The Sparse Fourier Transform

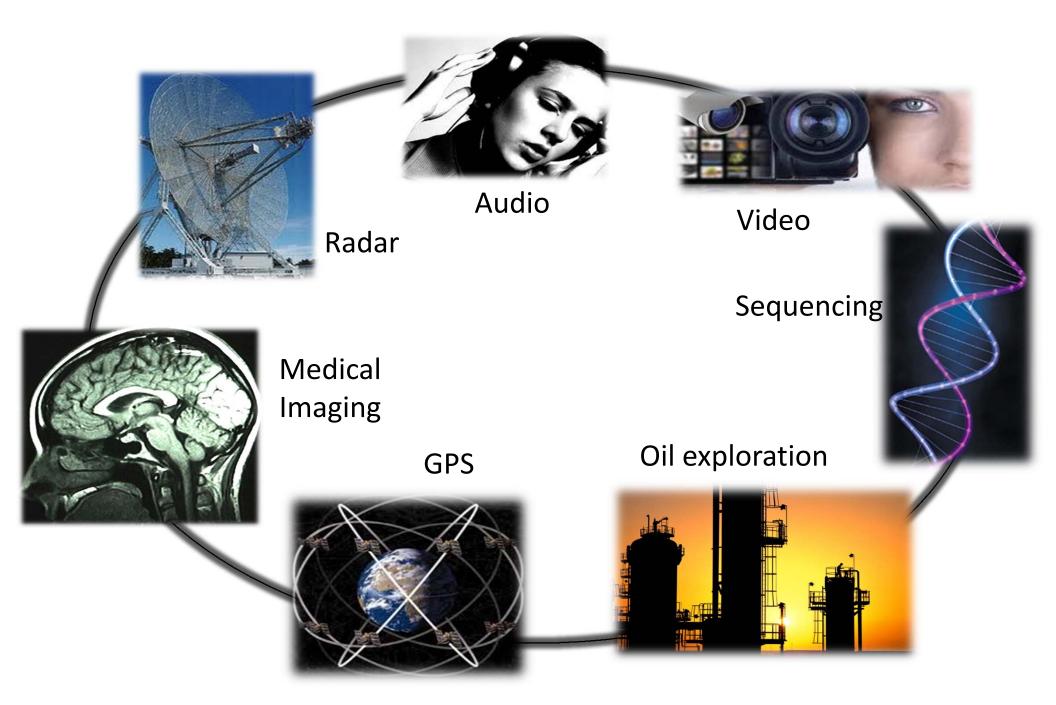
Haitham Hassanieh

Piotr Indyk

Dina Katabi

Eric Price

Fourier Transform Is Used Everywhere



Computing the Discrete Fourier Transform

• Naïve Algorithm $O(n^2)$

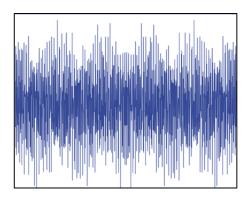
$$\hat{x}_f = \mathbf{F} \ x_t$$

- In 1965, Cooley and Tukey introduced the FFT which computes the frequencies in O(n log n)
- But ... FFT is too slow for BIG Data problems

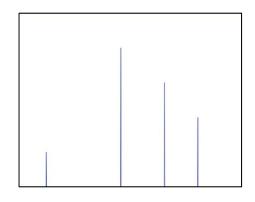
Can we design a sublinear Fourier algorithm?

Idea: Leverage Sparsity

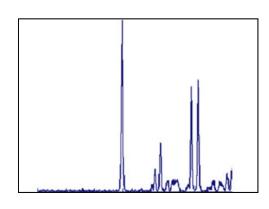
Often the Fourier Transform is dominated by a few peaks



Time Signal



Sparse Freqs.



Approximately Sparse Freqs.

Sparse FFT computes the DFT in sublinear time Sparsity appears in video, audio, seismic data, telescope/satellite data, medical tests, genomics

Benefits of Sparse FFT

Faster computation

Scalable to larger datasets

- Use only samples of the data
 - → Lower acquisition time
 - > Less communication bandwidth

Lower power consumption

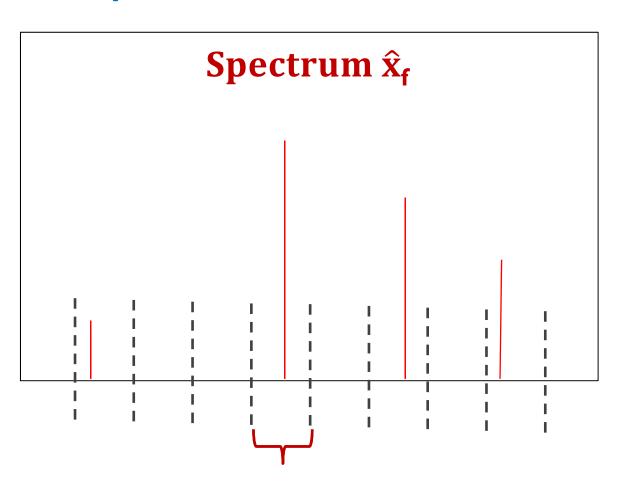
How Does Sparse FFT Work?

1- Bucketize

Divide spectrum into a few buckets

2- Estimate

Estimate the large coefficient of the non-empty buckets



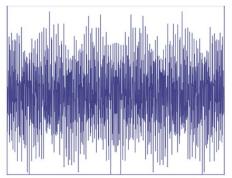
value of bucket = $\sum \hat{x_i}$

Rules of the Game

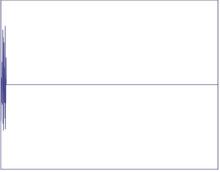
Fast bucketization in sublinear time

- Avoid leaky buckets
- Which is the big frequency in a bucket?
- Deal with collisions

Fast Bucketization

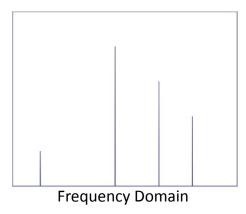


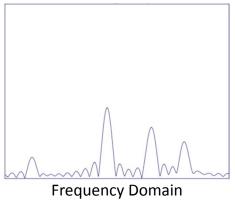
Time Domain Signal

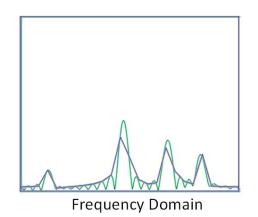


Cut off Time signal

First B samples







n-point DFT : $n \log(n)$

 $\hat{\mathbf{x}} \longrightarrow \hat{\mathbf{x}}$

n-point DFT: $n \log(n)$ using first B samples

 $\mathbf{x} \times \mathbf{Boxcar} \implies \hat{\mathbf{x}} * \mathbf{sinc}$

B-point DFT of first B terms: $B \log(B)$

Alias $(x \times Boxcar)$

Subsample ($\hat{\mathbf{x}} * sinc$)

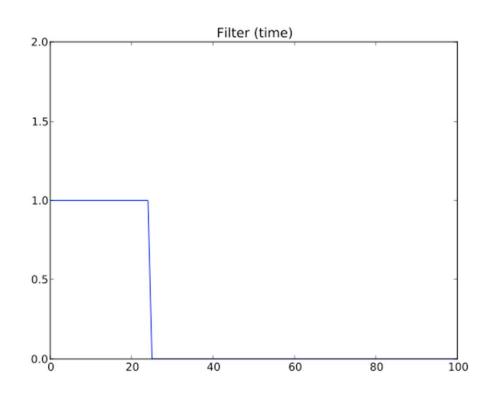
But these are leaky buckets

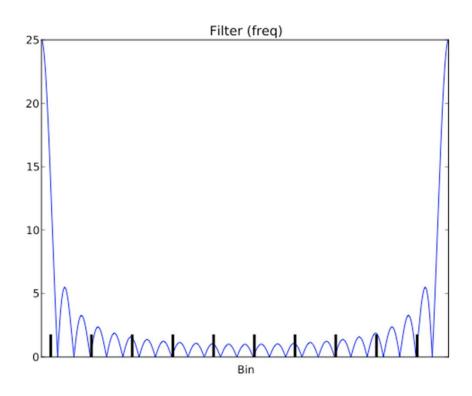
- Leakage
 - value of bucket = Subsample ($\hat{x} * sinc$)
 - sum over all frequencies weighted by sinc

- Solution
 - Replace sinc with a better Filter
 - GOAL: Subsample ($\hat{\mathbf{x}} * \mathbf{Filter}$) = sum of the frequencies that hash to the bucket

Which Filter satisfies the above?

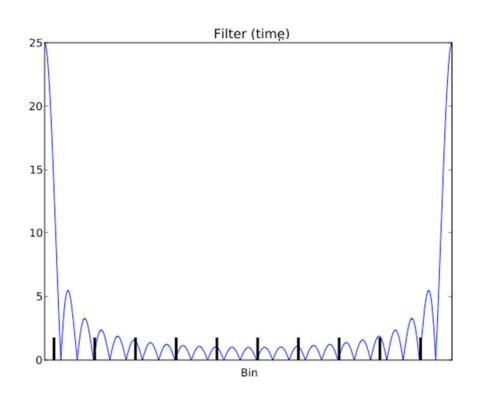
Filters: Boxcar (in the time domain)

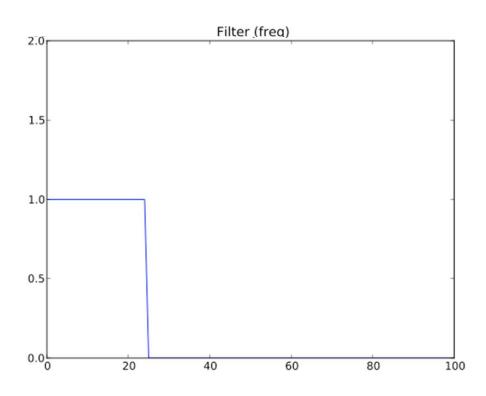




- Boxcar → Sinc
 - Polynomial decay
 - Leaking many buckets

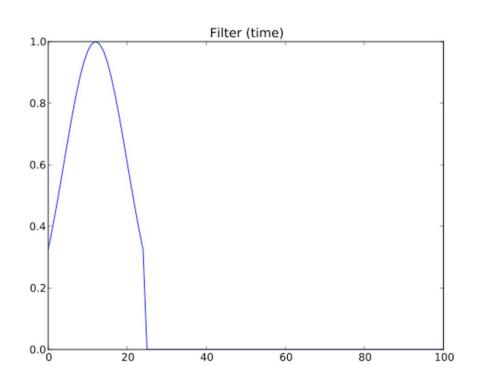
Filters: Sinc (in the time domain)

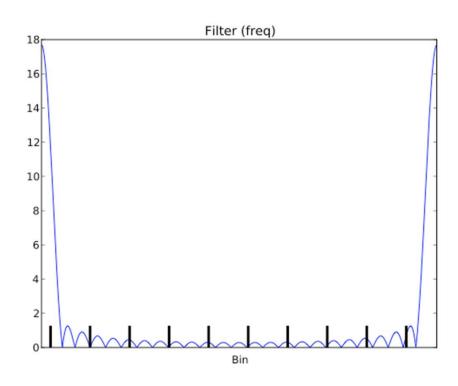




- Sinc → Boxcar
 - Large time domain support
 - → linear time complexity

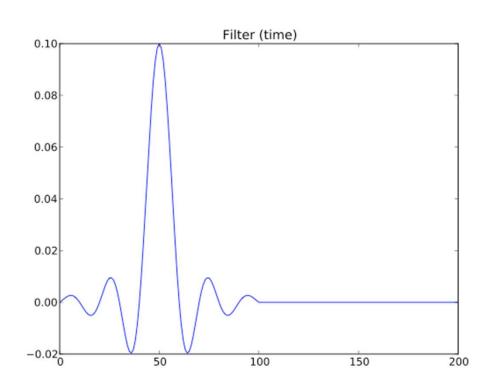
Filters: Gaussian (in the time domain)

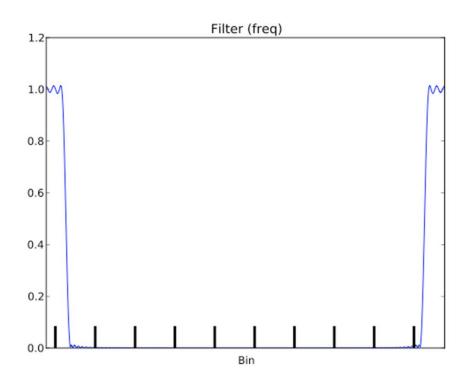




- Gaussian → Gaussian
 - Exponential decay
 - Leaking to $(\log n)^{1/2}$ buckets

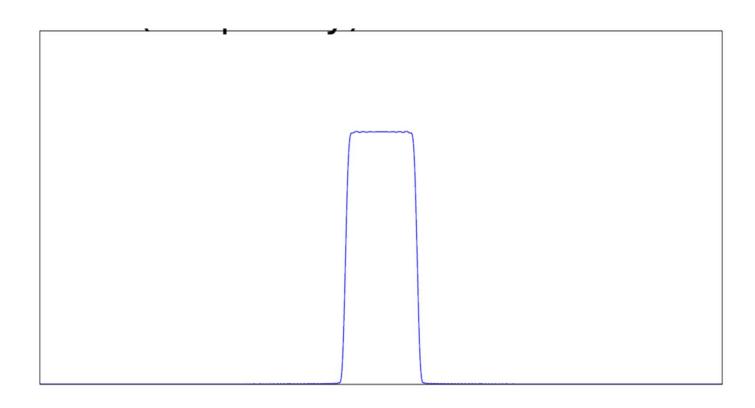
Filters: Sinc × Gaussian





- Sinc × Gaussian → Boxcar*Gaussian
 - Still exponential decay
 - Almost zero leakage
 - Small support in time domain

Filters: Sinc × Gaussian



- B-point FFT → Fast Bucketization
- Sinc x Gaussian → Negligible leakage

Rules of the Game

Fast bucketization in sublinear time

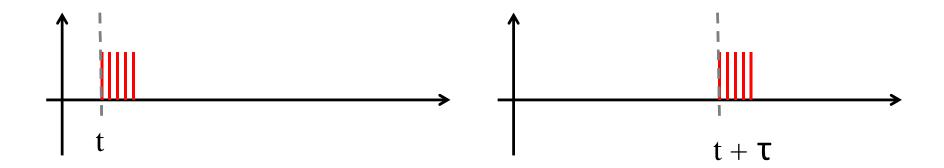
Avoid leaky buckets

- Which is the big frequency in a bucket?
- Deal with collisions

Which is the large frequency in the bucket?

Recall: a shift in time is a phase in the frequency domain

$$- FFT(\mathbf{x}^{\tau}) = \hat{\mathbf{x}} \times e^{-j 2\pi \tau f/n}$$



- Take two B-sample FFT separated by τ
 - For each non-empty bucket, compute the phase shift
 - Phase shift of the bucket = $2\pi f_i \tau / n$ \rightarrow compute f_i

Rules of the Game

Fast bucketization in sublinear time

- Avoid leaky buckets
- Which is the big frequency in a bucket?
- Deal with collisions

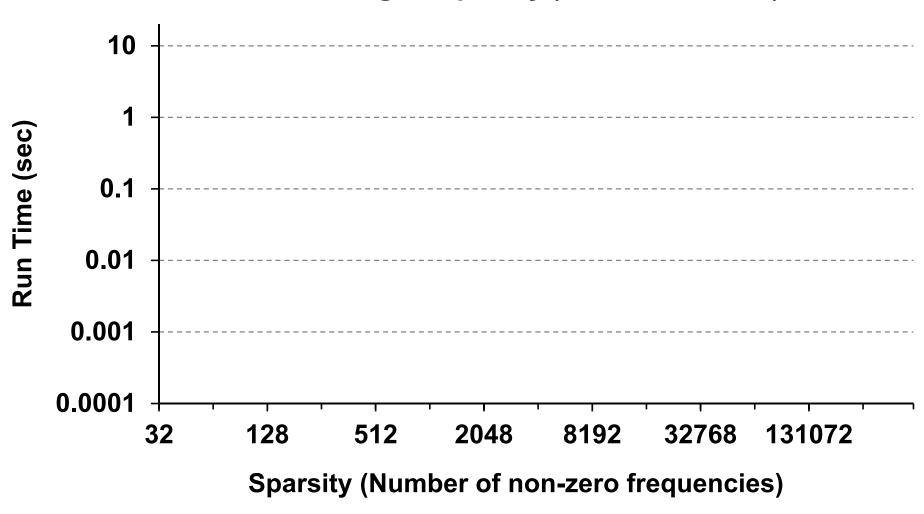
Dealing with Collisions

- Some Large frequencies collide:
 - Subtract and recurse
 - Small number of collisions → converges in few iterations
- Every iteration needs new random hashing:
 - Permute frequency domain: $f' = af \mod n$ (a invertible mod n)
 - Recall Scaling Property: $\mathbf{x}'(t) = \mathbf{x}(\sigma t)$ $\Rightarrow \hat{\mathbf{x}}'(f) = \frac{1}{\sigma}\hat{\mathbf{x}}\left(\frac{1}{\sigma}f\right)$
 - For discrete case: $\mathbf{x}'(t) = \mathbf{x}(\sigma t)$ $\Rightarrow \hat{\mathbf{x}}'(f) = \hat{\mathbf{x}}(\sigma^{-1}f)$
 - Permute in time $t' = \sigma t \mod n$ $\Rightarrow f' = \sigma^{-1} f \mod n$

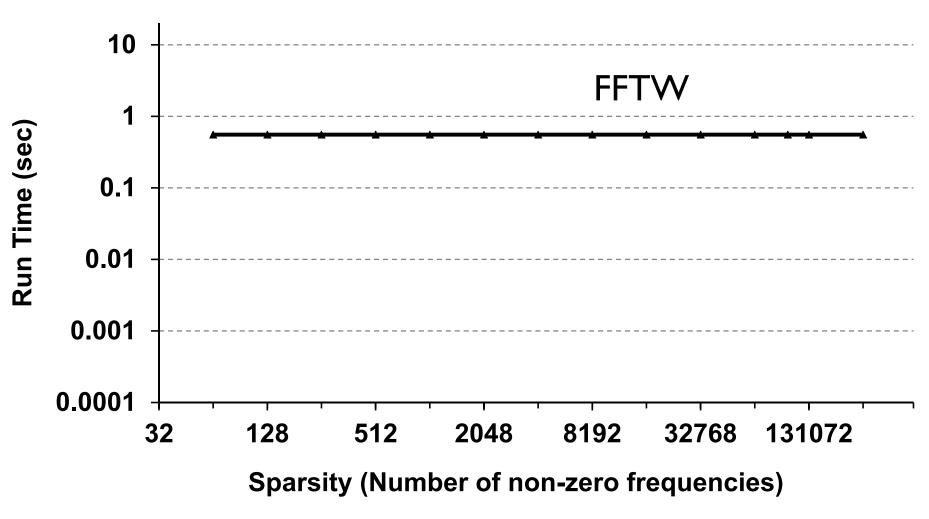
Theoretical Results

- For a signal of size n with k large frequencies
- Prior work on sparse FFT
 - O(k log^c n) for some c is about 4 [GMS05, Iwen'10]
 - Improves over FFT for k << n/log³ n
- Our results [SODA'12], [STOC'12]
 - Exactly k-sparse case : O(k log n)
 - Optimal if FFT is optimal
 - Approximately k-sparse case O(k log(n) log(n/k))
 - Improves over FFT for any k = o(n)

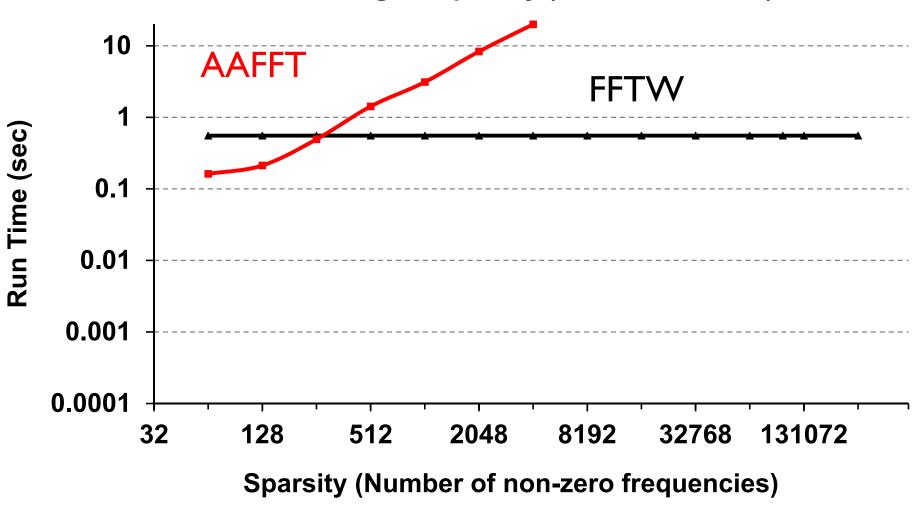
Run Time vs. Signal Sparsity (N =2²² ≈ 4 million)



Run Time vs. Signal Sparsity (N= 2²² ≈ 4 million)



Run Time vs. Signal Sparsity (N= 2²² ≈ 4 million)



Run Time vs. Signal Sparsity (N= 2²² ≈ 4 million)

