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Tutorial III – Color Metrics 
 
 

Problem #1 – Linearity in LAB Coordinates 

 First, let us consider the equation for L*, a*, and b* in LAB-coordinate space: 
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Because the LAB coordinates vary as the cube root of the luminance (and also X, Z) coordinates, 

equal spacing in LAB coordinates requires cubic spacing in reflectance.  Thus, we select gray series 

reflectance levels with cubically increasing (or decreasing) spacing between their luminance (Y) 

values, such as the example curve plotted below: 
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In the greater scheme of XYZ color space, the gray levels fall on a curve with very large cluster for 

low values of Y but much wider spacing between high-reflectance gray levels.  Mathematically, we 

vary the spacing cubically instead of linearly: 

 

As a result of cubic spacing in reflectance, we obtain even (linear) spacing in LAB coordinates: 
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Problem #2 – Visual Sensitivity 
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 These equations lead to the following variation of L* for linearly spaced reflectances: 

 

To measure visual sensitivity, we focus on the distance between gray level reflectances in L* space; 

since L* quantifies the discriminability between spatially uniform targets, the eye can better discern 

reflectances when their L* values are spaced farther apart. 
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Because  
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is a concave function of luminance Y, the spacing between L* values of consecutive gray levels 

decreases at higher surface reflectances.  In other words, the human eye more readily distinguishes 

two targets at low mean surface reflectance than it would at higher reflectances.  As a result, our 

visual sensitivity is greater for distinguishing the mean reflectance of dark surfaces. 
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Problem #3 – The CIELAB Metric 

 Suppose we measure the XYZ values of each of a pair of lights.  According to the CIELAB 

metric, we must also measure the XYZ values of a reference white surface before we can predict 

the discriminability of these lights.  Without a reference white to establish a scale against which other 

reflectances compare, we cannot determine whether the two lights seem far apart or close together 

in perception.  These white values reflect basic intensity sensitivity in the visual system; relative to 

the other surface reflectances in the system, they inform what normalized linear combinations of 

red, green, and blue (X, Y, Z) yield pure white (Y = 100) in the gamut of our visual system, and how 

sensitive our eyes are to contrast about this reference point, answering the question: “How white is 

white?”  In particular, ሺܺௐ, ௐܻ, ܼௐሻ represent the ambient lighting that sets the environment in 

which our eye views a scene.   The instrumentality of these quantities reveals that our visual system 

is most sensitive to reflectances relative to the lighting around them; we perceive a color or intensity 

only so much as it protrudes from the environment around it.  Without juxtaposition, nothing is 

remarkable.  Just as the gray X experiment evinces how important surrounding colors are to our 

perception of color and pattern, the parameters of white light quantify the importance for our visual 

system to establish visual differences, discrepancies, or changes in color as a basis for perception. 

In effect, the background illumination or ambient lighting establishes what is visible and what is not. 
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Problem #4 – ΔE Spacing of Five-Unit Perturbations 

Reference Point  

ܘ ൌ   ሺ܆, ,܇  ሻ܈

Perturbed Point

ሺ܆  ,܆∆ ܇  ,܇∆ ܈   ሻ܈∆
ΔX ΔY ΔZ ΔE 

[50, 100, 100] [45, 100, 100] -5 0 0 13.6955

[50, 100, 100] [55, 100, 100] 5 0 0 12.8104

[50, 100, 100] [50, 95, 100] 0 -5 0 9.3386

[50, 100, 100] [50, 105, 100] 0 5 0 9.0322

[50, 100, 100] [50, 100, 95] 0 0 -5 3.3905

[50, 100, 100] [50, 100, 105] 0 0 5 3.2793

 

Apparently, perceived differences to light are most sensitive to X values and least sensitive to Z 

values for a fixed displacement in XYZ space.  This behavior does not surprise us since the ݖҧ 

tristimulus values are traditionally the highest, making a 5-unit perturbation seem smaller relative to 

perturbations in X and Y. 
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Problem #5 – Using CIELAB to Compare Images 

Color Coordinate Yellow Blue Green 

R 1 0.25 0.625 

G 1 0.625 0.8125 

B 0 1 0.5 

PART (A.) – RGB to XYZ Values 

X 62.0592 52.0468 57.0530 

Y 84.6287 58.8485 71.7386 

Z 13.7069 127.3905 70.5487 

PART (B.) - WHITE POINT [ X Y Z ] = [ 95 100 108 ] 

L* 93.7229 81.2082 87.8426 

a* -39.1022 -9.8722 -25.7505 

b* 88.6691 -43.7166 5.5048 

PART (B.) - WHITE POINT [ X Y Z ] = [ 108 100 95 ] 

L* 93.7229 81.2082 87.8426 

a* -57.2587 -26.9945 -43.4050 

b* 84.2790 -52.9466 -2.0749 

 
The X and Z values of the white point affect only the a* and b* components of the CIELAB values.  

The value of a* nearly doubles for yellow and green and nearly triples for blue.  Meanwhile, b* 

slightly decreases for yellow and decrement by nearly 10 units for blue and green.  On the other 

hand, the L* component remains unchanged since the luminance Y is still 100.  All in all, these 

alterations reflect the strong solitary dependence of L* on luminance Y, and the looser 

correspondences between a*~X and b*~Z, although both a* and b* depend on Y as well. 
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PART (C.) - ∆E Color Differences 

ܧ∆ ൌ 136.1505 

ீܧ∆ ൌ 84.4343 

ீܧ∆ ൌ 52.1429 

According to the ∆E metric, yellow and blue are the most dissimilar.  Yellow and green are also 

dissimilar, while blue and green are the closest together of the three in terms of uniform color 

perception. 

 

PART (D.) - ∆E Color Differences between Images 

ଵିீܧ∆ ൌ 68.2886 

ଶିீܧ∆ ൌ 68.2886 

Thus, according to the ∆E metric, both the high-frequency striped image imYB1 and the thickly 

striped image imYB2 are equally similar to the uniformly green image imG.  In other words, the 

human visual system should perceive roughly the same distance (or dissimilarity) between the green 

image and each of the two striped images. 

 

PART (E.) – Improving the CIELAB Color Metric 

 

However, despite the equality in ∆E, the more frequently striped image looks closer to the uniform 

green image in my eyes than the thickly striped image, most likely because my eyes essentially 

lowpass filter the image, blurring together the thick stripes in an effort to digest the whole of the 

picture. 
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 The stripes in imYB1 are much finer and alternated much more frequently than the stripes in 

imYB2, so, when both images are juxtaposed beside the constant green field of imG, imYB1 actually 

resembles the uniform green field much more closely than imYB2 from the human eye’s 

perspective.  Our visual sensitivity to low spatial frequencies causes us to perceive the thickly striped 

image imYB2 extremely differently from the uniform green field of imG, whereas, at the high spatial 

frequency of imYB1, our eye tends to digest the big picture, blurring together the thin stripes even 

though we see them; despite our knowledge of the high frequency, our eyes betray us as they 

lowpass filter the fine detail, allowing the general uniformity of green in the union of all the yellow 
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and blue stripes to protrude forth most prominently.  All in all, our eye seems to join the stripes, as 

if blurring them together, when judging the overall image; even armed with the knowledge that 

imYB1 has frequently varying stripes, our eye relentlessly merges information from the rapidly 

alternating blue and yellow to form a general green background that appears much closer to the 

green field than thick, slowly varying stripes. 

 However, the CIELAB metric, designed to compare visual perception of uniform fields, 

treats the entirety of imYB1 and imYB2 identically.  Averaging the ∆E values across the entire 

image, the CIELAB metric extracts the same information content from imYB1 and imYB2, which 

contain the same number of yellow pixels and blue pixels.  Thus, from a frequency-blind uniform-

field perspective, imYB1 and imYB2 are identical, so their CIELAB values and hence their distance 

from the green field match perfectly.  In other words, CIELAB fails to incorporate the frequency of 

the pattern and the local distribution of those color pixels throughout the image into the metric, so 

the distance ∆E that we computed actually neglects the frequency-sensitivity of our eye as we 

differentiate stripes or variations of different frequency.  Because our eye is quite sensitive to local 

variations and low-frequency patterns, this shortcoming results in discrepancies between visual 

discriminability and the calculated ∆E values, as explained in the work and writing of Poirson & 

Wandell (1993) and Kelly (1996). 

 To improve the CIELAB metric to consider the eye’s frequency sensitivity, we might 

separate the original color image into opponent colors (such as yellow and blue here, or red and 

green elsewhere) to account for the blending that our eyes perform.  Most importantly, however, we 

can subsequently apply a spatial lowpass filter to the opponent colors images, paralleling the 

function of our eye as we attenuate higher frequencies prior to computing the CIELAB values.  

Much as our eye absorbs the larger picture of a high-frequency pattern, our spatial filter would 

extract and accentuate the low frequencies clearly visible and readily distinguishable while 
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downplaying the effect of higher frequencies such as the stripes seen in imYB1.  As a result, the 

subsequent conversion of the filtered image into CIELAB space would give greatest weight to the 

low frequencies (thick stripes), mirroring the sensitivity of our eye to lower-frequency patterns.   

 
CIELAB 

For example, if we applied this method to our current problem, then the lowpass filter for the 

yellow-blue opponent colors image would smoothen the high-frequency variation in imYB1 and 

blend together the yellow and blue stripes to form green even before CIELAB values are computed, 

mimicking our eyes’ tendencies to blur and extract slowly-varying, overarching patterns.  Essentially, 

just as we interpret imYB1, the lowpass-filtered version would look much like a uniform green field, 

allowing its CIELAB conversion to be close to the CIELAB conversion of the green field, thereby 

decreasing the ∆E metric to a small quantity true to the similarity our eyes perceive.  Meanwhile, the 

thickly-striped low-frequency imYB2 image would undergo little change before CIELAB 
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conversion, since it contains no high spatial frequencies beyond the cutoff of our spatial filter, so its 

CIELAB and ∆E values would remain the same.  However, by removing the high frequencies of the 

first image imYB1, we have effectively brought imYB1 closer to imG in CIELAB space, 

accomplishing our goal of reflecting visual similarity in our ∆E metric. 

 

 Xuemei Zhang and Brian Wandell devised the S-CIELAB model to extend the similarity 

metric into the frequency domain, and many of these suggestions (as well as the block diagram) 

derive from their filter bank approach, as detailed in “A Spatial Extension of CIELAB for Digital 

Color Image Reproduction” from Society for Information Display (1996): 

 

http://white.stanford.edu/~brian/scielab/introduction.html 

http://white.stanford.edu/~brian/papers/ise/scielab/scielab.pdf 


