently at unusual times,
but also potentially caused by overseas students (mainly from Latin
America and East Asia as suggested by the AS numbers from which
these connections come from) who access these resources from
their home countries.
Traffic in/out ratio analysis. We depict the ingress vs. egress traf-
fic ratio in Figure 12b, showing that the ratio changed substantially
after the lockdown. In the days before the lockdown, incoming traf-
fic was up to 15x the volume of outgoing traffic during workdays.
During the transition phase, the ratio halves, and it is the lowest
during the third week (online lecturing), where weekend vs. work-
day pattern is no longer visible. This change of traffic asymmetry
can be explained by the nature of remote work. On the one end,
users connect to the network services mainly to access resources,
hence the increase in outgoing traffic. On the other end, all exter-
nal (i.e., Internet-based) resources requested during work are no
longer accessed from the educational network but from the users’
residential network, hence the drastic reduction in incoming traffic.
Connection-level analysis. To better understand the traffic shifts,
we perform a connection-level analysis, focusing on selected traffic
classes. We refer the reader to Appendix A for a list of the most
relevant classes considered in this section. We determine whether
the connections are incoming or outgoing using the AS numbers of
each end-point, interfaces, and port pairs. For instance, a connec-
tion established from a residential ISP towards an HTTPS server
hosted inside the educational network is labeled as ‘‘incoming’’
connection. We cannot accurately determine the directionality for
39% of the flows observed at this academic network, many of which
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(b) Ingress vs. egress traffic ratio

Figure 12: EDU: Traffic volume & ratio (1) before, (2) just af-
ter, and (3) well after the lockdown.

appear to be P2P-like applications, marginal protocols, and non-
well-known port numbers.

The median number of the total daily connections after the
declaration of the state of emergency grows by 24% when compared
to the pre-lockdown baseline (ratio of median daily connections
before and after March 11, 2020). The usual workday-weekend
differences also decrease, but are still noticeable during the Easter
break. If we look at the directionality of the connections, the median
number of incoming connections doubles after the lockdown, while
the number of outgoing connections decreases almost by half. This
is a direct consequence of users having to access services hosted
at the academic networks from the outside, which validates the
observations made in the volumetric analysis.

Yet, the most interesting dynamics occur for specific traffic
classes. While the average number of web connections does not
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Figure 13: Daily connections relative to February 27 for se-
lected traffic categories. Shaded gray areas indicate week-
ends, red ones indicate the transition phase enforcing con-
finement measures, and blue indicate the Easter break.

change substantially, there is a radical shift in the ratio of incoming
and outgoing connections and temporal patterns due to working
from home. Figure 13 shows the daily relative growth for selected
traffic categories. After the transition phase, the daily traffic pat-
terns for many traffic classes achieve a new status quo. The median
number of daily incoming web connections increases by over 77%
and the number of outgoing connections decreases by more than
half. As we can see in Figure 13, this reduction is even more pro-
nounced for outgoing web traffic towards hypergiants or QUIC.
In both cases, the number of outgoing connections is much lower
than in pre-COVID-19 weekends. These drops correlate with the
decrease in outgoing connections to push notification services and
mobile services for iOS and Android (65% decrease on average)—i.e.,
the number of mobile devices in the networks decreases—as well
as towards streaming services like Spotify (83% decrease).

We focus on those traffic classes that are associated with remote
working and lecturing. Table 3 provides the definition of the classes
discussed in this section. Precisely, the median incoming connection
growth for web, email, VPN, Remote Desktop, and SSH connections
is 1.7x, 1.8x, 4.8x, 5.9x, and 9.1x respectively. The significant increase
in incoming web traffic is caused by users accessing online teaching
material and other resources hosted at some of these universities,
primarily from eyeball ISPs from the same country (2.8x growth).
As mentioned in the volumetric analysis, we can observe a shift
in the hourly connection patterns for both incoming and outgoing
web connections. Traditional working hours are still noticeable—
including a drop in connections during lunch—but after the COVID-
19 outbreak, a significant fraction of users access these services
late in the evening as well as early in the morning. If we analyze
the origin ASes for these out-of-time connections, we can observe
that many connections are established from overseas eyeball ASes
from Latin America (1.8x), but also from North America (3.4x). In
fact, time zone differences are noticeable. National users access web
resources hosted at the university from 10 am to 9 pm, with a valley
from 2 to 4 pm. Latin American users start connecting at 5 pm,
presenting a peak from midnight until 7 am (peak hours are 3 and
4 am). Interestingly, while the temporal patterns for VPN, web, and
remote desktop are correlated, SSH traffic patterns are irregular.
Takeaway. Academic networks experience drastic traffic shifts due
to COVID-19. Traffic volume, directionality ratios, and its source
and destination are radically different from before COVID-19. This

behavior is antagonistic, yet complementary, to the one observed
in residential ISPs.

8 RELATEDWORK
Our study provides a testimonial of the impact of an unprecedented
medical crisis in recent human history on the operation of the In-
ternet. Previous studies followed a similar approach to ours, i.e.,
collect measurements at different vantage points, to understand
the impact of other events on the Internet. Partridge et al. col-
lected and analyzed routing and protocol data during and after
9/11 to understand the resilience of the Internet under stress [8].
Their findings showed that, overall, the Internet operation was
robust: Although unexpected outages did happen, they only had a
local impact. Notice, however, that the penetration and importance
of the Internet in our life has significantly increased in the last
twenty years, and the global nature of the COVID-19 pandemic
crisis makes this case unique. Other studies focus on physical phe-
nomena, e.g., earthquakes [11] or severe weather conditions [25, 50],
and power outages [1, 4] to understand the Internet behavior and
the change on Internet user activity. Beyond physical phenomena,
also human-triggered events such as major update roll-outs can
cause substantial traffic shifts [2].

The study of the impact of the COVID-19 pandemic to the perfor-
mance and traffic of the Internet has attracted significant attention
in the form of blogs posts [18, 31, 42, 43, 62] and more recently in
presentations at network operator conferences [36]. By the time
of our submission, a limited number of research studies have been
already published. Favale et al. report and analyze the impact of
the remote learning activity by 16k students on the Politecnico
di Torino campus network due to the lockdown enforcement [26].
The university utilized an in-house online teaching solution. Thus,
although the impact of remote learning on the campus network
shares similarities with our analysis of the academic and research
network in our study, there are also significant differences. Another
study [69] analyzed Wi-Fi network data collected at university cam-
puses in Singapore and the US during the pandemic. Their results
show that the activity on campuses decreases, but mobility did not,
as this would require more drastic measures by the governments. In
our study, we found that the mobility patterns reduced drastically
in Europe, most likely due to the stricter measures and complete
lockdowns. A study of the access patterns of Wikipedia shows that
during the pandemic Web visitors had an increased interest in top-
ics such as health [54]. This increase was even more pronounced
for countries that were in the epicenter of the pandemic. Parallel
to our work, researchers evaluated (1) the impact of the pandemic
on traffic of a UK mobile network operator reflecting changes in
users’ mobility [40], (2) changes in traffic demand at a major social
network [3], (3) transactions volumes at an underground market
during the pandemic concluding that the observed higher trans-
action volumes are a market stimulus rather than an effect of the
pandemic [65], and (4) the impact of the pandemic on Internet la-
tency in various European countries, finding an increase in the
variance of additional latency and packet loss [9].

9 DISCUSSION
Internet operation during the pandemic: a success story. The
COVID-19 pandemic “underscored humanity’s growing reliance on
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digital networks for business continuity, employment, education,
commerce, banking, healthcare, and a whole host of other essential
services” [34]. At the beginning of the pandemic, changes in user
demand for online services raised concerns for network operators,
e.g., to keep networks running smoothly especially for life-critical
organizations such as hospitals [61]. In fact, the pandemic increased
the demand for applications supporting remote teaching and work-
ing to guarantee social distancing as shown in our analysis across
all vantage points. The Internet could handle this new load due
to the flexibility and elasticity that cloud services offer, and the
increasing connectivity of cloud providers [7, 10, 37, 58, 68]. Our re-
sults confirm that most of the applications with the highest absolute
and relative increases are cloud-based. Moreover, the adoption of
best practices on designing, operating, and provisioning networks
contributed to the smooth transition to the new normal. Due to the
advances in network automation and deployment, e.g., automated
configuration management and robots installing cross connects at
IXPs without human involvement, it was possible to cope with the
increased demand. For example, DE-CIX Dubai managed to quickly
enable new ports within a week for Microsoft which was selected
as the country’s remote teaching solution for high schools [21]. In
summary, our study demonstrates that over-provisioning, network
management, and automation are key to provide resilient networks
that can sustain drastic and unexpected shifts in demand such as
those experienced during the COVID-19 pandemic.
Taming the traffic increase. In this paper, we report an increase
in traffic in the order of 15-20% within days after the lockdown
began. This is in line with reports of ISPs and CDNs [18, 36, 42, 43]
as well as IXPs [56]. Typically, ISPs and CDNs are prepared for a
traffic increase of 30% in a single year period [7, 14, 39]. While these
are yearly plannings, the pandemic created substantial shifts within
only a few days. As a result, ISPs either needed to benefit from
over-provisioned capacity—e.g., to handle unexpected traffic spikes
such as attacks or flash-crowd events—or add capacity very quickly.
We observed port capacity increases in the order of 1,500 Gbps (3%)
across many IXP members at the IXP-CE alone (see Section 3.1).
Beyond our datasets, some networks publicly reported that traffic
shifts due to the pandemic resulted in partial connectivity issues
and required new interconnections [22, 57]. When we turn our
attention to traffic peaks, we notice that the increase is even smaller.
Traffic engineering focuses on peak traffic increase as this requires
more network resources. The effect of the pandemic fills the valleys
during the working hours and has a moderate increase in the peak
traffic, which can be handled by well-provisioned networks that
are prepared for sudden surges of peak traffic by 30% or more,
due to attacks, flash-crowds, and link failures that shift traffic to
other links. One concern that network operators raised in March
brought awareness to network instabilities that might occur due to
traffic shifts [61]. While on the one hand we find no evidence that
the traffic shifts due to the pandemic impact network operation of
our vantage points, individual links experience drastic increases
in traffic—way beyond the overall 15-20%. Such increases arise
unexpectedly to some network operators and may create a need
for port upgrades. On the other hand, the vantage points in this
paper range from extremely large to moderate sizes with sufficient
resources and a lot of experience in network provisioning and
resilience. In general, smaller networks with limited resources may

not be able to plan with sufficient spare capacities and fast enough
reaction times to compensate for such sudden changes in demand.
Substantial shift in traffic pattern. From a network operator
perspective, coping with the pandemic has required some port ca-
pacity upgrades but otherwise does not appear to impact operation.
The ability of network operators to quickly add capacity when
needed highlights that the Internet infrastructure works well at
large, despite some challenges to access data centers imposed by the
lockdown. From the perspective of the traffic mix, the pandemic,
however, results in substantial changes in traffic, ranging from
shifted diurnal pattern to traffic composition. This represents a re-
markable shift in Internet traffic that is, based on our observations,
handled surprisingly well by the Internet core at large supposedly
because many operators are prepared and can react quickly to new
demands. While the pandemic represents a rather extreme and ex-
ceptional case, one may argue that with the growing intertwining
of the Internet and our modern society such events can occur more
often. In any case, the COVID-19 pandemic highlights that user
behavior can change quickly and network operators need to be
prepared for sudden demand changes.

10 CONCLUSION
The COVID-19 pandemic is a—hopefully once in a lifetime—event
that drastically changed working and social habits for billions of
people. Yet, life continued thanks to the increased digitization and
resilience of our societies, with the Internet playing a critical sup-
port role for businesses, education, entertainment, and social inter-
actions. In this paper, we analyzed network flow data from multiple
vantage points, including a large academic network and a large ISP
at the edge, and, at the core, three IXPs located in Europe and the
US. Together, they allow us to gain a good understanding of the
lockdown effect on Internet traffic in more developed countries.

Our study reveals the importance of using different lenses to
fully understand the COVID-19 pandemic’s impact at the traffic
level: Mornings and late evening hours see more traffic. Workday
traffic patterns are rapidly changing and the relative difference to
weekend patterns is disappearing. Applications for remote working
and education, including VPN and video conferencing, see traffic
increases beyond 200%. For other parts of the Internet, such as edu-
cational networks serving university campuses, we find decreasing
traffic demands due to the absence of users but a drastic increase
in certain applications enabling remote working and lecturing. For
some networks, we observe that traffic ratios—including sources
and destinations—, are radically different from a pre-COVID-19
pandemic scenario. These observations highlight the importance
of approaching traffic engineering with a focus that looks beyond
hypergiant traffic and popular traffic classes to consider “essential”
applications for remote working.

With the evidence provided in this paper, we conclude that the
Internet—from the perspective of our vantage points—did its job
and coped well with unseen and rapid traffic shifts. Related work,
however, reported performance degradation in less developed re-
gions [3]. The unseen traffic shifts we observe due to the imple-
mentation of confinement measures underline the importance of
the Internet’s distributed nature to react amicably to such events
and enhance society’s resilience.
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A TRAFFIC CLASSIFICATION
To the best of our knowledge, there is no established and compre-
hensive classification of flow data into traffic classes. Even if such
a classification existed, it would be a constantly moving target and
highly dependent on the vantage point. Thus, we have compiled
classifications based on scientific-related work such as [6, 60], prod-
uct and service documentations [15, 28, 44, 45], and public databases
[47, 51] for the different vantage points. These classifications have
the largest possible overlap, but may differ between vantage points
for one or more of the following reasons.
Local differences. We are investigating vantage points from a
total of three countries on two continents. There exist local content
providers and ISPs in each country that play a dominant role in their
respective home market (e.g., digital offers of local broadcasting
networks, national ISPs). Likewise, for IXPs, not every network is
present at every IXP, which makes defining a common classification
across different IXPs difficult.
Different types of Networks. We investigate different types of
networks attracting different traffic mixes. For instance, cloud gam-
ing does not play a major role in academic networks (see Section 7),
and Video on Demand is usually not consumed via mobile providers.
Consequently, different traffic classes are relevant for different net-
works leading to a different classification.
Ease of Classification. Not all traffic classes can be classified
easily and they are not mutually exclusive. An example is the VPN
classification in section 6 requiring the additional use of DNS infor-
mation. Moreover, the number and size of the datasets used in this
work is exceptional, so certain classifications cannot be performed
on all data in reasonable time.

Org. Name ASN

Apple Inc 714
Amazon.com 16509
Facebook 32934
Google Inc. 15169

Akamai Technologies 20940
Yahoo! 10310
Netflix 2906

Hurricane Electric 6939
OVH 16276

Limelight Networks Global 22822
Microsoft 8075
Twitter, Inc. 13414

Twitch 46489
Cloudflare 13335

Verizon Digital Media Services 15133
Table 2: List of Hypergiant ASes as defined by Böttger et
al. [6]. Used to classify data in Figures 4 and 13.

Application class Filter

Web TCP:80, TCP:443, UDP:443 (QUIC), TCP:8000, TCP:8080
QUIC UDP:443
Push notifications TCP:5223, TCP:5228
Email TCP:25, TCP:110, TCP:143, TCP:465, TCP:587, TCP:993,

TCP:995
VPN UDP:500, ESP, GRE, TCP:1194, UDP:1194, UDP:4500 (For-

tigate)
SSH TCP:22
Remote Desktop TCP:1494 and UDP:1494 (Citrix remote desktop),

TCP:3389 (Windows remote desktop), TCP:5938,
UDP:5938 (Team Viewer)

Spotify TCP:4070 or ASN8403

Table 3: Overview of filters for the EDU traffic application
classification analysis (Section 7). We note that these cate-
gories are not mutually exclusive (e.g., QUIC is a subset of
Web) to enable the analysis of different phenomena.

Notably, the goal of the classifications defined in this work is
not to catch all traffic for a certain traffic class, but rather a repre-
sentative subset of traffic allowing to reason about trends during
the pandemic. In the following we disclose as many details of the
classifications used in this work as possible. However, due to the
sensitive nature of flow data, some of the information is covered
by non-disclosure agreements and can therefore not be published.

A.1 Hypergiants Classification
A classification of hypergiant ASes is provided by Böttger et al. [6].
As this classification is established in the scientific community, we
leverage it in this work. For more details on this classification and
how the 15 ASes are selected, see [6]. Table 2 reports the full list of
ASes considered for this category. Nevertheless, the classification
is limited to a few very large networks and cannot provide insights
beyond these hypergiants.

A.2 Application Classification Academic
Network

For the academic network, we focus on applications we expect to be
used by academic staff and students, e.g., VPN, SSH, remote desktop
applications and entertainment (e.g., Spotify), see Table 3.
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Notes

Web conferencing and telephony (Web conf) 7 1 6 Conferencing audio/video ports, AS-based for pure conferencing provider (TCP:444,
UDP:3478-3481, UDP:8200, UDP:5005, UDP:1089, UDP:10000)

Video on Demand (VoD) 5 5 - Large to medium VoD provider ASes
Gaming 8 5 57 Transport ports of popular games , AS-based for large gaming providers (e.g. TCP:1716,

TCP:4001, TCP:3074, ...), includes cloud gaming services
Social media 4 4 1 Social networks including their respective CDNs (HTTPs+respective AS)
email 1 - 10 Typical mail transport ports (TCP:25, TCP:587, TCP:109, TCP:110, TCP:143, TCP:220,

TCP:645, TCP:585, TCP:993, TCP:995)
Educational 9 9 - ASes of universities close to respective vantage points
Collaborative working 8 2 9 Collaborative editing, file sharing, versioning, VPN, remote administration (e.g. TCP:1194,

UDP:1194, UDP:1197, UDP:1198, ...)
Content Delivery Network (CDN) 8 8 - Dominant CDN providers (excluding social network CDNs) by AS

Table 4: Overview of filters for the application classification. Filters are based on transport ports or ASes , either in combination
or separately. Used to classify data in Figures 9, 10.
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Figure 14: ECDF of minimum, average and maximum link
utilization at IXP-CE, February week vs. April week.

A.3 Application Classification ISP/IXPs
As ISP and IXP networks have a comparable trafficmix, we compiled
a joint classification for the ISP/IXP vantage points allowing for a
high comparability. The classification is based on combinations of
ASes (at IXPs by port, at ISP by IP ranges) and transport protocol
ports if characteristic protocols exist. While the transport protocols
are disclosed in Table 4, the measured ASes cannot be disclosed
due to non-disclosure agreements.

B ADDITIONAL PLOTS FOR LINK
UTILIZATION

The hereby presented plots serve as an addition to statements made
in Section 3.3. Figures 14 and 15 show the relative link utilization at
IXP-CE for weeks in April and June, respectively. We also plot the
link utilization from the reference week in February for comparison.
These plots show, in contrast to Figure 5, an increased overall link
utilization at IXP-CE.
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Figure 15: ECDF of minimum, average and maximum link
utilization at IXP-CE, February week to June week.

C ADDITIONAL PLOTS FOR APPLICATIONS
BY PORT CLASSIFICATION

In the following we present additional plots for the applications by
port classification.

Figures 16 and 17 show the differences by top application ports
compared directly with the base week of February, for the IXP-
CE and ISP-CE respectively. This is different from Figures 7 and
8 shown in Section 4 which show the difference for weeks of two
consecutive month, i.e., emphasizing on the differences between
the selected weeks. On the other hand, Figures 16 and 17 emphasize
the result of the lockdown and its lifting compared to the regular
February 2020week, i.e., what changes dowe observe in eachmonth
compared to the base week.

All previously shown figures focusing on the applications by
port classification, are limited to the changes for workdays within
the selected weeks. To complement the changes seen on workdays,
Figures 18 and 19 show the traffic changes based on application
port and hour of weekend days only.
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Figure 16: IXP-CE traffic difference by top application ports: normalized aggregated traffic volume difference per hour compar-
ing the weekends of March, April, and June to the base week of February. We omit TCP/80 and TCP/443 traffic for readability
purposes.
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Figure 17: ISP-CE traffic difference by top application ports: normalized aggregated traffic volume difference per hour compar-
ing the weekends of March, April, and June to the base week of February. We omit TCP/80 and TCP/443 traffic for readability
purposes.
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Figure 18: IXP-CE traffic difference by top application ports: normalized aggregated traffic volume difference per hour com-
paring the weekends of February, March, April, and June. We omit TCP/80 and TCP/443 traffic for readability purposes.



IMC ’20, October 27–29, 2020, Virtual Event, USA Feldmann et al.

0 5 10 15 20
Feb. vs. Mar.: hour of day

−10

0

10

20

30

Ch
an

ge
 o

f n
or

m
al

ize
d 

tra
ffi

c 
vo

lu
m

e

0 5 10 15 20
Mar. vs. Apr.: hour of day

−10

0

10

20

30

0 5 10 15 20
Apr. vs. Jun.: hour of day

−10

0

10

20

30

UDP/443
GRE
UDP/4500
TCP/8080
TCP/25461
TCP/8200
ESP
TCP/993
UDP/1194
UDP/8801

Figure 19: ISP-CE traffic difference by top application ports: normalized aggregated traffic volume difference per hour com-
paring the weekends of February, March, April, and June. We omit TCP/80 and TCP/443 traffic for readability purposes.
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