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Fourier Transform Is Used Everywhere

Video

Sequencing

Oil exploration



Computing the Discrete Fourier Transform
 Naive Algorithm O(n?)
X. =F X,

In 1965, Cooley and Tukey introduced the FFT
which computes the frequencies in O(n log n)

But ... FFT is too slow for BIG Data problems

Can we design a sublinear Fourier

algorithm?




|dea: Leverage Sparsity

Often the Fourier Transform is dominated by a few peaks
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Time Signal Sparse Fregs. Approximately Sparse Fregs.
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Sparse FFT computes the DFT in sublinear time

Sparsity appears in video, audio, seismic data,
telescope/satellite data, medical tests, genomics




Benefits of Sparse FFT

* Faster computation > Scalable to larger datasets

e Use only samples of the data
—> Lower acquisition time

— Less communication bandwidth

* Lower power consumption



How Does Sparse FFT Work?

1- Bucketize Spectrum X;

Divide spectrum
into a few buckets

Estimate the large

2- Estimate : ‘

coefficient of the
non-empty buckets !

value of bucket = Y X;



Rules of the Game

Fast bucketization in sublinear time @1

Avoid leaky buckets
Which is the big frequency in a bucket?

Deal with collisions



Time Domain Signal

Cut off Time signal

First B samples

Fast Bucketization

Frequency Domain
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Frequency Domain

n-point DFT : nlog(n)

X mp 3

n-point DFT: nlog(n)
using first B samples

X X Boxcar mmp X * sinc

B-point DFT of first
B terms: B log(B)

Alias (x X Boxcar)

!

Subsample (X * sinc)



But these are leaky buckets

 lLeakage
— value of bucket = Subsample (X * sinc)
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— sum over all frequencies weighted by sinc
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/
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e Solution
— Replace sinc with a better Filter

— GOAL : Subsample (X * Filter) = sum of the frequencies
that hash to the bucket

.

e Which Filter satisfies the above?



Filters: Boxcar (in the time domain)

Filter (time) 25 Filter (freq)

e Boxcar =2 Sinc
— Polynomial decay
— Leaking many buckets



Filters: Sinc (in the time domain)

Filter (time) Filter (frea)

25

201
1.5

15

10

0.5

5 /\
0I 0.0
Bin

0 20 40 60 80 100

e Sinc - Boxcar
— Large time domain support
- linear time complexity



Filters: Gaussian (in the time domain)

Filter (time) 3 Filter (freq)

e Gaussian =2 Gaussian
— Exponential decay
— Leaking to (log n)¥/2 buckets



Filters: Sinc X Gaussian

Filter (time) 13 Filter (freq)

0.04 / 0.6

0.02

|
NN |

0% 50 100 150 200 Bin

e Sinc X Gaussian = Boxcar*Gaussian

— Still exponential decay
— Almost zero leakage
— Small support in time domain



Filters: Sinc X Gaussian
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e B-point FFT

— Fast Buc
e Sinc x Gaussian =2 Negligib

Ketization

e leakage




Rules of the Game

* Fast bucketization in sublinear time @t

* Avoid leaky buckets
»- Which is the big frequency in a bucket?

e Deal with collisions



Which is the large frequency in the bucket?

e Recall: ashiftintime is a phase in the frequency domain
—FFT(x) = & X e J2me//n
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 Take two B-sample FFT separated by t
— For each non-empty bucket, compute the phase shift

— Phase shift of the bucket =2mf,;t/n =2 compute f,



Rules of the Game

* Fast bucketization in sublinear time @t

* Avoid leaky buckets

 Which is the big frequency in a bucket?

B . Deal with collisions



Dealing with Collisions

* Some Large frequencies collide:
— Subtract and recurse
— Small number of collisions = converges in few iterations

* Every iteration needs new random hashing:

— Permute frequency domain: f' = af mod n (a invertible mod n)

— Recall Scaling Property: x'(t) =x(ot) = X'(f) =§f< (lf)

o

— For discrete case: x'(t) =x(ot) => () =R(c71f)

— Permuteintimet’ = ot modn = f ' =oc 'f modn



Theoretical Results

 For asignal of size n with k large frequencies

* Prior work on sparse FFT
— O(k log®n) for some c is about 4 [GMSO05, Iwen’10]
— Improves over FFT for k << n/log® n

e Qur results [SODA’12], [STOC’12]
— Exactly k-sparse case : O(k log n)
e Optimal if FFT is optimal
— Approximately k-sparse case O(k log(n) log(n/k))
* Improves over FFT for any k = o(n)
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Simulation Results
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Simulation Results

Run Time vs. Signal Sparsity (N= 222= 4 million)
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