The Sparse Fourier Transform

Haitham Hassanieh
Piotr Indyk Dina Katabi Eric Price

Fourier Transform Is Used Everywhere

Video

Sequencing

Oil exploration

Computing the Discrete Fourier Transform
 Naive Algorithm O(n?)
X. =F X,

In 1965, Cooley and Tukey introduced the FFT
which computes the frequencies in O(n log n)

But ... FFT is too slow for BIG Data problems

Can we design a sublinear Fourier

algorithm?

|dea: Leverage Sparsity

Often the Fourier Transform is dominated by a few peaks

‘ | | u,‘)\quULmL

Time Signal Sparse Fregs. Approximately Sparse Fregs.

<

Sparse FFT computes the DFT in sublinear time

Sparsity appears in video, audio, seismic data,
telescope/satellite data, medical tests, genomics

Benefits of Sparse FFT

* Faster computation > Scalable to larger datasets

e Use only samples of the data
—> Lower acquisition time

— Less communication bandwidth

* Lower power consumption

How Does Sparse FFT Work?

1- Bucketize Spectrum X;

Divide spectrum
into a few buckets

Estimate the large

2- Estimate : ‘

coefficient of the
non-empty buckets !

value of bucket = Y X;

Rules of the Game

Fast bucketization in sublinear time @1

Avoid leaky buckets
Which is the big frequency in a bucket?

Deal with collisions

Time Domain Signal

Cut off Time signal

First B samples

Fast Bucketization

Frequency Domain

f\

| [\ML

MJ/ ‘

Frequency Domain

LA

Frequency Domain

n-point DFT : nlog(n)

X mp 3

n-point DFT: nlog(n)
using first B samples

X X Boxcar mmp X * sinc

B-point DFT of first
B terms: B log(B)

Alias (x X Boxcar)

!

Subsample (X * sinc)

But these are leaky buckets

 lLeakage
— value of bucket = Subsample (X * sinc)

[

- - .
i 1
- 4
. T - 5
! 4 e p g
| ! g :r"¢-| = 1l s s b
el M TN
o g, ¥ i AN
- > P ¥ i 5\
g P = \
- o >
- = o L
— P X ~
= _ -

— sum over all frequencies weighted by sinc

4 =
/
/ }

e Solution
— Replace sinc with a better Filter

— GOAL : Subsample (X * Filter) = sum of the frequencies
that hash to the bucket

.

e Which Filter satisfies the above?

Filters: Boxcar (in the time domain)

Filter (time) 25 Filter (freq)

e Boxcar =2 Sinc
— Polynomial decay
— Leaking many buckets

Filters: Sinc (in the time domain)

Filter (time) Filter (frea)

25

201
1.5

15

10

0.5

5 /\
0I 0.0
Bin

0 20 40 60 80 100

e Sinc - Boxcar
— Large time domain support
- linear time complexity

Filters: Gaussian (in the time domain)

Filter (time) 3 Filter (freq)

e Gaussian =2 Gaussian
— Exponential decay
— Leaking to (log n)¥/2 buckets

Filters: Sinc X Gaussian

Filter (time) 13 Filter (freq)

0.04 / 0.6

0.02

|
NN |

0% 50 100 150 200 Bin

e Sinc X Gaussian = Boxcar*Gaussian

— Still exponential decay
— Almost zero leakage
— Small support in time domain

Filters: Sinc X Gaussian

-

J

|

e B-point FFT

— Fast Buc
e Sinc x Gaussian =2 Negligib

Ketization

e leakage

Rules of the Game

* Fast bucketization in sublinear time @t

* Avoid leaky buckets
»- Which is the big frequency in a bucket?

e Deal with collisions

Which is the large frequency in the bucket?

e Recall: ashiftintime is a phase in the frequency domain
—FFT(x) = & X e J2me//n

A

| |

| |

I , [T
t

t+T

 Take two B-sample FFT separated by t
— For each non-empty bucket, compute the phase shift

— Phase shift of the bucket =2mf,;t/n =2 compute f,

Rules of the Game

* Fast bucketization in sublinear time @t

* Avoid leaky buckets

 Which is the big frequency in a bucket?

B . Deal with collisions

Dealing with Collisions

* Some Large frequencies collide:
— Subtract and recurse
— Small number of collisions = converges in few iterations

* Every iteration needs new random hashing:

— Permute frequency domain: f' = af mod n (a invertible mod n)

— Recall Scaling Property: x'(t) =x(ot) = X'(f) =§f< (lf)

o

— For discrete case: x'(t) =x(ot) => () =R(c71f)

— Permuteintimet’ = ot modn = f ' =oc 'f modn

Theoretical Results

 For asignal of size n with k large frequencies

* Prior work on sparse FFT
— O(k log®n) for some c is about 4 [GMSO05, Iwen’10]
— Improves over FFT for k << n/log® n

e Qur results [SODA’12], [STOC’12]
— Exactly k-sparse case : O(k log n)
e Optimal if FFT is optimal
— Approximately k-sparse case O(k log(n) log(n/k))
* Improves over FFT for any k = o(n)

Run Time (sec)

10

o
-

0.01

0.001

0.0001

Simulation Results

Run Time vs. Signal Sparsity (N =222 = 4 million)

32 128 512 2048 8192 32768 131072

Sparsity (Number of non-zero frequencies)

Run Time (sec)

10

o
-

0.01

0.001

0.0001

Simulation Results

Run Time vs. Signal Sparsity (N= 222= 4 million)

FFTW
32 128 512 2048 8192 32768 131072

Sparsity (Number of non-zero frequencies)

Run Time (sec)

Simulation Results

Run Time vs. Signal Sparsity (N= 222= 4 million)

o
-_—
|

0.01 4

0.001

0-0001 I | I 1 I | I 1 I | I 1 I
32 128 512 2048 8192 32768 131072

Sparsity (Number of non-zero frequencies)

Run Time (sec)

10

1

0.1

0.01

0.001

0.0001

Simulation Results

Run Time vs. Signal Sparsity (N= 222= 4 million)

SFFT [STOC 2012]

32 128 512 2048 8192 32768 131072

Sparsity (Number of non-zero frequencies)

