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Problem Set V – The Two-Dimensional Convolution Theorem 
 

Problem #2 – Fraunhofer Intensity Pattern 

(a.) For a rectangular aperture of 1 meter across Πሺݔሻ and illumination of wavelength 10 cm, the 

Fraunhofer intensity pattern is proportional to a squared sinc, according to the magnitude-squared 

Fourier transform of the rect function: 
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In either case, we obtain the squared sinc as our spectral power pattern.    

(b.) On a decibel scale, the ratio of the highest part of the pattern to the greatest sidelobe is 

approximately 13.261472 decibels, as pictured below: 
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(c.) However, we can improve the sidelobe ratio by tapering the aperture smoothly, essentially 

smoothening the sharp transition in the ideal window so that we need fewer high frequency 

components to represent it and hence lower sidelobes in the Fraunhofer intensity pattern.  In other 

words, because the Fourier transform of a sharp transition such as the rectangular aperture requires 

high frequency components, the spectral sinc pattern supports high sidelobes that spread the energy 

across several different spatial frequencies.  By multiplying our rectangular aperture by a smoothly 

tapering cosine, we can temper some of the high sidelobes.  We use the following window: 
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Problem 2A - Power Pattern of Rectangular Aperture
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Problem 2C - Tapering Cosine Window
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Mathematically, we express this window asଵାୡ୭ୱ ଶ୶
ଶ

.  Applying this cosine taper to the window prior 

to computing the Fourier transform, we obtain the following Fraunhofer intensity pattern: 

 

Unraveling the angular axis into a straight line, we obtain the following intensity plot [in dB]: 
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Problem 2C - Power Pattern of Tapering Rectangular Aperture
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As the power pattern divulges, the taper has increased the peak-to-sidelobe ratio from 13.26 dB to 

31.467313 dB.  The central peak is now approximately 1400 times more intense than the first 

sidelobe, and the polar plot now bears fewer of the secondary side fringes seen previously in the 

original polar pattern.   

(d.) Furthermore, we can trace our sidelobe cancellation to its aboriginal form in the transform 

of the cosine in the convolution theorem: 

 

The original rectangular aperture contributes a sinc-like amplitude centered in the figure.  The cosine 

window, on the other hand, generates two adjacent sinc patterns offset just enough so that their 

sidelobes weaken the sidelobes of the central sinc through additive cancellation (shown in red).  

Because the cosine window’s sinc pair is shifted just one lobe away from the central pattern, the 

sidelobe signs oppose the original sinc’s sidelobe signs, allowing the cancellation to occur. 
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Problem 2D - Sidelobe Reduction through Cosine Windowing
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Problem #3 – Circular Antenna Fraunhofer Pattern 

A circular antenna with one meter aperture Πሺݎሻ with ideal cutoff generates a jinc-like 

Fraunhofer pattern, whose square we observe as intensity. 
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Analogous to the sinc-like power pattern of the one-dimensional rectangular window, the jinc-like 

power pattern of the two-dimensional circ suffers from strong sidelobes, the curse of a sharp 

transition.  We plot a one-dimensional cross-section below: 

   

 

(a.) The peak-to-sidelobe ratio of this circular antenna pattern initially appears to be around 

17.57 dB, but we can hone its performance through tapering yet again employing the same 

techniques we tapped for the rectangular aperture with the radially cosinusoidal window ଵାୡ୭ୱ ଶ୰
ଶ

.   

In order to facilitate sidelobe height comparison, we graph only a central slice along the two-

dimensional jinc pattern: 
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(b.) According to the power pattern cross-section plotted above, the PSLR improves to 

approximately 33.99 dB following cosine function tapering.  Following normalization, our tapering 

operation suppresses the first sidelobe by approximately 16.42 dB!  We illustrate the richness of the 

two-dimensional pattern from which we extracted a central slice: 
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Problem 3 - Juxtaposition of Tapered and Untapered Fraunhofer Power Patterns
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Problem #5 – Four Unit Squares 

We transform the following spatial distribution of four unit squares, one of which is negative signed: 

 
(a.) Our analytical solution ܨሺݑ, ሻݒ ൌ ሻݒߨሻ ሾcosሺ4ݒሺܿ݊݅ݏ ሻݑሺܿ݊݅ݏ 2 െ  ݆ sinሺ4ݑߨሻሿ, when 

sampled discreetly, nearly perfectly matches the fast-Fourier-transformed numerical solution pointwise: 
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(b.) Finally, we compute the pointwise difference between the two methods by subtracting the 

numerical solution from the analytical one: 

  
 

This difference image, strictly negative, reveals that the numerical solution almost always 

overestimates the true analytic solution, which comes as no surprise since the discrete Fourier 

transform packs all the energy of the analytical solution outside the bounds of the image within the 

limits imposed by the finite nature of the DFT and FFT.  In other words, because our analytical 

image is the mere evaluation – or sampling – of a band-unlimited function, not all its energy is 

present within the bounds of the image; meanwhile, the discretized numerical transform, by 

definition, accounts for the entire spectrum in a finite number of coefficients.  The most severe 

error occurs along the two principal axes, where the spectrum changes most rapidly.  As the 

percentage error image reveals, however, even these discrepancies are minor when compared to the 

actual transform values; indeed, the FFT close approximates the sampled spectrum. 
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