Models and Algorithms under Asymmetric Read and Write Costs

Guy E. Blelloch”, Jeremy T. Fineman', Phillip B. Gibbons”, Yan Gu” and Julian Shun*

*Carnegie Mellon University

Abstract—In several emerging non-volatile technologies for main memory
(NVRAM) the cost of reading is significantly cheaper than the cost of
writing. Such asymmetry in memory costs leads to a desire for “write-
efficient” algorithms that minimize the number of writes to the NVRAM.
While several prior works have explored write-efficient algorithms for
databases or for the unique properties of NAND Flash, our ongoing work
seeks to develop a broader theory of algorithm design for asymmetric
memories. This talk will highlight our recent progress on models,
algorithms, and lower bounds for asymmetric memories [1], [2], [3]. We
extend the classic RAM model to the asymmetric case by defining the
(M, w)-ARAM, which consists of a large asymmetric memory and a
much smaller symmetric memory of size )/, both random access, such
that for the asymmetric memory, writes cost w > 1 times more than
reads. We present algorithms for search trees, priority queues, sorting,
dynamic programming, BFS- and DFS-related graph algorithms, and
shortest paths. We also present novel lower bounds for several problems
that reveal fundamental limits on obtaining write-efficient algorithms for
these problems. Finally, we propose and study models for asymmetric
memories that consider block transfers and/or parallel processing.

I. INTRODUCTION

Fifty years of algorithms research has focused on settings in which
reads and writes (to memory) have similar cost. But what if reads and
writes to memory have significantly different costs? How would that
impact algorithm design? What is the correct model to measure the
cost of an algorithm on such memories? These questions are coming
to the fore with the arrival of new non-volatile memory technologies,
such as phase-change memory (PCM), spin-torque transfer magnetic
RAM (STT-RAM), and memristor-based resistive RAM (ReRAM),
which have the property that the cost of reading is significantly cheaper
than the cost of writing, in terms of lower energy, lower latency, and
higher (per-module) bandwidth. Such memories will appear in the
marketplace in the first half of 2016 [4] as a block device, and after
that as a DIMM off the processor’s memory bus.

This talk highlights our recent results [1], [2], [3] providing a first
step towards answering these fundamental questions about asymmetric
memories. We introduce a simple model for studying such memories,
and a number of new results.

Definition 1: We define the (M, w)-Asymmetric RAM (ARAM), com-
prised of a symmetric small-memory of size M, an asymmetric
large-memory of unbounded size, and an integer write cost w. The
ARAM cost @ is the number of reads from large-memory plus w
times the number of writes to large-memory. The time T is Q) plus
the number of reads and writes to small-memory.

We focus on settings in which the problem input fits in the large-
memory (and hence can be viewed as “unbounded” size) but not in
the small-memory (i.e., M < n, where n is the input size and M is
measured in units of the size of an input item). The large-memory
models the NVRAM, while the small-memory models either DRAM,
if present, or cache memory. The time 7' extends the time complexity
on a RAM model to the asymmetric setting. The cost ) accounts
for just the data transfers between the small-memory and the large-
memory, charging w for each write and 1 for each read. While 7" has
the advantage of being most similar to the RAM model, it hides the
performance gap between different levels of the memory hierarchy.

TGeorgetown University

1U.C. Berkeley

Thus the ) metric may be more relevant in practice, as it focuses on
reads and writes to the last relevant level of the memory hierarchy.
We use a parameter w to account for the higher cost of writes so that
we can study the dependence of algorithms on the gap between writes
and reads. We view w as being significantly larger than 1, as factors
up to 1-2 orders of magnitude have been reported in the literature
(see [1] and the references therein).

Prior work focusing on asymmetric read and write costs for non-
volatile memory has explored system issues (e.g., [5]), database
algorithms (e.g., [6]) or the unique properties of NAND Flash (e.g.,
[7]) such as its limited endurance and large erase operation.

II. NEW ALGORITHMS AND LOWER BOUNDS

Search Trees and Priority Queues. We consider the efficiency of
balanced binary search trees on the (M, w)-ARAM. Red-black trees
with appropriate rebalancing rules require only O(1) amortized time
per update (insertion or deletion) once the location for the key is found.
For a tree of size n, finding a key’s location uses O(logn) reads
but no writes, so the total amortized cost is @ =T = O(w + logn)
per update. Since priority queues can be implemented with a binary
search tree, insertion and delete-min have the same bounds. Note that
these good bounds are obtained even for M = O(1).

Sorting. Many classic sorting algorithms like quicksort and merge-
sort require O(nlogn) reads and writes, and hence would cost
O(wnlogn) on the (M,w)-ARAM. However, it is well known
that sorting can be implemented by first inserting each key into
a balanced search tree, and then in-order traversing the tree to write
out the final sorted order. Using the above-mentioned binary search
tree, the sorting algorithm based on this method requires only O(n)
writes with no increase in reads (O(nlogn)). This algorithm is
asymptotically optimal, since comparison sorting n element requires at
least Q(nlogn) comparisons and n writes are necessary to produce
the sorted output in contiguous memory. On the (M,w)-ARAM,
Q =T = O(nlogn + wn), even for M = O(1).

It is also interesting to consider sorting in parallel on a shared-
memory multicore. In [1] we discussed a parallel version of the
sorting algorithm, which has asymptotically the same numbers of
reads and writes as the above sequential version. The algorithm is
highly parallel, with a critical path length of only O(wlogn).

Dynamic Programming. With regards to dynamic programming,
some problems are reasonably easy and some harder. The standard
Floyd-Warshal algorithm for the all-pairs shortest-path (APSP) prob-
lem uses O(n®) writes, and hence would cost @ = T = O(wn®).
Kleene’s divide-and-conquer algorithm can be used to reduce the
ARAM cost. Each recursive call makes two calls to itself on problems
of half the size, and six calls to matrix multiply over the semiring
(min, 4). Here we analyze the algorithm in the (M, w)-ARAM. The
matrix multiplies on two matrices of size n X n can be done in
the model in Qur(n) = O(n*(w + n/v/M)) [1]. This leads to
the recurrence QKleene(n) = 2QKleene (n/2) +O(QM (n)) +O(wn2)7
which solves to Qgjeene (1) = O(Qar(n)) since the cost is dominated



at the root of the recurrence. This is a factor of n fewer writes than the
Floyd-Warshal algorithm. A similar approach can be used for several
other problems, including sequence alignment with gaps, optimal
binary search trees, and matrix chain multiplication [2].

Longest common subsequence and Edit distance are more challenging.
If the answer is directly computed using the classic recursion formula-
tion, the dependency structure of the computation is a diamond DAG,
whose properties have been well-studied in the symmetric memory
setting. For our asymmetric setting, we proved a new lower bound
showing that the ARAM cost () cannot be asymptotically reduced for
the diamond DAG, even when only selectively storing intermediate
values of the diamond DAG and allowing for recomputation of partial
results—well-known techniques for reducing the number of writes.
To overcome this fundamental limitation, we must violate the classic
evaluation method for a DAG that requires a node’s execution must
wait until all its immediate predecessors in the DAG have executed.
Instead, we show a new approach that performs partial accumulation
at a node based on values computed at only some of its predecessors
at a time, combined with selective recomputations, which overcomes
this lower bound. Using this new technique, called a “path sketch”,
Q and T can be decreased by approximately a factor of w/3.

BFS, DFS, topological sort, biconnected components, strongly
connected components. Breadth-first and depth-first search on graphs
of n nodes and m edges can be performed in only Q = T =
O(wn + m). In particular, each vertex requires a constant number
of writes when it is first added to the frontier (the stack or queue)
and when it is finished (removed from the stack or queue). Searches
along an edge to an already visited vertex require no writes. This
implies that several problems based on BFS and DFS also require
only @ =T = O(wn + m), such as topological sort, biconnected
components, and strongly connected components.

Single-source shortest-path. For directed graphs with non-negative
edge weights, the most efficient single-source shortest-path algorithm
in the classic RAM model is Dijkstra’s algorithm. Unfortunately, this
algorithm is not write-efficient because it keeps a global priority queue
in the memory, and each update operation corresponds to at least one
write, for a total cost of O(w(m + nlogn)). We proposed a new
algorithm called “phased Dijkstra” [2] such that the priority queue is
limited to only O(M) elements so that it fits in the small-memory.
To achieve this, the algorithm must use n/M phases, resulting in
Q =T = O(n(w + m/M)). For certain settings, namely, when
M < n < Muw, this improves upon classic Dijkstra.

Lower bounds for FFT and sorting networks. We have new lower
bounds for FFT and for sorting networks on the (M,w)-ARAM.
As with the diamond DAG lower bound discussed above, our lower
bounds hold for these computation DAGs (the classic DAG for FFT,
any possible DAG of pairwise comparators that sorts for sorting
networks), even when only selectively storing intermediate values of
the DAG and allowing for recomputation of partial results. Under
the reasonable assumption in practice that M > w (recall that M is
a scalar measured in units of an input data item size), our bounds
show that it is not possible to have an algorithm that is an asymptotic
cost improvement over the best algorithms for a two-level symmetric
memory model. L.e., one cannot take advantage of reads being cheaper
than writes by a factor of w, resulting in T' = ©(wnlogn/log(M))
on the (M,w)-ARAM. Interestingly, when comparing this lower
bound to the O(n logn + wn) upper bound for‘the above comparison
sorting algorithm, we see a large asymptotic gap between sorting
networks and more general comparison sorting, in contrast to classic

RAM results, for which the two have the same asymptotic complexity.

III. OTHER MODELS AND RESULTS

“External” memory sorting. We considered explicitly modeling the
transfer of data between the two memories in units of size B > 1.
We adapt the well-studied External Memory model (a.k.a., the I/O
model or the Disk model used in databases) to charge w times more
for writing a block of size B to the asymmetric memory than for
reading such a block. We examine the three general approaches for
sorting on the External Memory model—multi-way mergesort, sample
sort, and buffer-tree sort—and showed that each of these algorithms
can be adapted to use fewer writes. Interestingly, each of the original
algorithms have the same optimal cost on the External Memory model,
and we show that each can be adapted to the asymmetric setting to
have the same Q = O(wn/Blog,,,;,5(n/B)) cost. While the new
multi-way mergesort algorithm is similar to prior work [6] and the
new samplesort algorithm is readily achieved, the new buffer-tree sort
requires a number of new techniques [1].

Cache models. It is also interesting to understand how the cache
models and cache policy are affected by read-write asymmetry.
More specifically, we extended important results for the Ideal-Cache
model and thread schedulers to the asymmetric case—namely, the
Asymmetric Ideal-Cache that we proposed can be (constant factor)
approximated by an asymmetric-LRU cache, and it can be used in
conjunction with a work-stealing (parallel-depth-first) scheduler to
obtain good parallel cache complexity bounds for machines with
private caches (a shared cache, respectively). We used this model to
design write-efficient cache-oblivious parallel algorithms.

IV. CONCLUSION

This talk highlights our recent work providing a first step towards
understanding the questions about algorithm design and computational
models under asymmetric read and write costs. We introduced a simple
model called the (M,w)-ARAM for studying such memories, and
new algorithms and lower bounds for a number of classic problems, as
well as extensions to the model. We hope that our work inspires more
creative algorithmic research on this topic, in conjunction with the
forthcoming emergence of non-volatile memory technologies (such as
the Intel/Micron 3D XPoint [4]) that will enable experimental studies
of the proposed algorithms.

REFERENCES
[1] G. E. Blelloch, J. T. Fineman, P. B. Gibbons, Y. Gu, and J. Shun, “Sorting
with asymmetric read and write costs,” in ACM SPAA, 2015.

[2] G. E. Blelloch, J. T. Fineman, P. B. Gibbons, Y. Gu, and J. Shun,
“Efficient algorithms with asymmetric read and write costs,” arXiv preprint,
arXiv:1511.01038.

3

—

N. Ben-David, G. E. Blelloch, J. T. Fineman, P. B. Gibbons, Y. Gu,
C. McGuffey and J. Shun, “Parallel algorithms with asymmetric read and
write costs,” in ACM SPAA, 2016.

[4

—

http://newsroom.intel.com/community/intel_newsroom/blog/2015/07/28/
intel-and-micron-produce-breakthrough-memory-technology, 2015.

[5

[t}

B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase change
memory as a scalable DRAM alternative,” in ACM ISCA, 2009.

[6

[t

S. Viglas, “Write-limited sorts and joins for persistent memory,” PVLDB,
vol. 7, no. 5, 2014.

[7

—

E. Gal and S. Toledo, “Algorithms and data structures for flash memories,”
ACM Computing Surveys, vol. 37, no. 2, 2005.



	Introduction
	New Algorithms and Lower Bounds
	Other Models and Results
	Conclusion
	References

