Sample-optimal average-case sparse Fourier Transform in two dimensions

Haitham Hassanieh

Joint work with Badih Ghazi , Piotr Indyk , Dina Katabi , Eric Price, & Lixin Shi

The Discrete Fourier Transform

Video / Audio

DNA

Medical Imagining

Astronomy

Given: A signal x(t) $0 \le t < n$

Goal: Compute the frequency representation $\hat{x}(f)$

$$\hat{x}(f) = \sum_{t=0}^{n} x(t)e^{-j\frac{2\pi ft}{N}}$$

Computing the DFT

• Fast Fourier Transform (1965): FFT $\rightarrow O(n \log n)$

Can we do better? Sub-linear time?

Leverage Sparsity

- Compute only the few large frequencies
- Sparsity appears in video, audio, telescope/satellite data, genomics ...

- For signals of length n, compute the k "large" frequencies
- Sub-linear algorithm:**

Algorithm	Time	Samples	Lower bound
Exactly sparse	$O(k \log n)$	$O(k \log n)$	$\neq O(k)$
Approximately sparse	$O(k \log(n) \log(n/k))$	$O(k \log(n) \log(n/k))$	$\neq O(k \log(n/k))$

Current algorithms do not match lower bounds on sample complexity

**Haitham Hassanieh, Piotr Indyk, Dina Katabi, and Eric Price. "Nearly Optimal Sparse Fourier Transform" *STOC'12, ACM Symposium on Theory of Computing*, New York USA, May 2012⁴.

In many applications, collecting the samples is costly

• More samples \rightarrow More Time

- MRI: Time patient spends in machine
- Spectroscopy: experiments run for weeks

More samples → More Hardware

- Light field camera arrays
- Astronomy Radar arrays

Even worse for multi-dimensional DFT

- Most applications require multi-dimensional DFT:
 - Medical Imaging: 2D 6D
 - Spectroscopy: 2D 7D
 - Light fields: 4D
- Current Algorithms:
 - Sample complexity worse: $k (\log n)^{d+1}$ instead of $k \log(n^{d+1})$

How can we match the lower bounds on sample complexity while maintaining fast run time for multi-dimensional DFT?

Sample optimal 2D sparse Fourier transform

8

1D DFT

9

1D DFT

• Recall time shift property of DFT:

 $1D: x(t-\tau) \rightarrow \hat{x}(f)e^{j\frac{2\pi f\tau}{N}}$

$$2\mathsf{D}: x(t_r - \tau_r, t_c - \tau_c) \to \hat{x}(f_r, f_c) e^{j2\pi \frac{f_r \tau_r + f_c \tau_c}{N}}$$

- $x(t_r 1, t_c) \rightarrow \hat{x}(f_r, f_c)e^{j2\pi \frac{f_r}{N}} \rightarrow \text{phase } \alpha \text{ row freq. index}$
- $x(t_r, t_c 1) \rightarrow \hat{x}(f_r, f_c)e^{j2\pi \frac{f_c}{N}} \rightarrow \text{phase } \alpha \text{ column freq. index}$

Algorithm:

- Take FFT of columns and rows
- Alternate columns/rows
- Estimate if one non-zero entry (needs collision detection)
- Subtract estimated frequencies

Analysis

- Setup:
 - 2D DFT Grid: $\sqrt{n} \times \sqrt{n}$
 - Average case: Non-zero freq. distributed uniformly at random
 - Sparsity: $k = \Theta(\sqrt{n})$
- Analysis:
 - At most one entry per column/row in expectation
 - With high probability: algorithm converges in $O(\log n)$ steps
 - Each step requires columns/rows i.e. $O(\sqrt{n}) = O(k)$ samples
 - But we can use the same samples in all steps
- Exactly Sparse:

Sample Complexity : O(k)Time Complexity : $O(k \log n)$

Results

Algorithm	Time	Samples
Exactly Sparse	$O(k \log n)$	0(<i>k</i>)
Approximately Sparse	$O(k \log^2 n)$	$O(k \log n)$

- Generalize:
 - Approximately sparse case with Gaussian noise
 - Sparsity: $k = O(\sqrt{n})$
 - Dimensions > 2
 - 1D for $n = p \times q$, where p and q are co-prime**

**Similar result was recently and independently discovered by Pawar and Ramchandran

Conclusions

- Simple and practical multi-dimensional Sparse Fourier Transform algorithm
- Achieves sample complexity lower bounds
- Exactly sparse: O(k) samples in $O(k \log n)$ time
- Approx. sparse : $O(k \log n)$ samples in $O(k \log^2 n)$ time
- Future directions:
 - Optimal sample complexity for worst case ?

