Efficient BVH Construction via Approximate Agglomerative Clustering

Yan Gu Yong He

Kayvon Fatahalian

Guy Blelloch

Carnegie Mellon University

Abstract

We introduce Approximate Agglomerative Clustering (AAC), an
efficient, easily parallelizable algorithm for generating high-quality
bounding volume hierarchies using agglomerative clustering. The
main idea of AAC is to compute an approximation to the true
greedy agglomerative clustering solution by restricting the set of
candidates inspected when identifying neighboring geometry in the
scene. The result is a simple algorithm that often produces higher
quality hierarchies (in terms of subsequent ray tracing cost) than a
full sweep SAH build yet executes in less time than the widely used
top-down, approximate SAH build algorithm based on binning.

CR Categories: 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Raytracing;

Keywords: Ray tracing, bounding-volume hierarchy, agglomera-
tive clustering

Links: ©DL T PDF

1 Introduction

In recent years there has been considerable interest in the design
of efficient, parallel algorithms for constructing bounding volume
hierarchies (BVH) for ray tracing. The current best practice tech-
nique [Wald 2007] for constructing a high-quality hierarchy in par-
allel with reasonable cost on a multi-core CPU uses a divide-and-
conquer algorithm (top-down) that establishes geometry groupings
according to an approximate surface area heuristic [Goldsmith and
Salmon 1987]. While higher quality structures can be generated us-
ing agglomerative (bottom-up) construction schemes [Walter et al.
2008], these methods, even with recent optimizations, have not
been demonstrated to be performance competitive with best prac-
tice divisive implementations.

In this paper we introduce a new algorithm that efficiently con-
structs BVHs in a bottom-up manner using agglomerative cluster-
ing. The resulting hierarchies are often of higher quality than those
produced by a top-down, full sweep SAH build, and they can be
constructed in parallel in less time than a fast approximate SAH
build that employs the widely used optimization of “binning” [Wald
2007]. Unlike previous work on bottom-up BVH construction, our
algorithm realizes high performance by generating a structure that
is a close approximation to (but does not necessarily match) the
scene geometry’s greedy agglomerative clustering solution.

Algorithm 1 BVH construction using O(N?) agglom. clustering

Input: scene primitives P = {Py, P, -+ , Pn}.
Output: a scene BVH (returns root node)

Clusters C' = P;
while Size(C') > 1 do
Best = oo;
for all C; € C do
forall C; € C do
if C; # Cj and d(CZ, CJ) < Best then
Best = d(OZ, Cj);
Left = C»;; Right = Cj;
end if
end for
end for
Cluster C’ = new Cluster(Left, Right);
C =C —{Left} — {Right} + {C'};
end while
return C';

/I initialize with singleton clusters

2 Background

The pursuit of practical, real-time ray tracing systems for many-
core CPUs and GPUs has inspired many efforts to reduce the time
required to build high-quality ray-tracing acceleration structures.
(A high-quality structure reduces the cost of performing ray-scene
intersection queries.) Promising techniques have been documented
extensively, and we refer the reader to [Wald 2007; Wald et al.
2007] and [Karras 2012] for excellent summaries of the design
space and key challenges of modern approaches.

In this paper, we focus on the specific problem of performing a
full (“from scratch”) construction of a bounding volume hierarchy
from scene geometry. At present, the preferred approach to con-
structing a BVH on many-core CPU architectures is to build the
hierarchy top-down, using primitive binning as a cheap approxima-
tion to evaluating the full surface area heuristic. Parallel implemen-
tations of this approach on modern architectures are described in
detail in [Wald 2007; Wald 2012]. GPU-based implementations of
BVH construction discard use of the surface area heuristic in favor
of maximizing parallelism during construction of the upper levels
of the hierarchy [Lauterbach et al. 2009; Karras 2012]. These im-
plementations achieve high performance, but produce lower quality
BVHs, making them less desirable for use in ray tracing.

Our efforts are inspired by previous work by [Walter et al. 2008]
which explores the use of agglomerative clustering (as opposed to
top-down divisive methods) to build high-quality BVHs. Agglom-
erative clustering is a greedy algorithm that is initialized with each
scene primitive as a singleton geometry cluster, then repeatedly
combines the two nearest clusters in the scene into one. This pro-
cess continues until a single cluster, representing all primitives in
the scene, remains. Agglomerative clustering is a popular technique
in many fields as it can produce high-quality hierarchies and also
generalizes to arbitrary cluster distance functions, but its use has
been limited in computer graphics due to its high cost. Solutions
have O(N?) complexity [Olson 1995], but for clarity we provide
a naive, O(N?®) algorithm for constructing a BVH using agglom-

http://doi.acm.org/10.1145/1111111.2222222
http://portal.acm.org/ft_gateway.cfm?id=2222222&type=pdf

erative clustering in Algorithm 1. In the pseudocode d(C;, C;) is
the cluster distance function. In this paper we follow [Walter et al.
2008] and define d(C}, C;) as the surface area of the bounding box
enclosing primitives from both clusters.

An expensive operation in an agglomerative BVH build is finding
the nearest neighbor (e.g., closest cluster) to a given cluster. Walter
et al.’s key idea was to accelerate this search by storing remaining
clusters in a K-D tree constructed using a low-cost, top-down par-
titioning strategy such as coordinate bisection. Thus their approach
uses a low-quality, but cheap-to-compute, hierarchical acceleration
structure to accelerate construction of a high-quality one. Walter
et al. used this idea to design two agglomerative BVH build algo-
rithms (heap-based clustering and locally-ordered clustering) that
were empirically shown to scale to large scenes and, for random
rays, reduced tracing cost 15-30% when compared to a top-down
binned SAH build. Although this work established agglomerative
clustering as a viable strategy for BVH construction, the resulting
build times remained slow compared to top-down methods. The
algorithm required complicated insertion and deletion of clusters
from a K-D tree (or a periodic K-D tree rebuild) and its paralleliza-
tion requires speculative execution. Although Walter et al. reported
performance within a factor of two of a top-down build for unop-
timized single-core implementations in Java, our experiences reim-
plementing and optimizing these techniques in C++ yield single-
core performance that is (even after non-trivial effort) about four
to seven times slower than a binned SAH build (see Table 2). The
primary contribution of this paper is a new algorithm, based on ag-
glomerative clustering, that yields similar quality BVHs to Walter et
al.’s solutions, but is simpler to implement, and offers performance
comparable to, and often better than, a top-down binned BVH build.
Furthermore, it parallelizes well on a modern many-core CPU.

3 Approximate Agglomerative Clustering

The key observation underlying our new agglomerative cluster-
ing technique is that the cost of forming new clusters via locally-
ordered or heap-based agglomerative clustering [Walter et al. 2008]
is highest at the beginning of the construction process when the
number of clusters is large. Since these techniques are initialized
with one cluster per scene primitive (/N initial clusters), each near-
est neighbor search at the beginning of hierarchy construction is a
global operation incurring cost at least O(log N). Thus, construct-
ing the bottom-most nodes of the resulting BVH dominates overall
computation cost. This property is particularly undesirable since
combining the original singleton clusters is a highly local operation
that need not incur the high cost of a scene-wide search.

Thus, the main idea of our approach is to accelerate BVH construc-
tion using an approximate agglomerative clustering (AAC) method
that restricts nearest neighbor search to a small subset of neigh-
boring scene elements. We show that this approximation mini-
mally impacts resulting BVH quality but significantly accelerates
the speed of BVH construction.

Conceptually the idea of the AAC method (illustrated in Figure 1)
is to quickly organize scene primitives into a binary tree based on
recursive coordinate bisection—i.e., at each level of the tree one
coordinate (X, y, or z) is bisected. Leaf nodes in this tree (which
we call the constraint tree) contain a small set of scene primitives
(singleton clusters) whose centers fall within the corresponding re-
gion of space. BVH construction via agglomerative clustering then
proceeds bottom up, with the constraint tree controlling what prim-
itives can be clustered. In particular each node of the constraint tree
generates a set of un-combined clusters by taking the union of just
the un-combined clusters generated by its two children and reduc-
ing the size of this union by greedily combining some of the clus-

Interior node:
|P| primitives
CombineClusters(C,U C,, |P|)

Leaf node:
|P|<§

Figure 1: lllustration of the AAC algorithm’s “constraint tree”
with groups of at most § primitives at the leaves. Each node rep-
resents a computation that combines clusters from its two children
using agglomerative clustering (see CombineClusters). The
size of a node in the figure represents the number of clusters re-
turned by the node, which increases going up the tree. The last step
of the algorithm (top node) combines all remaining clusters into a
single cluster corresponding to the BVH root node.

ters. The number of un-combined clusters returned by each node
is controlled by the algorithm and is somewhere between 1 (every-
thing has been combined into a single cluster) and the number of
primitives in the subtree (nothing has been combined yet). At the
root of the constraint tree the clusters are reduced to a single cluster
using a final step of true greedy agglomerative clustering.

An important property of the method that balances efficiency and
accuracy is to increase the number of clusters generated by the
nodes as we proceed up the tree, but decrease the total number
across each level. This keeps the computation required near the
leaves small, but allows for more accuracy at modest costs higher
in the tree where there are fewer nodes. We control the number of
clusters generated by a node using a cluster count reduction func-
tion f, described below.

3.1 Algorithm Basics

We now go into more detail on how we efficiently implement the
AAC method. Pseudocode is given in Algorithms 2, 3 and 4.

Primitive sort. The algorithm first sorts scene primitives accord-
ing to the Morton code (z-order) of their bounding box center [Gar-
gantini 1982; Bern et al. 1999]. Generating the Morton code from
primitive centers and subsequent radix sort are cheap to compute
and easily parallelized. Our implementation constructs a Morton
code with [log, N bits per dimension and uses a variable-bit radix
sort that executes in time linear in the number of primitives (see
Section 3.4.1 for details). Indeed the Morton code is a common
technique used in several high-performance (but lower tree quality)
algorithms for BVH construction [Lauterbach et al. 2009; Karras
2012]. Unlike these algorithms, the AAC algorithm does not use
the ordering directly to build a BVH. Rather it uses the implicit
structure to define constraints on cluster combining.

Constraint tree traversal (“downward phase”). Following
the sort, the AAC algorithm invokes the recursive function
BuildTree (Algorithm 3) to traverse the implicit constraint tree
structure organizing the primitives. (Note that the constraint tree
is implicit in the Morton code sort, it is never explicitly con-
structed.) Following [Lauterbach et al. 2009], in each traversal step,
MakePartition (line 5) bisects the current spatial extent based
on the next bit in the Morton code. This serves to partition the prim-

Algorithm 2 AAC(P)

Algorithm 4 CombineClusters(C', n)

Input: list of all scene primitives P
Output: BVH containing primitives in P

1: Compute Morton code for centers of P;
2: RadixSort P by Morton code;

3: C' = BuildTree(P);

4: return CombineClusters(C, 1);

Algorithm 3 BuildTree(P)

Input: subset of scene primitives P

Output: at most f (| P|) clusters containing primitives in P
1: if (| P| < §) then
2 Initialize C' with P;

3: return CombineClusters(C, f(9));

4

5

: end if

: (Pr,, Pr) = MakePartition(P);
6: C' = BuildTree(Pr) U BuildTree(Pr);
return CombineClusters(C, f(|P|));

~

itive set P into subsets Pr, and Pr. The partition is easily computed
using binary search through P to find where the Morton code for the
primitives switches from O to 1 at the current bit position. As noted
previously [Gargantini 1982; Lauterbach et al. 2009], the Morton
code sort ensures that all primitives on the 0 side of the flip point in
P are on the low side of the coordinate bisection (in Pr,), and primi-
tives on the 1 side are on the high side (Pr), so no data movement is
necessary when forming these subsets. Therefore the work spent on
tree traversal is T'(n) = T'(n—a)+7T(a)+ O (log(min(a, n—a))),
which is linear in n for @ > 1. In the rare event that the algorithm
exhausts the Morton code bits during traversal without partitioning
the primitives into a sufficiently small set, we continue traversal by
partitioning P in half each step.

Bottom-up clustering (‘“upward phase”). Agglomerative clus-
tering begins once the number of primitives in P drops below the
threshold & (Algorithm 3, line 1), where § is a parameter of the
algorithm. Like locally-ordered clustering, the AAC algorithm ini-
tializes cluster formation by creating one singleton cluster per prim-
itive (line 2). We select ¢ to be small (in Section 4 we demonstrate
high-quality builds using § = 4 and 20).

The algorithm CombineClusters is the key component of the
bottom up clustering. It is used to reduce the number of clusters at
every node of the constraint tree to f(|P|), where the cluster count
reduction function f is a parameter of the algorithm. At the leaves
of the tree this reduces the initial set of primitives to the required
size (line 3), and at internal nodes it reduces the union of the two
sets of clusters from its children to the required size (lines 6 and
7). Since the number of clusters in C' is never that large, we use
a brute force method to reduce the number of clusters as described
in Algorithm 4. The method £indBestMatch implements linear
search over all clusters in C. This algorithm takes at least O(|C|?)
time. CombineClusters then greedily selects the closest pair of
matches by find the best best-match, and combines this pair. This is
repeated until n clusters remain. We defer further details about our
optimized implementation of CombineClusters to Section 3.3.

Each invocation of Buildtree(P) returns a list of f(|P]) clus-
ters produced via agglomerative clustering of the contents of C.
While the recursive splitting phase of BuildTree (“downward”
phase) serves to partition scene primitives into local groups, the re-
combination phase that follows the return of child recursive calls
(“upward” phase) serves to agglomerate the clusters resulting from
the Pr, and Pgr primitive sets. The call to CombineClusters

Input: list of clusters C
Output: list of at most n clusters

1: forall C; € C do

2: C;.closest = C FindBestMatch(C});
3: end for

4: while |C| > ndo

5: Best = oo;

6: forall C; € Cdo

7: if d (C;, Cj.closest) < Best then
8: Best = d (C;, C;.closest);

9: Left = C;; Right = C;.closest;
10: end if

11: end for

12: ¢’ = new Cluster(Left, Right);
13: C = C — {Left, Right} + {c'};
14: ¢ .closest = C FindBestMatch(c');
15: forall C; € C do

16: if C;.closest € {Left, Right} then
17: C;.closest = C FindBestMatch(C});
18: end if

19: end for

20: end while

21: return C,

on line 7 of Algorithm 3 combines the clusters returned from the
left and right constraint tree nodes into a smaller number of clus-
ters determined by the function f. Notice that clusters containing
primitives in different child primitive sets as given by the constraint
tree can be combined into the same output cluster in this step. The
recombination phase continues until reaching the root of the con-
straint tree, which returns f (| P|) clusters. Last, the remaining clus-
ters are reduced to a single cluster on line 4 of Algorithm 2. The
result is a BVH containing all primitives in the scene.

Algorithm Parameters. The AAC algorithm has two parameters:
the cluster count reduction function f and the traversal stopping
threshold 6. These parameters modify the extent to which the algo-
rithm approximates the full agglomerative clustering solution and
thus affect the quality of the generated BVH and its construction
cost. The result of the function f(z) can vary between 1 and z. A
value of 1 yields a cheap to compute, but poor-quality BVH that is
similar to directly building the BVH from the results of the Morton
sort [Lauterbach et al. 2009]. Setting f(x) = x defers all cluster ag-
glomeration to the root node of the bisection tree, causing the AAC
algorithm to degenerate into a true greedy agglomerative cluster-
ing method. To achieve performance between these two extremes,
our implementation of AAC algorithm uses functions of the form
f(x) = cz® for 0 < a < 1 and some constant c (see Section 3.2).

Discussion. Before analyzing the overall complexity of the algo-
rithm and describing implementation details, we highlight key dif-
ferences between AAC construction and locally-ordered clustering.

Firstly, the AAC build’s output is an approximation to the results of
locally-ordered clustering (the two algorithms may generate differ-
ent BVHs). While locally-ordered clustering yields the same result
as a brute-force clustering implementation run on all scene primi-
tives (it will always cluster the two closest clusters), the primitive
partitioning performed during AAC build’s downward phase con-
strains what clusters can be formed. For example, it is possible
for partitioning to separate the two closest primitives in the scene.
Although these primitives will likely be grouped in some interior
node of the resulting BVH, they will not be contained in the same
leaf cluster.

Since each constraint tree node returns many un-combined clusters
as determined by the cluster count reduction function f, the AAC
algorithm has flexibility to delay combining of certain clusters until
higher levels of the constraint tree. In particular clusters contain-
ing large primitives will get pushed up the constraint tree without
combining until they get to a node which represents a spatial region
of the “appropriate size”—i.e. for which all clusters are about as
large. This is because the greedy method combines clusters with
the smaller spatial bounds first (recall d(C;, C;) is the resulting ag-
gregate bounding box size), leaving large ones un-combined. Com-
bining large primitives high in the constraint tree is what makes ag-
glomerative clustering work well in comparison to top-down meth-
ods when there is large variation in the size of scene primitives, and
is areason why the AAC algorithm works almost as well as the true
greedy agglomerative clustering.

The second difference is that locally-ordered clustering uses a K-
D tree to accelerate finding the minimum distance cluster from a
potentially large collection (this adds significant complexity to the
algorithm since the tree must support cluster insertions and dele-
tions during the clustering process). In contrast, at both the leaf
and interior levels of the constraint tree, the AAC build never per-
forms clustering on a large number of elements. As a result, there
is no need for a K-D tree to accelerate search. In an AAC build,
presorting geometry and the constraint tree traversal process serve
to limit the number of clusters processed at any one point by the
algorithm (to a local set), not to accelerate nearest neighbor search
over a scene-wide collection.

3.2 Cost Analysis

In this section we analyze the AAC algorithm for the case where re-
cursive coordinate bisection yields a fully balanced constraint tree,
as well as under the worst-case assumption of a completely unbal-
anced tree. In practice we observe performance close to the fully
balanced case. In this analysis we also assume the execution of
CombineClusters has O(]C|?) cost, which we observe to be
the case in practice although it is theoretically possible to construct
geometric configurations that require O(|C|*) work. As discussed
earlier in Section 3.1, the cost of sorting the Morton codes and
the combined cost of MakePartition is linear in the number
of primitives.

A fully balanced constraint tree with height H and leaves con-
taining § primitives has 27 = N/§ leaves (where N is the total
number of primitives contained in the tree). Thus, execution of
CombineClusters for leaf nodes constitutes O (27 x §%) work.
Processing CombineClusters in all H levels requires work:

o) (ing’i f (5 : zi)2>

If we assume f(z) = c - /2, the amount of work done on each

level is about the same and the time complexity is:
H) 2

0 (Z 9H i (cx/é : Qi)) = O(H -2"*5) = O(Nlog N) .
1=0

A smaller choice of a in f(z), allows the AAC build to run in linear
time. In particular for f(z) = ¢ - x°°7%, € > 0, the work per level
geometrically decreases going up the tree, and the time complexity
is:

0 <2H: gH i (2 (6 : 2")1%) -0 (i 2H‘2”'> =O(N).

N T

fill distance matrix results of
BuildTree(7)

results of
BuildTree(T,,) (prior to calling
CombineClusters)

results of
BuildTree(T))

Figure 2: Careful data arrangement allows reuse of cluster dis-
tance computations from child nodes. Four steps in computing clus-
ters for a subtree T are shown. Distance results computed during
processing of the left subtree (green) and right subtree (purple) are
already stored in the correct location in the distance matrix for T.

Thus, for the balanced case, as long as the number of clusters re-
turned at each node is smaller than the square root of the number of
primitives contained in the subtree, the algorithm takes linear time.

A completely imbalanced constraint tree will have depth N — ¢
and the size of each node is O(f(N)). Therefore assuming that
f(@) = c¢- a2 the AAC build will have O (min (N?, N'*3%))
time complexity. In practice this worst case cannot occur, at least
for fixed or floating-point representations of primitive coordinates,
since such numbers do not have the precision to represent such an
unbalanced tree.

X 505+ S 5
In practice, we choose ¢ = 5> which indicates that f(6) = 5

so that AAC algorithm halves the number of clusters on leaf nodes.

3.3 Optimizations

Although the AAC build algorithm is conceptually quite simple, a
number of important optimizations to CombineClusters were
required to achieve the high performance reported in Section 4.2.

3.3.1 Construction Speed

Reduce redundant computation of cluster distances. The cluster
distance function d(C}, C;) is an expensive function that requires
loading two cluster bounding boxes from memory, then calculating
an aggregate bounding box and its surface area. Thus, at the start of
CombineClusters we pre-compute all possible d(C;, C;) for
the clusters in C and save these results in a matrix. This matrix is
symmetric, so only its upper-triangle need be calculated and stored.
Moreover, each clustering step requires removal of two clusters
from the set C' (line 13). Our implementation replaces one deleted
cluster with the newly formed cluster ¢’, and the other deleted clus-
ter with the last cluster in the set. Thus the precomputed matrix re-
mains compact without much data movement, and its size decreases
by one each iteration.

A second optimization is that cluster distance values available at
the termination of CombineClusters (C, n) are values that are
also needed during clustering at the next level up the constraint tree.
These distances are retained and reused, as described further in the
next optimization.

Reducing data movement. The storage required for the distance
matrix computed by CombineClusters is greater at higher lev-
els of the constraint tree (size of the set C' is larger). Careful man-
agement of this temporary storage can eliminate the need for dy-
namic allocation during the build and also enable reuse of distances
computed during child processing.

As illustrated in Figure 2, suppose we have a pre-allocated a dis-
tance matrix with R rows and columns and seek to process sub-
tree 1. Processing the left subtree 17, can be carried out using
a fraction of the allocation shown in green. (Specifically, the fi-
nal distance matrix for clusters returned from 77, is stored at this
location.) Then T'r is processed using an adjacent storage region,
producing the distance matrix shown in purple. The computation of
distances by node 7" can reuse these values. Only the new distances,
shown in orange, must be computed before clustering is performed
by CombineClusters for node 7'. The final distance matrix for
the node 7" is given in blue.

On average, for n tree nodes, the size R of the pre-allocated matrix
for the average case should be:

log(n/d) n n 1
r= > 1(5) </ (3) Toome

Our implementation sets R = 4c - n0-5=¢/2, resulting in an alloca-

tion that is sublinear in the total number of primitives n. Although
it is possible to create a scene for which construction requires more
temporary storage than this bound (requiring dynamic reallocation),
we have not encountered this situation in practice.

3.3.2 Subtree Flatting for Improved BVH Quality

After each cluster merge, the AAC algorithm performs a check to
determine whether to maintain the BVH subtree corresponding to
this cluster, or to flatten the subtree into a list of primitives. The
optimization of electing not to build a subtree structure is a natu-
ral and standard optimization in top-down SAH builds, but an ag-
glomerative build must detect and “undo” the subtree it has already
constructed when a flat list of primitives will reduce expected ray
tracing cost. To detect this condition, we employ a cost metric is
similar to the SAH cost metric, however since the flattening check
proceeds bottom-up the true cost of the subtrees is known. (No lin-
ear approximation of subtree cost is required.) The cost C(T) of
BVH subtree 7' is:

Ce - |T|

C(T) = min
{ (€ + () + T (€ +C(T)

where |T'| is the number of primitives in 7', T; and 7’ are the left
and right subtrees of 7', S(T) is the surface area of the bounding
box of T', and Cp, and C; are estimated ray-box and ray-triangle in-
tersection costs. Nodes are flattened if the above metric indicates
cost is minimized by doing so. This process is similar in spirit to the
subtree flattening performed after a top-down SAH build by [Bit-
tner et al. 2013]. We observe that tree flattening modestly improves
BVH quality (reduces intersection and traversal computations dur-
ing ray tracing) by 3-4%.

3.4 Parallelism

The AAC algorithm is amenable to parallel implementation on
a multi-core CPU. As with SAH-based top-down builds, the al-
gorithm’s divide-and-conquer structure creates many independent
subtasks corresponding to subtrees. These subtasks can be pro-
cessed by different cores in parallel.

The lack of parallelism at the top of the constraint tree is less prob-
lematic for an AAC build than a traditional top-down SAH build,
since the work performed in the upper nodes of the tree is substan-
tially less. For example, for the 7.9 M triangle San Miguel scene
(see Table 2), the topmost clustering step must only process 1,724
clusters. As a result, we do not attempt any intra-node paralleliza-
tion of the algorithm and still observe good speedup on 32 cores

(see Section 4.2). We note that multi-core parallelization of the
clustering process within each node would incur similar complex-
ities as those encountered in [Walter et al. 2008]. However, the
brute-force implementation of CombineClusters is amenable
to vector parallelization (we have not attempted this optimization).

During top-down bisection, our implementation creates approxi-
mately eight times as many parallel subtasks as cores. Subtrees
associated with each task are evaluated in serial on a core, using all
the storage and redundant-computation elimination optimizations
described in Section 3.3. Note these optimizations induce a serial
ordering on the processing of subtrees, so they cannot be employed
for subtrees executed in parallel.

3.4.1 Radix Sort

Our AAC implementation employs a parallel radix sort that sorts
10% bits per pass, where n is the number of keys being sorted.
Since the number of bits we use for the Morton code is O(logn),
the number of passes is a constant, and the total work of the sort
is linear in N. The sort is based on the integer sort found in the
Problem Based Benchmark Suite [Shun et al. 2012]. The algorithm
partitions the array of size n into v/ blocks of size y/n. Within
each block we maintain /7 buckets and count the number of entries
of each possible value of the k’% bits being sorted. The blocks can
be processed in parallel since the buckets are maintained separately.
The result of the counting phase can be viewed as an \/n X \/n
array of counts with the buckets across the rows and processors
down the columns. By flattening this array in column-major order,
then performing a parallel plus-scan on the result, we get the offset
location for the appropriate bucket for each processor. A final pass
over the data array can be used to permute the data to its sorted
location. This is again parallel over the blocks.

4 Evaluation

We evaluated AAC BVH construction by comparing its perfor-
mance and output BVH quality against that of three alternate
BVH build implementations (1) a top-down full-sweep SAH build
(SAH), (2) a top-down “binned” SAH build (SAH-BIN) that eval-
uates SAH-cost at the boundaries of 16 bins along the longest axis,
and (3) locally-ordered clustering (Local-Ord) as described in [Wal-
ter et al. 2008]. Since implementation and machine differences can
make it difficult to compare performance (and even tree-quality)
measurements against those reported in previous publications, we
developed our own implementations of each algorithm. Our im-
plementations have undergone substantial optimization (with one
exception: our implementations of the algorithms do not use SIMD
intrinsics). Still, Table 2 indicates that SAH is over two times faster
than that published in [Wald 2007], SAH-BIN is within a factor
of 1.7 (adding SIMD execution would likely more than make up
this difference), and Local-Ord is at least two times faster than the
implementation in [Walter et al. 2008]. Our experiments include
two configurations of AAC construction: AAC-HQ is configured
conservatively to build a high-quality BVH (§ = 20, ¢ = 0.1).
AAC-Fast is configured for high performance (§ = 4, ¢ = 0.2).

We executed all five build algorithms on the six scenes shown above
Table 2. (Half-Life is a scene containing geometry exported from
Half-Life 2: Episode 2.) Renderings used 16 diffuse bounce rays
per pixel and four-to-five point light sources depending on scene.
All experiments were run on a 40-core machine with four 10-core
Intel E7-8870 Xeon processors (1066 MHz bus). Parallel imple-
mentations were compiled with CilkPlus, which is included in g++.

Ray-Scene Intersection Cost (Relative to SAH-BIN)

—
(=]

e
0

(Relative to SAH-BIN)
= o
>~ o

<
]

Avg. Ray-Scene Intersection Cost

— | _— Ray-triangle
e 1 tests

™~ Ray-box
tests

12345 1234°5
Sponza Fairy Conference
1: SAH-BIN
2: SAH (full sweep)
3: Local-Ord

2345 12345 12345
Buddha Half-Life San Miguel
4: AAC-HQ (8 =20,£=0.1)
5: AAC-Fast (0 =4,£=0.2)

Figure 3: Cost of ray-scene intersection (measured as the sum of BVH node traversals and triangle intersection tests). Values are averaged
over all rays (primary, shadow, and gather) and normalized to the cost of traversal through the BVH constructed using SAH-BIN. In all
scenes but Buddha, both the AAC-HQ and AAC-Fast configurations yield as good (or better) trees than a full sweep SAH build. The benefits
of bottom-up agglomerative construction diminish when all scene triangles are similarly sized, as is the case in a model like Buddha.

SAH Local-Ord AAC-HQ AAC-Fast
Sponza .89/ .91 86/.84 .86/.82 .90/ .90
Fairy 97/ .94 .97/ .88 95/ .84 .94/ .88
Conference .86/ .82 76/ .68 7917 .67 18 1 .67
Buddha 98/.95 1.08/1.03 1.09/1.03 1.07/1.04
Half-Life 81/.87 .86/ .86 .80/.83 .82/ .87
San-Miguel .88/.89 82/.75 .83/.78 90/ .84

Table 1: Normalized ray-scene intersection costs for diffuse bounce
(left value) and shadow (right value) rays. Costs are normalized to
that of SAH-BIN. In general, the relative improvement of the ag-
glomerative techniques is higher for shadow rays since large oc-
cluders are lifted to higher levels of the BVH. Primary ray results
are similar to diffuse bounce rays and are not shown.

4.1 BVH Quality

Figure 3 compares the cost of tracing rays through the BVHs pro-
duced by each algorithm, normalized to that of SAH-BIN. The sum
of node traversal steps (bottom part of bar) and intersection tests
(top of bar in lighter color) is used as a simple proxy for tracing
cost. (We find tracing wall clock times, despite their dependence
on the ray tracer used, track these counts well.) Values in the fig-
ure are the result of averaging counts over primary, shadow, and
diffuse bounce rays. More detailed individual statistics for shadow
and diffuse bounce rays are given in Table 1.

Figure 3 shows that the approximate agglomerative clustering per-
formed by the AAC build algorithm does not significantly impact
the quality of the resulting BVH. AAC-HQ produces BVHs that
have essentially the same quality as those produced by Local-Ord
(in the worst case of San Miguel, AAC-HQ and Local-Ord costs
differ by only 3%). Tracing cost ranges from 15% to 30% less than
that of the SAH-BIN built BVH, and it remains lower than the full
SAH build for all scenes but Buddha. More surprisingly, AAC-Fast
also produces BVHs that are as good or better than the full sweep
build in these cases.

We also observed that BVHs produced by the agglomerative meth-
ods realize the greater benefit for shadow rays than radiance rays,
particularly when scenes contain primitives with large spatial extent
(Table 1). This is because the agglomerative approaches are more

Multi-core Speedup (San Miguel)

40 = Linear Speedup
—e— AAC-HQ
32 L. AAC-Fast | i

=)
T
]

1 4 8 16 24 32 40
Number of Cores

40 HT

Figure 4: AAC-HQ BVH construction achieves near linear scaling
out to 16 cores and 35 % speedup when executed using 80 threads on
40 cores with Hyper-Threading (40 HT). AAC-Fast achieves 27 %
speedup in the 40 HT configuration.

likely to place large primitives higher in the tree. Thus large prim-
itives, which are likely to be frequent occluders, are encountered
quickly during traversal, leading to early ray termination.

All three agglomerative techniques (not only the AAC configu-
rations) generate a lower quality BVH than the top-down SAH
method for Buddha. The benefit of bottom-up methods is greatest
when variability in scene triangle size is large, a condition that is
not present in Buddha. We observe similar results (BVH quality of
agglomerative clustering equal to or slightly worse than SAH) for
scenes consisting of single high-resolution scanned models (e.g.,
the Stanford Dragon) or single hairball models. One technique for
improving top-down SAH build quality in scenes with large varia-
tion in triangle size is to pre-split large triangles [Ernst and Greiner
2007]. Agglomerative methods handle this case well without intro-
ducing many new triangles into the scene.

4.2 BVH Construction Performance

Table 2 reports BVH build times for each of the five methods. Tim-
ings include all aspects of BVH construction, including Morton

Fairy Conference Buddha Half-Life San Miguel
Num Tri SAH SAH-BIN Local-Ord AAC-HQ AAC-Fast

v 1 core exec. time (ms) 1 core (ms) 32 cores (ms) 1 core (ms) 32 cores (ms)

Sponza 67K 115 48 214 52 2 (24.0x) 20 1 (21.5%)
Fairy 174 K 364 148 1,004 117 5 (24.5%) 44 2 (22.4x%)
Conference 283 K 560 228 1,279 225 10 (23.6x) 70 4 (194x)
Buddha 1.1M 3,016 932 5,570 1,101 43 (25.8%) 397 16 (24.0x)
Half-Life 1.2M 3,190 1,110 5,978 1,080 42 (25.7%) 359 15 (22.8%x)
San Miguel 79M | 27,800 8,430 43,659 7,350 298 (24.6%) 2,140 99 (21.6x%)

Table 2: Single core BVH construction times for all build algorithms (+ 32-core timings for the AAC configurations). The AAC-Fast build is
over three times faster than SAH-BIN while also producing a higher-quality BVH in all scenes except Buddha.

Execution Time Breakdown: San Miguel

AAC-HQ AAC-Fast
1 core (ms) 32 cores (ms) Speedup 1 core (ms) 32 cores (ms) Speedup
Morton Code 351 (5%) 21 (7%) 16.8x 351 (16%) 21 (21%) 16.8x
Agglomeration 7,000 (95%) 277 (93%) 25.1x 1,789 (84%) 178 (79%) 23.0x
Total 7,350 298 24.6% 2,140 99 21.6x

Table 3: Execution time breakdown for 1- and 32-core executions of AAC-HQ and AAC-Fast on San Miguel. The Morton code sort constitutes
only a small fraction of total execution time in AAC-HQ (<7%), but a notable fraction in AAC-Fast (up to 21%). The sort consumes a larger
[fraction of total build time in the parallel executions since it parallelizes less efficiently than the agglomeration phase of the AAC algorithm.

code sort in the AAC configurations. We find that the performance
of a single-core AAC-HQ build is similar to that of SAH-BIN and
approximately five to six times faster than Local-Ord (while pro-
ducing BVHs of similar quality). AAC-Fast (which still generates
higher quality trees than both SAH-BIN and SAH in all cases but
Buddha) performs even less work, resulting in a build that is up to
4x faster than SAH-BIN.

We also find that the AAC methods scale well to high core count
(Figure 4). For the San Miguel scene AAC-HQ achieves nearly
linear speedup out to 16 cores, and a 34x speedup on 40 cores
(using 80 threads with Hyper-Threading enabled, see “40 HT” data
point in Figure 4) . AAC-Fast also scales well out to 16 cores, but
achieves a more modest 24 X speedup on average on 40 cores.

Table 3 breaks down the execution time of 1- and 32-core config-
urations of AAC-HQ and AAC-Fast for San Miguel. The parallel
Morton code sort occupies only 5% of total execution in the sin-
gle core AAC-HQ configuration. This percentage increases to 7%
in the 32-core configuration since the agglomeration phase of the
algorithm parallelizes more efficiently. (The Morton code sort is
bandwidth bound.) The Morton code sort consumes a larger frac-
tion of AAC-Fast execution time (16% and 21% for the 1- and 32-
core executions) since the agglomeration phase in AAC-Fast per-
forms less work. This is a major reason why AAC-Fast achieves a
lower overall parallel speedup than AAC-HQ.

5 Discussion

In this paper we demonstrated that bottom-up BVH construc-
tion based on agglomerative clustering can produce high-quality
BVHs with lower construction cost than top-down SAH-based ap-
proaches. Our algorithm features abundant coarse-grained paral-

lelism, making it easy to scale on many-core CPU architectures.
While we have evaluated its utility in the context of ray tracing, we
believe it will find use in other areas of computer graphics where
high-quality object hierarchies are desired.

We have not yet investigated the possibility of a “lazy” variant of an
AAC build. While lack of support for lazy builds is a known draw-
back of previous bottom-up approaches, it may be possible to lever-
age the top-down bisection process of the AAC build to achieve
“lazy” behavior. Last, while our efforts in this paper focused on the
implementation of the technique on many-core CPUs, an obvious
area of future work is to consider if additional parallelism can be
exploited to enable efficient implementation on a GPU.

6 Acknowledgments

This work is partially supported by the National Science Founda-
tion under grant CCF-1018188, by the Intel Labs Academic Re-
search Office under the Parallel Algorithms for Non-Numeric Com-
puting Program, and by the NVIDIA Corporation.

References

BERN, M., EPPSTEIN, D., AND TENG, S.-H. 1999. Parallel con-
struction of quadtrees and quality triangulations. International
Journal of Computational Geometry and Applications 9, 6, 517—
532.

BITTNER, J., HAPALA, M., AND HAVRAN, V. 2013. Fast
insertion-based optimization of bounding volume hierarchies.
Computer Graphics Forum 32, 1, 85-100.

ERNST, M., AND GREINER, G. 2007. Early split clipping for
bounding volume hierarchies. In Proceedings of the 2007 IEEE
Symposium on Interactive Ray Tracing, IEEE Computer Society,
RT ’07, 73-78.

GARGANTINI, I. 1982. An effective way to represent quadtrees.
Communications of the ACM 25, 12, 905-910.

GOLDSMITH, J., AND SALMON, J. 1987. Automatic creation of
object hierarchies for ray tracing. IEEE Computer Graphics and
Applications 7, 5 (May), 14-20.

KARRAS, T. 2012. Maximizing parallelism in the construction of
BVHs, octrees, and K-D trees. In Proceedings of the Confer-
ence on High Performance Graphics, Eurographics Association,
HPG’12, 33-37.

LAUTERBACH, C., GARL, M., SENGUPTA, S., LUEBKE, D., AND
MANOCHA, D. 2009. Fast BVH construction on GPUs. In In
Proc. Eurographics ’09.

OLSON, C. F. 1995. Parallel algorithms for hierarchical clustering.
Parallel Computing 21, 1313-1325.

SHUN, J., BLELLOCH, G. E., FINEMAN, J. T., GIBBONS, P. B.,
KYROLA, A., SIMHADRI, H. V., AND TANGWONGSAN, K.
2012. Brief announcement: the Problem Based Benchmark
Suite. In Proc. ACM Symp. on Parallelism in Algorithms and
Architectures.

WALD, I., MARK, W. R., GUNTHER, J., BouLos, S., IzE, T.,
HUNT, W., PARKER, S. G., AND SHIRLEY, P. 2007. State of
the art in ray tracing animated scenes. In Computer Graphics
Forum.

WALD, I. 2007. On fast construction of SAH-based bounding
volume hierarchies. In Interactive Ray Tracing, 2007. RT '07.
IEEE Symposium on, 33-40.

WALD, I. 2012. Fast construction of SAH BVHs on the Intel
Many Integrated Core (MIC) architecture. IEEE Transactions
on Visualization and Computer Graphics 18, 1 (Jan.), 47-57.

WALTER, B., BALA, K., KULKARNI, M., AND PINGALI, K.
2008. Fast agglomerative clustering for rendering. In Interac-
tive Ray Tracing, 2008. RT 2008. IEEE Symposium on, 81-86.

