# The Sparse Fourier Transform

Haitham Hassanieh

Piotr Indyk

Dina Katabi

**Eric Price** 



# Fourier Transform Is Used Everywhere



## Computing the Discrete Fourier Transform

• Naïve Algorithm  $O(n^2)$ 

$$\hat{x}_f = \mathbf{F} \ x_t$$

- In 1965, Cooley and Tukey introduced the FFT which computes the frequencies in O(n log n)
- But ... FFT is too slow for BIG Data problems

Can we design a sublinear Fourier algorithm?

# Idea: Leverage Sparsity

Often the Fourier Transform is dominated by a few peaks



Time Signal



Sparse Freqs.



Approximately Sparse Freqs.



Sparse FFT computes the DFT in sublinear time Sparsity appears in video, audio, seismic data, telescope/satellite data, medical tests, genomics

# Benefits of Sparse FFT

Faster computation 

Scalable to larger datasets

- Use only samples of the data
  - → Lower acquisition time
  - > Less communication bandwidth

Lower power consumption

# **How Does Sparse FFT Work?**

#### 1- Bucketize

Divide spectrum into a few buckets

#### 2- Estimate

Estimate the large coefficient of the non-empty buckets



value of bucket =  $\sum \hat{x_i}$ 

#### Rules of the Game

Fast bucketization in sublinear time



- Avoid leaky buckets
- Which is the big frequency in a bucket?
- Deal with collisions

#### **Fast Bucketization**



Time Domain Signal



Cut off Time signal



First B samples







n-point DFT :  $n \log(n)$ 

 $\hat{\mathbf{x}} \longrightarrow \hat{\mathbf{x}}$ 

n-point DFT:  $n \log(n)$  using first B samples

 $\mathbf{x} \times \mathbf{Boxcar} \implies \hat{\mathbf{x}} * \mathbf{sinc}$ 

B-point DFT of first B terms:  $B \log(B)$ 

Alias  $(x \times Boxcar)$ 

Subsample ( $\hat{\mathbf{x}} * sinc$ )

# But these are leaky buckets

- Leakage
  - value of bucket = Subsample ( $\hat{x} * sinc$ )
  - sum over all frequencies weighted by sinc



- Solution
  - Replace sinc with a better Filter
  - GOAL: Subsample ( $\hat{\mathbf{x}} * \mathbf{Filter}$ ) = sum of the frequencies that hash to the bucket

Which Filter satisfies the above?

## Filters: Boxcar (in the time domain)





- Boxcar → Sinc
  - Polynomial decay
  - Leaking many buckets

## Filters: Sinc (in the time domain)





- Sinc → Boxcar
  - Large time domain support
    - → linear time complexity

## Filters: Gaussian (in the time domain)





- Gaussian → Gaussian
  - Exponential decay
  - Leaking to  $(\log n)^{1/2}$  buckets

#### Filters: Sinc × Gaussian





- Sinc × Gaussian → Boxcar\*Gaussian
  - Still exponential decay
  - Almost zero leakage
  - Small support in time domain

#### Filters: Sinc × Gaussian



- B-point FFT → Fast Bucketization
- Sinc x Gaussian → Negligible leakage

#### Rules of the Game

Fast bucketization in sublinear time



Avoid leaky buckets



- Which is the big frequency in a bucket?
- Deal with collisions

## Which is the large frequency in the bucket?

Recall: a shift in time is a phase in the frequency domain

$$- FFT(\mathbf{x}^{\tau}) = \hat{\mathbf{x}} \times e^{-j 2\pi \tau f/n}$$



- Take two B-sample FFT separated by τ
  - For each non-empty bucket, compute the phase shift
  - Phase shift of the bucket =  $2\pi f_i \tau / n$   $\rightarrow$  compute  $f_i$

#### Rules of the Game

Fast bucketization in sublinear time



- Avoid leaky buckets
- Which is the big frequency in a bucket?
- Deal with collisions

# Dealing with Collisions

- Some Large frequencies collide:
  - Subtract and recurse
  - Small number of collisions → converges in few iterations
- Every iteration needs new random hashing:
  - Permute frequency domain:  $f' = af \mod n$  (a invertible mod n)
  - Recall Scaling Property:  $\mathbf{x}'(t) = \mathbf{x}(\sigma t)$   $\Rightarrow \hat{\mathbf{x}}'(f) = \frac{1}{\sigma}\hat{\mathbf{x}}\left(\frac{1}{\sigma}f\right)$
  - For discrete case:  $\mathbf{x}'(t) = \mathbf{x}(\sigma t)$   $\Rightarrow \hat{\mathbf{x}}'(f) = \hat{\mathbf{x}}(\sigma^{-1}f)$
  - Permute in time  $t' = \sigma t \mod n$   $\Rightarrow f' = \sigma^{-1} f \mod n$

#### Theoretical Results

- For a signal of size n with k large frequencies
- Prior work on sparse FFT
  - O(k log<sup>c</sup> n) for some c is about 4 [GMS05, Iwen'10]
  - Improves over FFT for k << n/log<sup>3</sup> n
- Our results [SODA'12], [STOC'12]
  - Exactly k-sparse case : O(k log n)
    - Optimal if FFT is optimal
  - Approximately k-sparse case O(k log(n) log(n/k))
    - Improves over FFT for any k = o(n)

Run Time vs. Signal Sparsity (N =2<sup>22</sup> ≈ 4 million)



Run Time vs. Signal Sparsity (N= 2<sup>22</sup> ≈ 4 million)



Run Time vs. Signal Sparsity (N= 2<sup>22</sup> ≈ 4 million)



Run Time vs. Signal Sparsity (N= 2<sup>22</sup> ≈ 4 million)

