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Abstract— We present the first sample-optimal sublinear most efficient algorithms prior to this paper are given

time algorithms for the sparse Discrete Fourier Transform  jn [14], and offer the following performance guarantées:
over a two-dimensional/n x \/n grid. Our algorithms are For signals that are exactlj-sparse (i.e., signals
analyzed for the average case signals. For signals whose * 9 xactly-sp .€., SIg

spectrum is exactly sparse, we present algorithms that use that have exactly: nonzero Fourier coefficients), the
O(k) samples and run in O(klog k) time, where £ is the algorithm runs inO(klogn) time.
expected sparsity of the signal. For signals whose spectrum , For approximately sparse signals, the algorithm runs

is approximately sparse, we have an algorithm that uses ; ; ;
O(klogn) samples and runs inO(klog?n) time, for k = in O(klognlog(n/k)) time, wherek is the number

O(y/n). All presented algorithms match the lower bounds of large Fourier coefficients.
on sample complexity for their respective signal models. While those past algorithms have achieved efficient run-
ning times, they suffer from important limitations. Perhap
I. INTRODUCTION the main limitation is that their sample complexity bounds

. : . are too high. In particular, the sample complexity of the
The Discrete Fourier Transform (DFT) is a powerful exactly k-sparse algorithm i9(k log n). This bound is

tool \_/vhosgeoapglzicatié)ns edncom%aésp\éideo and aLi(;io %r%'uboptimal by a logarithmic factor, as it is known that one
cessing [30], [12], [5], radar an systems [13], [ ]’can recover any signal with nonzero Fourier coefficients

medical imaging, spectroscopy [19], [24], the Processyqm O(k) samples [3], albeit in super-linear time. The

ingd of seismircl; data .by the ol al?d gas indIUStrri]eSfBl]’sample complexity of the approximately-sparse algorithm
and many other engineering tasks. Currently, the fastest ¢ ;1,6 (1)) 10g(n/k)). This bound is also a logarithmic
approach for computing the Discrete Fourier Transforr‘r}actor away from the lower bound 61(k log(n/k)) [26].

ET;_S the FtFT ilg?mhm' Gen a S|gtn':1_l rgi S"?e the Reducing the sample complexity is highly desirable
computes its frequency representatiorifn logn) .as it typically implies a reduction in signal acquisition

tlrﬂg.hl-:ﬁwever, the g:‘rge{gentce of big datg tprolz)letms, é 'Lne, measurement overhead and communication cost. For
which the processed datasets can exceed terabytes [ ample, in medical imaging the main goal is to reduce

has rendered the FFT’'s runtime too slow. Furthermorethe sample complexity in order to reduce the time the

in many domains (e.g., meo_llc_ql 'maging [22], NMR patient spends in the MRI machine [22], or the radiation
spectroscopy [20]), data acquisition is costly or cumbert ose she receives [29]. Similarly in spectrum sensing, a
some, and hence one may be ungble to cqllect enou Cj}Ner average sampling rate enables the fabrication of
measurement§ to compute the desired Fourler.transforrgﬁiciem analog to digital converters (ADCs) that can
These scenarios motivate the need for algorithms th cquire very wideband multi-GHz signals [32]. In fact
compute the Fourier transform faster than the FFT, an '

) _ e central goal of the area of compressed sensing is to
use only a subset of the input data required by the FFTreduce the sample complexity.

Recent efforts in the area of Fourier sampling have -\ socond limitation of the prior algorithms is that most

fodcused onh add;]essfing the azove 'nee(:i. Thﬁ res‘::_tg,@‘ them are designed for one-dimensional signals. This
advances show that for sparse data (i.e., data that exhi i@unfortunate, since multi-dimensional instances of DFT

a limited number of dominating frequencies) one Cahre often particularly sparse. This situation is somewhat

dhesign algdorithms (;hat o.peratgllonly ona small subset QJlleviated by the fact that the two-dimensional DFT over
the input data, and run in sublinear time [23], [10], [2]’p x ¢ grids can be reduced to the one-dimensional DFT

[11], [17], [1]’ [15]’ [14]',[21]’ [6],' [13]' Sir_1ce sparsitie over a signal of lengtipg [11], [16]. However, the reduc-
common (in video, audio, medical imaging, NMR spec-,, applies only ifp and ¢ are relatively prime, which

tr_osc_:(_)py, G.PS’ seismic da_ta, etc.),_sugh results _promisee"i'(cludes the most typical case of x m grids wherem
significant impact on multiple application domains. The,s 4 power of2. The only prior algorithm that applies to

generalm x m grids, due to [11], ha®(klog® n) sample
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a power of2, a two-dimensional adaptation of the [15]
algorithm (outlined in [9]) has roughly (klog® n) time
and sample complexity. -

-
-

A. Our Results N

In this paper, we present the first sample-optimal sub-
linear time algorithms for the Discrete Fourier Transform
over a two-dimensional/n x /n grid. Our algorithms (@) Original Spectrum (b) Step 1: Row recovery
are analyzed in the average case. Our input distributions
are natural. For the exactly sparse case, we assume the N e
Bernoulli model: each spectrum coordinate is nonzero
with probability & /n, in which case the entry assumes an
arbitrary value predetermined for that positfofror the
approximately-sparse case, we assume that the spectrum
z of the signal is a sum of two vectors: the signal
vector, chosen from the Bernoulli distribution, and the
noise vector, chosen from the Gaussian distribution (see  (c) Step 2: Column recovery (d) Step 3: Row recovery
Section §llIl Preliminaries for the complete definition). i i
These or similat distributions are often used as test cases -
for empirical evaluations of sparse Fourier Transform
algorithms [18], [15], [21] or theoretical analysis of thei
performance [21].

The algorithms succeed with a constant probability. The
notion of success depends on the scenario considered.
For the exactly sparse case, an algorithm is successful if
it recovers the spectrum exactly. For the approximately
sparse case, the algorithm is successful if it reports &ig. 1: An illustration of the “peeling” recovery process

-
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(e) Step 4: Column recovery (f) Step 5: Row Recovery

signal with spectrunt such that: on an8 x &8 signal with 15 nonzero frequencies. In each
) ) ) step, the algorithm recovers alisparse columns and rows
|2 = 2|3 = O(c"n) + [|z][3/n°, (1)  (the recovered entries are depicted in red). The process

5 . ... converges after a few steps.
wherecs“ denotes the variance of the normal distributions

defining each coordinate of the noise vector, and where

is any constant. Note that akysparse approximation @ The k(_ay feature of our algorithms is that their sample
has erroi2(c2n) with overwhelming probability, and that cOmplexity bounds are optimal. For the exactly sparse
the second term in the bound in Equation 1 is subsumeg@Se, the lower bound ¢#(k) is immediate. For the ap-

by the first term as long as the signal-to-noise ratio is aProximately sparse case, we note that €h@ log(n/k))
most polynomial, i.e.]|z|l» < n°Veo. See Sectiorll lower bound of [26] holds even if the spectrum is the sum

for further discussion. of a k-sparse signal vector ifi0,1, —1}™ and Gaussian

The running time and the sample complexity boundd!0iS€. The latter is essentially a special case of the
of our algorithms are depicted in the following table distributions handled by our algorithm as shown in [9].
(assuming,/n is a power 0f2): From the running time perspective, our algorithms are
slightly faster than those in [14], with the improvement

[ Alg. [ Tnput ] Samples [ Time [ Assumptions] occurring for low values of.
1 Sparse k klogk | k=0(y/n)
2T ogtaa o | FEE AR An additional feature of the first algorithm (in the table)
3 Approx. klogn klog?n | k=0©(/n) is its simplicity and therefore its low “big-Oh” overhead.
sparse As a result, this algorithm is easy to adapt for practical

applications. In [28], we have customized this algorithm
2Note that this model subsumes the scenario where the valuée of t and applied it to 2D Magnetic Resonance Spectroscopy
nonzero coordinates are chosen i.i.d. from some distributio (MRS). MRS is an advanced type of medical imaging
3A popular alternative is to use the hypergeometric distidmubver . . . .
the set of nonzero entries instead of the Beroulii distidou The ~ US€d to detect biomarkers of diseases [4]. In this particu-
advantage of the former is that it yields vectors of spamsigctlyequal  lar application, our algorithm outperformed compressive
to k. In this paper we opted for the Bernoulli model since it is sienpl Sensing and reduced the required measurements by almost

to analyze. However, both models are quite similar. In paaigcifor . .
large enougtk, the actual sparsity of vectors in the Bernoulli model is a factor of 3x, hence reducmg the overall cost and the time

sharply concentrated arourid the patient has to spend in the MRI machine.



B. Our Techniques 1 ! 1 1

4
Ouir first algorithm fork-sparse signals is based on the Hjj bt
following observation: The spike-train filter (i.e., unifo . U
Il

sub-sampling) is one of the most efficient ways for
mapping the Fourier coefficients into buckets. For one- —
dimensional signals however, this filter is not amenable N - ]
to randomization. Hence, when multiple nonzero Fourier
coefficients collide into the same bucket, one cannot @ ®)
efficiently resolve the collisions by randomizing the spike
train filter. In contrast, for two-dimensional signals, we
naturally obtain two distinct spike-train filters, which .
correspond to subsampling the columns and subsamplins'gf)arSIty of 1.
the rows. Hence, we can resolve colliding nonzero Fouriex’ has dimension,/m x /m, where /m = g Since
coefficients by alternating between these two filters.  subsampling in time domain corresponds to “spectrum
More specifically, recall that one way to compute thefolding”, i.e., adding together all frequencies with inekc
two-dimensional DFT of a signat is to apply the one- that are equal modulg/m, the nonzero entries af are
dimensional DFT to each column and then to each rowmapped into the entries af. It can be seen that, with
Suppose thatk = a+/n for a < 1. In this case, the constant probability, the mapping is one-to-one. If this is
expected number of nonzero entries in each row is lesthe case, we can use the earlier algorithm for sparse DFT
than1. If everyrow contained exactly one nonzero entry,to compute the nonzero frequencies(y/mlogm) =
then the DFT could be computed via the following two O(vk log k) time, usingO(k) samples. We then use the
step process. In the first step, we select the first tw@®FDM trick to identify the positions of those frequencies.
columns ofz, denoted byu(® and «("), and compute Our second algorithm for the exactly sparse case works
their DFTsz(?) and@(). Let j; be the index of the unique for all values of k. The main idea behind it is to
nonzero entry in the-th row of z, and leta be its value. decode rows/columns with higher sparsity thianFirst,
Observe thatil” = @ and@{" = aw™¥ (wherew is Wwe give a deterministic worst-casealgorithm for 1-
a primitive \/n-th root of unity), as these are the first dimensional sparse Fourier transforms that takés® +
two entries of the inverse Fourier transform ofaparse  k(loglogn)?() time. This algorithm uses the relation-
signal aej,. Thus, in the second step, we can retrieveship between sparse recovery and syndrome decoding of
the value of the nonzero entry, equal@’, as well as Reed-Solomon codes (due to [3]). Although a simple
the indexj; from the phase of the ratiﬁgl)/ﬂfo). (this application of thg decodery!eIuB(n2) dgcodlng tlmg, we
technique was introduced in [14], [21] and was referredShOVY that by using appropriate numerical subroutines one
to as the “OFDM trick”). The total time is dominated an in fact recover &-sparse vector fron®(k) samples
by the cost of the two DFTs of the columns, which is!n time O(k* + k(log log”)?(l))' In particular, we use
O(y/nlogn). Since the algorithm queries only a ConStamBerIekamp-Mass_ey’s algorithm for co_nstructlng_ th_e error-
number of columns, its sample complexityG¥./n). locator polynomial and Pan’s algor_|thm for finding its
In general, the distribution of the nonzero entries OvelroooL}rSiérFtor;nosllﬂgr::S;I;(;/r?trr?r%e-\fvaeg?g:jm;r:ls;:lt rsuﬁ’f]risrio
tmhﬁltriows can be non gmform. i.e., some rows may hav_g — _k bins for some large constad, Since the
ple nonzero Fourier coefficients. Thus, our actual al ~ Clogk ' .
gorithm alternates the above recovery process between tR@Sitions of thek nonzero frequencies are random, it
columns and rows (see Figure 1 for an illustration). Sincd©!lows that each bin receivess= ©(log k) frequencies
the OFDM trick works only onl-sparse columns/rows, With high probability. We then taked(t) samples of
we check thel-sparsity of each column/row by sampling the time domain S|gqal correspondujg to each b|n3 an.d
a constant number of additional entries. We then shof£COVer the frequencies corresponding to those bins in

that, as long as the sparsity constanis small enough, O(t* + t(loglogn) M) tig(% per bin, for a total time

this process recovers all entries in a logarithmic numbef’ O(_k log k + k(loglogn)).

steps with constant probability. The proof uses the fact Th_'s_ approach works as long as th? number of nonzero
coefficients per column/row are highly concentrated.

that the probability of the existence of an “obstructing e
configuration” of nonzero entries which makes the proces5i0Wever, this is not the case fdr < /nlogn. We

deadlocked (e.g., see Figure 2) is upper bounded by qvercome this difficulty by replacing a row by a sequence
small constant. of rows. A technical difficulty is that the process might

The algorithm is extended to the caselof= o(y/n) Iea_ld to COIIIS:0n3| of coegflmentshWe rﬁsofl.ve tlhls |Issue by
via a reduction. Specifically, we subsample the signiay using a two level procedure, wnere the first level returns

the rEdUCthn ratior? = O‘\/ﬁ_/k for some small enou_gh “We note that, folk = o(log n), this is the fastest knowworst-case
constanta in each dimension. The subsampled signahigorithm for the exactly sparse DFT.

Fig. 2: Examples of obstructing sequences of nonzero
entries. None of the remaining rows or columns has a



the syndromes of colliding coefficients as opposed to théactor and the minimization is ovérsparse signals. Note
coefficients themselves; the syndromes are then decodéuht this guarantee generalizes that of Equation (1).
at the second level. After this work was completed (see the arxiv ver-

The above description summarizes the second algaion [9]), we became aware that another group has con-
rithm. Due to space limitations, the full-description oéth currently developed an efficient algorithm for the one
second algorithm along with the proofs of the lemmas arelimensional exactly:-sparse case where the size of the
not included in this paper. They are available on arxiv [9].signaln is product of primes (i.e., can be formed as a 2D

Our third algorithm works forapproximatelysparse discrete Fourier transform problem) [25]. Their algorithm
data, at sparsit¥(,/n). Its general outline mimics that is analyzed for the average case and achié(gg sample
of the first algorithm. Specifically, it alternates betweencomplexity and runs inO(klogk). In comparison, our
decoding columns and rows, assuming that they lare algorithms achieve similar guarantees for the exaktly
sparse. The decoding subroutine itself is similar to thasparse case, but they further address the general case
of [14] and use(logn) samples. The subroutine first where the signal is contaminated by noise.
checks whether the decoded entry is large; if not, the We also mention another efficient algorithm, due
spectrum is unlikely to contain any large entry, and theo [21], designed for the exactlj-sparse model. The
subroutine terminates. The algorithm then subtracts thaverage case analysis presented in that paper also shows
decoded entry from the column and checks whether ththat the algorithm ha® (k) expected sample complexity
resulting signal contains no large entries in the spectrurand runs inO(klogk) time. However, the algorithm
(which would be the case if the original spectrum wasassumes the input signalis specified as éunctionover
approximatelyl-sparse and the decoding was successfullan interval[0, 1] that can be sampled at arbitrary positions,
The check is done by samplin@(logn) coordinates and as opposed to a given discrete sequence samples as
checking whether their sum of squares is small. To provén our case. Thus, though very efficient, that algorithm
that this check works with high probability, we use thedoes not solve the Discrete Fourier Transform problem.
fact that a collection of random rows of the Fourier matrix
is likely to satisfy the Restricted Isometry Property of.[7] I1l. PRELIMINARIES

A technical difficulty in the analysis of the algorithmis  This section introduces the notation, assumptions and
that the noise accumulates in successive iterations. Thigefinitions used in the rest of this paper.
means that a/ log ) n, fraction of the steps of the algo-
nthrT WI||jaI| However, we show that thg de_pende_nmesa power of2. We usem] to denote the sefo, ..., m—1},
are “local”, which means that our analysis still applies to - 2 :

- : ; and [ ) X [m] = [m]*® to denote them x m grid
a vast majority of the recovered entries. We continue th i ) ' _ —ormijym
iterative decoding fotog log n steps, which ensures that? Hi € [m]j € [m]}. We d.efmew s ;

Il but a1/10g°D n fraction of the large frequencies are be a primitive/n-th root of unity and.’ = ¢~2rV/
all but al/log™*" n fraction of the large freq to be a primitiven-th root of unity. For any complex
correctly recovered. To recover the remaining frequencies humbera, we useg(a) € [0,2r) to denote thephase
we resort to algorithms with worst-case guarantees. of a. For a 2D matrixz € CVA*V7, its support is

C. Extensions denoted bysupp(z) C [v/n] x [y/n]. We use|z|o to

Our algorithms have natural extensions to dimensiongen°te|su1)p( )|, the number of nonzero coordinates of
higher than2. We do not include them in this paper as® Its 2D Fourier spectrum is denoted by Similarly, if
the description and analysis are rather cumbersome. ¥ is in frequency-domain, its inverse is denotedgy

Moreover, due to the equivalence between the twoB. Definitions:The paper uses the comb filter used in [17],
dimensional case and the one-dimensional case where[15]. The filter generalizes t@ dimensions as follows:
is a product of different prime powers [11], [16], our Given (7.,7.) € [v/n] x [v/n], and B,, B. that di-
algorithms also give optimal sample complexity boundsvide /n, then for all (i,j) € [B,] x [B.] sety;; =
for such values of: (e.g.,n = 6%) in the average case. Ti(\/) By )+ (V7 Be)+7e Then, compute the 2D DFF
of y. Observe thay is a folded version ofi:

A. Notation: Throughout the paper we assume that is

Il. RELATED WORK

As described in the introduction, the most efficient prior¥i.; = Z Z L1B,+i,mB,+jW
algorithms for computing the sparse DFT are due to [14]. le[%2] me[%2]
For signals that are exactly-sparse, the first algorithm
runs inO(k log n) time. For approximately sparse signals, C. Distributions: In the exactly sparse case, we assume
the second algorithm runs i@(klognlog(n/k)) time. a Bernoulli model for the support af. This means that
Formally, the latter algorithm works for any signal for all (i,5) € [/n] x [v/n], P{(i,j) € supp (Z)} =
and computes an approximation vectdr that satisfies k/n and thusE[|supp (Z)|] = k. We assume an unknown
the ¢, /¢, approximation guarantee, i.ez — 2’| <  predefined matrix; ; of values inC; if z, ; is selected
C' ming sparsey || Z — yl|2, whereC' is some approximation to be nonzero, its value is set &g ;.

—7r(i+IBy)—7c(j4+mBe)



In the approxmately sparse case, we assume_ that {
signal 7 is equal toz* + @ € (Cfxf where x*”-
is the “signal” andw is the “noise”. In partlcularx* is
drawn from the Bernoulli model, where; ; is drawn
from {0, a; ;} at random independently for each j) for
some valuesz; ; and with E[| supp(z*)|] = k. We also
require that|a,; ;| > L for some parametel. @ is a
complex Gaussian vector with variane€ in both the

real and imaginary axes independently on each coordinate;

we notate this asi ~ N¢(0,0%1,). We will need that
L= Cm/n/ for a sufficiently large constant, so that
E[|z*]3] > CE[|@]3].

IV. BASIC ALG. FOR THEEXACTLY SPARSECASE

The algorithm for the noiseless case depends on t
sparsity k& where k E[|supp (Z)|] for a Bernoulli
distribution of the support.

A. Basic Exact Algorithmk = ©(y/n)

In this section, we focus on the reginte= O(\/n).
Specifically, we will assume thdt = a+/n for a (suffi-
ciently small) constant > 0.

The algorithm B\SICEXACT2DSFFT is described as
Algorithm IV.1. The key idea is to fold the spectrum into
bins using the comb filter defined i§lll and estimate

frequencies which are isolated in a bin. The algorithm
in
N

takes the FFT of a row and as a result frequencies
the same columns will get folded into the same roy

bin. It also takes the FFT of a column and consequent]

frequencies in the same rows wil get folded into the same z < 0

column bin. The algorithm then uses the OFDM trick  for ¢ € [C'logn] do > ™ = {a . 7 eT}
introduced in [14] to recover the columns and rows whoge ~ {@, ™, 5™} « BasiCESTFREQ(@™), 5™, T,
sparsity is 1. It iterates between the column bins and rgw true).

bins, subtracting the recovered frequencies and estigatin Z <+ Z+4w.

the remaining columns and rows whose sparsity is 1. An ~ {@,9), @™} « BAsICESTFREQ®™),u!™), T,
illustration of the algorithm running on a8 signal with false).

15 nonzero frequencies is shown in Fig. 1 in Secfion Z+ Z+ .

The algorithm also takes a constant number of extra FFTs return z

he

heprocedure FOLDTOBINS(z, B;, Be, T, T¢)

[ éhw]j = Li(7/B,) i (Vi) Be)+re 107 (6:7)
return g, the DFT ofy

€ [By] x

procedure BASICESTFREQ(@(™), 5(T),T, IsCol)
w < 0.
Compute] = {j: > op \u(T)\ > 0}.
for j € J do
b al /@,

i+ rounc(¢( )%) mod y/n. > ¢(b) is the phase
of b.

S+ ag.O).

> Test whether the row or column is 1-spa

if (ZTeT @7 — sw=Ti| == 0) then

if 1IsCol then > whether decoding column or ro
@,‘7]’ — S.

else

’l/l.}jyi — S.

for 7 € T do
a0

J
o)

rse

W

()

P~ T
U,

— sw™
return @, u™, o0
procedure BASICEXACT2DSFFT(, k)
T « 2] > We setc > 6
for 7 € T do
4" + FOLDTOBINS(, /7, 1,0, 7).

y 9™ « FOLDTOBINS(z, 1,/n, 7,0).

of columns and rows to check for collisions within a bin

Algorithm IV.1: Basic Exact 2D sparse FFT algorithm for

and avoid errors resulting from estimating bins wherey, _ o(v/n)
the sparsity is greater than 1. The algorithm uses three

functions:

o FOLDTOBINS. This procedure folds the spectrum
into B,. x B, bins using the comb filter describédl.
BAsSICESTFREQ. Given the FFT of rows or columns,
it estimates the frequency in the large bins. If there
is no collision, i.e., if there is a single nonzero

f the bin, it adds this f to th
requency in the bin, it adds this frequency to g Lemma 4.2:The probability that any 1-sparsity test

resultw and subtracts its contribution to the row an
column bins.

BASICEXACT2DSFFT. This performs the FFT of
the rows and columns; then iterates 8CESTFREQ
between the rows and columns until is recovérs

Analysis of BASICEXACT2DSFFT. The analysis relies
on the following two lemmas which we prove in [9].

Lemma 4.1:For any constant > 0, if a > 0 is a suf-
ficiently small constant, then assuming that all 1-sparsity
tests in the procedure ABICESTFREQ are correct, the
aIgonthm reports the correct output with probability at
leastl — O(«).

nvoked by the algorithm
(1/n(c 5)/2)_

Theorem 4.3:For any constanty, the algorithm B\-
SICEXACT2DSFFT usesD(y/n) samples, runs in time
O(yv/nlogn) and returns the correct vect@rwith prob-
ablility at leastl — O(«) as long as: is a small enough
constant.

is incorrect is at most

O



Proof: From Lemma 4.1 and Lemma 4.2, the
algorithm returns the correct vectorwith probability at
least]l — O(a) — O(n=(¢=%)/2) = 1 — O(«) for ¢ > 5.

The algorithm uses onlyO(T') = O(1) rows and
columns ofz, which yieldsO(/n) samples. The running
time is bounded by the time needed to perfanti) FFTs
of rows and columns (in &.DTOBINS) procedure, and
O(logn) invocations of B\SICESTFREQ. Both compo-
nents take timed(y/nlogn). [ |

B. Reduction to Basic Exact Algorithrk:= o(y/n)

Algorithm REDUCEEXACT2DSFFT, which is for the
case wherek = o(y/n), is described in Algorithm 1V.2.
The key idea is to reduce the problem from the cag
where k = o(y/n) to the case wheré = ©(y/n). To
do that, we subsample the input time domain signaly
the reduction ratioR = a+/n/k for some small enough
a. The subsampled signal has dimension/m x /m,
where \/m = £. This implies that the probability that

procedure REDUCETOBASICSFFT¢, R, 7, 7¢)
Definex;j = Tir+tr, jR+r. > With lazy evaluatior)
return BASICEXACT2DSFFTz/, k)
procedure REDUCEEXACT2DSFFT(, k)
R+ “\f, for some constart < 1 such thatR|\/n.
099 « REDUCETOBASICSFFT(z, R, 0,0)
119 « REDUCETOBASICSFFT(z, R, 1,0)
11 < REDUCETOBASICSFFT(z, R,0,1)
zZ+0
L « supa®?) nsupga®?) N supga®)
for (¢,m) € L do
be = Ty (40

i+ rounc(qs(br)g) mod /n

~(0,1) ,~(0,0)
bc A u[,m, ul,m

j roundqﬁ(bC)‘Q/—f) mod /n

return z

any coefficient inz’ is nonzero is at mosk? x k/n =
a’/k = (a®/k) x (k*/a?®)/m = k/m, sincem = k?/a®.
This means that we can use the algorithmsB-NOISE-
LESS2DSFFT in subsectiollV-A to recover z’. Each
of the entries oft’ is a frequency it which was folded

Algorithm 1V.2: Exact 2D sparse FFT algorithm fér=
o(vn)

to O(k) time to recover the support using the OFDM frick.

into z’. We employ the same phase technique used in [14}oting that calculating the intersectidnof supports takes

and subsectioIV-A to recover their original frequency
position inz.

The algorithm uses two functions:

o REDUCETOBASICSFFT: This folds the spectrum
into O(k) x O(k) dimensions and performs the
reduction to BSICEXACT2DSFFT. Note that only
the O(k) elements ofz’ which will be used in
BASICEXACT2DSFFT need to be computed.

o REDUCEEXACT2DSFFT: This invokes the reduc-
tion as well as the phase technique to recower

Analysis of REDUCEEXACT2DSFFT We state the fol-
lowing lemma which we prove in [9].
Lemma 4.4:For any constanty, for sufficiently small

O(k) time, the stated number of samples and running time
then follow directly from Theorem 4.3. [ ]

V. ALGORITHM FOR ROBUST RECOVERY

The algorithm for noisy recovery G8UST2DSFFT is
shown in Algorithm V.1. The algorithm is very similar
to the exactly sparse case. It first takes FFT of rows and
columns using BLDTOBINS procedure. It then iterates
between the columns and rows, recovering frequencies in
bins which are 1-sparse using the BUSTESTIMATECOL
procedure. This procedure uses the function HIKPL
CATESIGNAL from [14] to make the estimation of the
frequency positions robust to noise.

a there is a one-to-one mapping of frequency coefficient§- Analysis of Each Stage of Recovery

from z to 2’ with probability at leastl — «.

Theorem 4.5:For any constantx > 0, there exists
a constantc > 0 such that ifk < c¢y/n then the
algorithm REDUCEEXACT2DSFFT usesD(k) samples,
runs in timeO(klog k) and returns the correct vectar
with probablility at leastl — «.

Proof: By Theorem 4.3 and the fact that each coeffi-

cient inz’ is nonzero with probability)(1/k), each invo-
cation of the function RDUCETOBASICSFFT fails with
probability at mosty. By Lemma 4.4, with probability at
leastl — «, we could recovetr correctly if each of the
calls to REDTOBASICSFFT returns the correct result. By
the union bound, the algorithme®UCEEXACT2DSFFT
fails with probability at mosty + 3 x a = O(«).

The algorithm usesO(1) invocations of B\SICEX-
ACT2DSFFT on a signal of siz€(k) x O(k) in addition

Here, we show that each step of the recovery is correct
with high probability using the following two lemmas.
The first lemma shows that with very low probability
the ROBUSTESTIMATECOL procedure generates a false
negative (misses a frequency), false positive (adds a
fake frequency) or a bad update (wrong estimate of a
frequency). The second lemma is analogus to lemma 4.2
and shows that the probability that the 1-sparse test fails
when there is noise is low. The proof of these lemmas is
long and can be found in [9].

Lemma 5.1:Consider the recovery of a column/rgw
in ROBUSTESTIMATECOL, whereu and®v are the results
of FOLDTOBINS on Z. Let y € CV™ denote thejth
column/row ofz. Suppose, is drawn from a permutation
invariant distributiony = yheed yresidue 4y gauss \where
miniEsupp(y’w‘"d) |y1| > L, ”yresiduenl <L, and ygauss



procedure ROBUSTESTIMATECOL(4, v, T, 1", IsCol,

J, Ranks)
W « 0.
S« {}
for j € J do

continue if Rankg(IsCol, j)] > loglogn.
i + HIKPLOCATESIGNAL (07", T")

> Procedure from [14]0(log® n) time

a + median,cr ﬂ;w”.
continue if |a| < L/2

> Nothing significant recovere

continue if 3~ ., [a} —aw™ "> > L?|T| /10

TeT

> Bad recovery: probably not 1-spaf

b + mean,cr ﬂ;-w”.
if IsCol then
'U/}i,j <~ b.

else
ﬁ]}‘ﬂ‘ <« b.
S« Su{i}.
Rankg(1 — IsCol, i)] += Rank$(IsCol, j)].
for re TUT' do
@\ - a) — o
50 g o
return w, u, v, S
procedure ROBUST2DSFFT(, k)
T.T' C [y/],|T| = |T'| = O(logn)
for re TUT' do
2" < FOLDTOBINS(z,/n, 1,0, 7).
9" < FOLDTOBINS(z, 1, /1, T,0).

Z+0
R+ 12xIV7l 1 Rank of vertex (iscolumn, inde
Seol < [V/1] > Which columns to tes

for ¢ € [C'logn] do
{@0,4,7, Srow} +

ROBUSTESTIMATECOL (@, 0, T, T, trug, Scor, R).

Z+Z+Ww.

Srow  [v/n] if t =0 > Try each row the first tim

{ﬁ}\a i}\a av Scol} —

ROBUSTESTIMATECOL(0, w, T, 1", false Syow, R).

Z4 Z+Ww.
return z

> Set of changes, to be tested next rou

> whether decoding column or rg

nd.

Se

W

)
t
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Algorithm V.1: Robust 2D sparse FFT algorithm for=

o(vn)

some coordinaté but supp(y"¢*?) # {i}.
« Bad update:supp(y"??) = {i} and coordinatei
is estimated by with |b — yfead| > |[yresidue||; 4+
/ lolgolgngln eL.
For any constant ande below a small enough constant,
there exists a distribution over s&fsT” of sizeO(logn),
such that as a distribution ovgrandT', 7" we have

« The probability of a false negative is/ log® n.

« The probability of a false positive i5/n°.

« The probability of a bad update is/ log® n.

Lemma 5.2:Lety € C™ be drawn from a permutation
invariant distribution withr > 2 nonzero values. Suppose
that all the nonzero entries af have absolute value at
leastL. Choosel' C [m] uniformly at random witht :=
|T| = O(c®logm). Then, the probability that there exists
ay’ with ||/]lo <1 and

15— )73 < eLPt/n

is at mostc®(—<)°~2 whenevere < 1/8.

c
B. Analysis of Overall Recovery

Recall that we are considering the recovery of a signal
T =1 +@ e CV"™Vn wherez* is drawn from the
Bernoulli model with expected = a+/n nonzero entries
for a sufficiently small constant, andw ~ N¢(0,0%1,,)
with o = eL+\/k/n = ©(eL/n'/*) for small enoughe.

It will be useful to consider a bipartite graph represen-
tation G of z*. We construct a bipartite graph with'n
nodes on each side, where the left side corresponds to
rows and the right side corresponds to columns. For each
(i,) € supp(z*), we place an edge between left nade
and right nodej of Weight?(i)j).

Our algorithm is a “peeling” procedure on this graph.
It iterates over the vertices, and can with a “good prob-
ability” recover an edge if it is the only incident edge
on a vertex. Once the algorithm recovers an edge, it can
remove it from the graph. The algorithm will look at the
column vertices, then the row vertices, then repeat; these
are referred to astages Supposing that the algorithm
succeeds at recovery on each vertex, this gives a canonical
order to the removal of edges. Call this fdeal ordering.

In the ideal ordering, an edgeis removed based on
one of its incident vertices. This happens after all other
edges reachable from without passing throughl are
removed. Define theank of v to be the number of such
reachable edges, and rgak= rank(v) +1 (with rank(v)

is drawn from the\/ﬁ'dimenSional normal distribution undefined ifv is not used for recovery of any edge)_

N¢(0,0°1 s7) with standard deviatiow = ¢L/n'/* in

Lemma 5.3:Let ¢, be arbitrary constants, and a

each coordinate on both real and imaginary axes. We dondyfficiently small constant depending onx. Then with

require yhead yresidue
except for the permutation invariance of their sum.
Consider the following bad events:

« False negativesupp(y°??) = {i} and ROBUSTES-

TIMATE CoL does not update coordinate
o False positive:

RBUSTESTIMATECOL updates

and y?*“** to be independent 1 _  probability every component it is a tree and at

mostk/log®n edges have rank at ledsi log n.

Lemma 5.4:Let RoBUST2DSFFT’ be a modified B-
BUST2DSFFT that avoids false negatives or bad updates:
whenever a false negative or bad update would occur,
an oracle corrects the algorithm. With large constant



probability, RoBUST2DSFFT’ recovers such that there
exists a(k/log® n)-sparsez’ satisfying

|22 — 2|2 < 60°n.

Furthermore, onlyO(k/log®n) false negtives or bad

updates are caught by the oracle.

Lemma 5.5:For any constanty > 0, the algorithm
RoBUST2DSFFT can with probabilityi — « recoverz
such that there exists @&/ log® ' n)-sparsez’ satisfying

1Z2—2 - 7|2 < 60%n

using O(klogn) samples and(k log® n) time.

(5]

(6]

(71

(8]
9]

(10]

The algorithm in [14] can be generalized to the 2 dimen-

we restate the theorem which we will use to prove the

correctness of our ®8UsT2DSFFT algorithm.

Theorem 5.6:There is a variant of [14] algorithm that

will, given z,Z € CY™*V"™  returnz’ with

IZ—2—2|2<2- min_||F—2— 2|2+ |2]2/n°

k-sparser*

with probability 1 — o for any constantg, « > 0 in time
O(klog(n/k)log® n + |supp(2)|log(n/k) log n),
using O(k log(n/k) log® n) samples ofz.

Theorem 5.7:0ur overall algorithm can recovef’
satisfying

|12 = &'|3 < 120°n + |[2]|3/n°

with probability 1 — « for any constants,« > 0 in
O(klogn) samples andD(klog®n) time, wherek =
a+/n for some constant > 0.

Proof: By Lemma 5.5, we can recover an(k)-
sparsez such that there exists it/ log® ™! n)-sparsez’
with

|7 — 2 — 2|3 < 60%n.

with arbitrarily large constant probability for any consta
¢ using O(klog® n) time andO(klogn) samples. Then
by Theorem 5.6, we can recoveain O(klog” n) time
and O(klog*~“n) samples satisfying

17 -2 2|3 < 120°n + ||Z]|5/n°
and hencer’ := z + 2’ is a good reconstruction far. m
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