
Christopher Tsai 
December 26, 2007 

EE 262 – 2D Imaging 

Page | 1  
 

Problem Set II – Coherent and Incoherent Imaging 
 
 

Problem #1 – Digital Elevation Model 

 We first generate a digital elevation model (DEM) of the big island of Hawaii to examine the 

topography cursorily: 

 

The two larger red spots represent Hawaii’s tallest peaks, Mauna Kea in the north and Mauna Loa in 

the south.  To quantify the heights more precisely, however, we must plot the contours: 

Problem 1A - Digital Elevation Model for Big Island of Hawaii
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Designating each local maximum by a small green triangle, we count a total of four distinct peaks 

from the contour.  If we know the pixel spacing in the image to be 180 m, then we can compute the 

distance between Hawaii’s tallest peaks, Mauna Kea and Mauna Loa, from their DEM displacement: 

Physical Distance ൌ Pixel Spacing · ඥሺݔ௅௢௔ െ ௄௘௔ሻଶݔ ൅ ሺݕ௅௢௔ െ  ௄௘௔ሻଶݕ

Physical Distance ൎ 180 m · 227.112 pixels  

Physical Distance ൎ ૝૙, ૡૡ૙. ૚૝૚ ܕ. 

 If we wish to model illumination of the island from the left, then we must locally simulate 

the difference equation for the original DEM image f over all neighboring rows x and columns y: 

,ݔሼ݂ሺ ݁ݐܽ݊݅݉ݑ݈݈ܫ ݐ݂݁ܮ ሻሽݕ ൌ ሾ݂ሺݔ, ሻݕ െ  ݂ሺݔ െ 1, ሻሿݕ ൅ ሾ݂ሺݔ, ݕ െ 1ሻ െ  ݂ሺݔ െ 1, ݕ െ 1ሻሿ ൅  ሾ݂ሺݔ, ݕ ൅ 1ሻ െ ݂ሺݔ െ 1, ݕ ൅ 1ሻሿ. 

Problem 1A - Contour Map for Big Island of Hawaii
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Solving this difference equation amounts to two-dimensional convolution with the positive-left 

negative-right shading kernel: ൥
൅1 െ1
൅ 1 െ1
൅1 െ1

൩.  The shaded relief image that results is 

 

 Similarly, if we seek to model illumination from the image bottom, we must solve 

,ݔሼ݂ሺ ݁ݐܽ݊݅݉ݑ݈݈ܫ ݎ݁ݓ݋ܮ ሻሽݕ ൌ ሾ݂ሺݔ, ሻݕ െ  ݂ሺݔ, ݕ െ 1ሻሿ ൅ ሾ݂ሺݔ െ 1, ሻݕ െ  ݂ሺݔ െ 1, ݕ െ 1ሻሿ ൅  ሾ݂ሺݔ ൅ 1, ሻݕ െ ݂ሺݔ ൅ 1, ݕ െ 1ሻሿ. 

Solution amounts to two-dimensional convolution with the lower-positive upper-negative kernel: 

ቂെ1 െ1 െ1
൅1 ൅ 1 ൅1ቃ 

…where the boxed element represents the center of convolution, and the ordered pair (x, y) 

represents (column index, row index).  We produce the shaded relief image: 

Problem 1B - Left-Illuminated Shaded Relief DEM of Big Island of Hawaii
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Problem 1C - Lower-Illuminated Shaded Relief DEM of Big Island of Hawaii
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Problem #2 – Perspective Projection 

 In order to perform perspective projection, we effectively remove the height variable from 

consideration, normalizing by (y + D) in our initially trivariate coordinate system, where our chosen 

vantage point is (D, H) = (3000 m, 1200 m), representing the origin of our modified perspective.  

Essentially, we collapse the third dimension into the first two.  We transform variables: 

ݑ ൌ
ݔܦ

ݕ ൅  ܦ

ݒ ൌ
ݖሺܦ െ ሻܪ

ݕ ൅ ܦ ൅  ܪ

We scan through the perspective plane variables according to our data matrix size: 

ݔ א ൤െ ඌ ௥ܰ௢௪௦ െ 1
2 ඐ , ඌ ௥ܰ௢௪௦

2 ඐ൨ 

ݕ א ൤െ ඌ ௖ܰ௢௟௨௠௡௦ െ 1
2 ඐ , ඌ ௖ܰ௢௟௨௠௡௦

2 ඐ൨ 

According to the perspective transformation, the transformed variables span the ranges: 

ݑ א ൥
ܦ min ݔ

min ݕ ൅ ܦ ,   
ܦ max ݔ

min ݕ ൅ ൩ܦ ൌ ቎
െܦ ቔ ௥ܰ௢௪௦ െ 1

2 ቕ

െ ቔ ௖ܰ௢௟௨௠௡௦ െ 1
2 ቕ ൅ ܦ

,   
ܦ ቔ ௥ܰ௢௪௦

2 ቕ

െ ቔ ௖ܰ௢௟௨௠௡௦ െ 1
2 ቕ ൅ ܦ

቏ 

ݒ א ൥
ሺminܦ ݖ െ ሻܪ

min ݕ ൅ ܦ ൅ ,ܪ   max ൝
ሺmaxܦ ݖ െ ሻܪ

min ݕ ൅ ܦ ,
ሺmaxܦ ݖ െ ሻܪ

max ݕ ൅ ܦ ൡ ൅  ൩ܪ

In discretizing our projection plane, we must increment both our original variables and transformed 

variables one unit at a time.  We perform a shift of original image indices according to our newly 

rounded image indices: 

ቊ
݅଴ ൌ max ݕ െ ݕ ൅ 1 ՜ ݅ ൌ max ݒ െ ݒ ൅ 1
݆଴ ൌ ݔ െ min ݔ ൅ 1 ՜ ݆ ൌ ݑ െ min ݑ ൅ 1  

Upon converting our transformed coordinates (u, v) into array indices, we can plot the matrix on the 

perspective plane from two different vantage points: 
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We can rotate the perspective plane by 90° simply by pre-multiplying the coordinates by a rotation 

matrix.  This linear transformation results in the rotated image: 

 

Notice that both images exhibit the wounds of transformation: black holes or stripes of seemingly 

disparate data.  These empty points are simply the vestige of an imperfect injective mapping, as 

some points map more densely into the perspective plane than others; consequently, some areas 

receive fewer mappings by virtue of their magnification from our particular perspective, which 

obviously favors the proximity to the horizon, where the need for image detail decreases.  All in all, 

though the array is rectangular, the illusion of perspective in our image actually stretches the 

proximity relative to the distant points, so that the lower half of array receives greater emphasis in 

the image, leading to a seeming point deficiency. 

Problem 2 - Unrotated Perspective Projection
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Problem #3 – Pinhole Camera Equations 

 Using the pinhole camera equations with a vertical displacement to the pinhole, we perform 

the following modified change of variables: 

ݑ ൌ െ
ݔଶܦ

ݕ ൅ ଵܦ
 

ݒ ൌ
ݖଶሺܦ െ ሻܪ

ݕ ൅ ଵܦ
൅  ܪ

where ܦଶ represents observer displacement from the y-axis, and ܦଵ represents the pinhole height, 

independent of the observer position.  Thus, we position the pinhole at ሺݔ, ,ݕ ሻݖ ൌ ሺ0, 0,  ଵሻ andܦ

the observer at ሺݔ, ,ݕ ሻݖ ൌ ሺ0, െܦଶ ,    .ሻܪ

ݑ א ൥െ
ଶܦ min ݔ

min ݕ ൅ ଵܦ
, െ

ଶܦ max ݔ

min ݕ ൅ ଵܦ
൩ 

ݒ א ൥ܪ െ max ൝
ଶሺmaxܦ ݖ െ ሻܪ

min ݕ ൅ ଵܦ
,
ଶሺmaxܦ ݖ െ ሻܪ

max ݕ ൅ ଵܦ
ൡ,   ܪ െ

ଶሺminܦ ݖ െ ሻܪ

min ݕ ൅ ଵܦ
൩ 

We generate our shaded relief images using the same iterative discretization of transform 

variables, rotating with the same rotation matrix.  However, this set of transform equations yields a 

different-looking image.  Unsurprisingly, the pinhole camera images appear inverted in the image 

plane, because the pinhole image appears inverted following passage: 

 

Problem 3 - Unrotated Perspective Projection with Pinhole Equations
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Problem 3 - 90°-Rotated Perspective Projection with Pinhole Equations
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Problem #4 – Gaussian Random Number Generator 

 A uniform random variable ~Uቂെ ଵ
ଶ

, ൅ ଵ
ଶ
ቃ has zero mean and variance  σଶ ൌ  ଵ

ଵଶ
.  Thus, we 

can approximate a Gaussian random vector by summing twelve vectors of these uniform random 

variables.  Since expectation is linear, the Gaussian mean will remain zero, while the variance of the 

sum of independent random variables is the sum of the variances, thus elevating our Gaussian 

variance to unity.  We populate an entire vector with these independent sums, and hence produce a 

string of normally distributed random numbers with zero mean and unit variance.  We combine 

independently drawn pairs in (C = X + jY) to produce complex Gaussian random variables.  To 

ensure that our complex combination’s constituents are successfully Gaussian, we measure their 

means, variances, and third moments across vectors of length 1,000,000 (one million iterations), as 

tabulated below: 

Random Variable Mean µ Variance ો૛ Third Moment 

Real Part {C} = X -0.000380 ൎ 0 0.999081 ൎ 1 0.000197 ൎ 0 

Imaginary Part {C} = Y -0.000349 ൎ 0 0.997051 ൎ 1 -0.000846 ൎ 0 

 

 We proceed to combine complex Gaussian random variables incoherently by generating a 

sequence of random intensity values I = |C|ଶ ൌ CCത, which possesses an exponential distribution.  

We juxtapose our probability density function (histogram of I) with the theoretical exponential 

distribution I݂ሺݎሻ ൌ ൜ି݁ߣఒ௥ ݂ݎ ݎ݋ ൒ 0
ݎ ݎ݋݂         0 ൏ 0   with parameter λ = ଵ

ଶ
: 
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By decreasing the bin width, we can approximate the ideal exponential distribution (dotted line) even 

more closely, as we aver below: 

 

 Mean µ Variance ો૛ 
Experimental Distribution of I 1.996130 ൎ 2 3.781063 ൎ 4 
True Exponential Distribution ଵ

஛
ൌ ଵ

ଵ/ଶ
ൌ 2 ଵ

஛మ ൌ ଵ
ଵ/ସ

ൌ 4 
 
Thus, the theoretical distribution matches the experimentally-inferred values closely!  With even  

more random variables, we can approximate the exponential distribution arbitrarily accurately. 
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If we generate a sequence of amplitudes A = |C| ൌ ඥCCത, then the resultant distribution is the classic 

Rayleigh distribution instead, as we ascertain by juxtaposing the empirical and theoretical 

distributions A݂ሺܽሻ ൌ ൝
௔

ఙమ ݁ି ೌమ

మ഑మ ݂ݎ݋ ܽ ൒ 0
ܽ ݎ݋݂             0 ൏ 0

   with parameter ߪଶ = ସି஠
 ଶ

 once again: 

 

 

 Mean µ Variance ો૛ 
Experimental Distribution of A 1.256170 0.418167 
True Rayleigh Distribution ଵ

ଶ ට஠
஛

ൌ ଵ
ଶ ට

஠
ଵ/ଶ

ൌ ට஠
ଶ
 ≈ 1.253314

ସି஠
ସ஛

ൌ ସି஠
ସሺଵ/ଶሻ

ൌ ସି஠
ଶ

 ≈ 0.429204 
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Problem #5 – Coherent vs. Incoherent Imaging 

 We simulate a one-look coherent image by generating a matrix of complex Gaussian random 

variables C = X + jY; in this complex image, the real and imaginary parts X and Y are normally 

distributed with zero mean and variance I
ଶ
, where I represents the pixel value intensity as prescribed 

in the input image1.  In other words, we modulate the complex Gaussian random vector with the 

scalar constant ට௙
ଶ
, where the image value f(x,y) changes from pixel to pixel to reflect the original 

ideal structure in the picture of the Stanford quad.  We plot the image intensity, |C|ଶ and balk at the 

dominance of the coherent speckle; barely any detail is perceptible: 

 

However, we can improve the resolution of the image and penetrate the speckle if we average 

several random draws in a multi-look image.  Performing ten looks, we view the improved image: 

Problem 5 - Original Ideal Image
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With ten looks, the detail in the Stanford image begins to materialize, with the windows, rooftops, 

arches, and trees entering the realm of recognizance.  However, some grainy speckle still remains to 

a small degree, corrupting the visibility of the distant hills and enchanting the image with an artificial 

air.  Nevertheless, the ten-looked image much more closely resembles the original image than the 

Problem 5 - Original Ideal Image
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one-look rendition; the features now enjoy much more definite shape, boasting higher signal-to-

noise visibility. We persist in our strategy, taking one hundred looks and redisplaying the image: 

 

Problem 5 - Original Ideal Image
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The image now boasts better contrast, but some gray speckle adulterates the skies, so we try again.  

With two hundred draws, we see slight improvement in the spotted skies: 

 

However, despite the general quality throughout the image, the discontinuous variations in sky color 

render the coherent image distinct.  In order to match the original ideal image, we must remove all 

noise, which is possible only with an infinite number of looks.  In other words, because a finite 

average never completely removes the randomness of speckle noise, only an infinite number of 

looks can perfectly match the original image.  However, without prior knowledge of coherent 

imaging, the flawed human eye, bound by the limits of vision, cannot distinguish extremely subtle 

differences, so we can achieve a working match with 200 looks, with an image juxtaposed below.  As 

theory intimates, we can still discern speckle dots in the transparent (nearly white) skyline, where 

small gray points are marginally visible to the trained eye.  However, these grains do not inordinately 

debase the quality of the image, so we consider this a working average, more of a satisfactory 

heuristic and subjective choice than any mathematical axiom. 

Problem 5 - Original Ideal Image

50 100 150 200 250 300 350 400 450 500

50

100

150

Problem 5D - Two-Hundred-Look Coherent Image

50 100 150 200 250 300 350 400 450 500

50

100

150



Christopher Tsai 
December 26, 2007 

EE 262 – 2D Imaging 

Page | 16  
 

Problem #6 – Despeckling an Image 

 A coherent camera begot the following image, resulting in high speckle content and low 

visibility: 

 

We can reduce the speckle in this image by averaging pixels, obtaining two looks in each direction.  

As a byproduct, we decrease the original image size fourfold, but the resolution improves: 

Problem 6 - Speckled Image of the Stanford Quad
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The image still suffers from grain, but the reduction in the number of specks opens the door for 

improved perceptibility, especially concerning details in the image edges, such as the arches of the 

arcade.  All in all, the smooth regions of the image still bear noticeable grain, but we can better 

discern image details such as the palm tree, column friezes, and building edges. 

 Proceeding to minimize the image even further through arithmetic averaging, we assay a 

variety of look sizes: 

Problem 6A - Despeckled Two-Look Image of the Stanford Quad
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Of all of our trials, the eight-look image most discreetly balances detail and smoothness.  The four-

look image still shows too many grains to merit consideration as a “despeckled” image.  Meanwhile, 

the six-teen look and thirty-two look images exhibit the flaws of superfluous averaging; the edges of 

image structures cluster together in blocks, the artifact of blurring and smearing of too many pixels 

to the point that insufficient data remain to reconstruct objects faithfully.  Thus, despite marginally 

noticeable speckle in the eight-look image, the eightfold averaging has not reduced detail beyond the 

point of human visual tolerability. 

Problem 6C - Despeckled Four-Look Image of the Stanford Quad
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