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Tutorial IV – JPEG Black & White 
 
 

Problem #1 – JPEG Compression of Grayscale Images 

(a.) The initial steps in the JPEG-DCT computation essentially involve a convolution of the 

original image by 64 DCT filters, each accentuating different frequencies.  By convoluting the 

original image with this bank of frequency-selective filters, the JPEG-DCT algorithm decomposes 

the image into content at 64 different spatial frequencies (or resolutions), much as the Fourier 

transform decomposes a function into its frequency components.  As a result, we obtain a 

multiresolution representation of the original image: for each filter we apply to the original image, 

we obtain a coefficient image with the image content most resonant with the filter’s passband 

frequency.  For example, the first JPEG-DCT image will contain the mean of the image, likely most 

resonant with the dominant smooth areas or background in the original image.  This convolution 

produces 64 replicas of the original image, each with content from the original image at the filter 

frequency. 

 JPEG-DCT then samples the filtered images at the centers of each 8 ൈ 8 image block, 

building the coefficient image from the fully filtered replica images.  Each block in the JPEG image 

comprises samples from each filtered replica, at the center of the respective region.  Thus, for a 

single block, the 64 filtered images generate 64 coefficients indicating the variations in the block at 

each spatial frequency – or, equivalently, spatial resolution.  The coalescence of all the coefficients in 

the JPEG block inform the content of the original image block, decomposed into discrete 

frequencies, with the coefficients indicating the amount of a certain frequency.  The sampling is 

repeated for each 8 ൈ 8 block in the image. 

 The following block diagram summarizes the discrete cosine transform (DCT) as 

convolution followed by sampling: 
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(b.) Information is lost only upon quantization.  The larger the quantization step size, the more 

information we lose.  Specifically, the rounding part of quantization kills the fineness of original data. 

(c.) We quantize the JPEG-DCT coefficients and not the original image quantities because the 

JPEG-DCT coefficients indicate content at different spatial resolutions or frequencies, allowing us 

to selectively quantize less visible or less visually significant parts of the image more aggressively.  

Depending on how many edges or smooth regions the image contains, not all JPEG-DCT 

coefficients are equally important, whereas all image pixels generally hold equal value.  Therefore, we 

cannot selectively quantize the original image since we cannot hierarchically rank the importance of 

one pixel against another, but the JPEG-DCT coefficients clearly sequester the smooth regions from 

the higher frequency content; since our eyes favor low-frequency content, we can afford to quantize 

the higher-frequency, less important coefficients at a larger step-size, thereby gaining compression 

without losing too much visual quality. 

 Pixels themselves do not perceptually decorrelate features, whereas the DCT coefficients 

decorrelate perceptually independent features into separate coefficients, allowing us to manipulate 

one set of features (such as sharp vertical edges) without tainting another.  At the same time, the 

DCT exploits the human visual system’s lowered sensitivity to high-frequency components, 

permitting us to quantize those values extremely coarsely since their artifacts are much less visible to 

the human eye.  

(d.) Although successively zipping a file changes its file size, JPEG theoretically should not 

change an image in consecutive compressions.  If an image is compressed using a JPEG-DCT 
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with 64 DCT 
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Images at 8 ൈ 8 
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quantization table of one quality, then uncompressing and recompressing the image using the same 

quality factor – and hence the same quantization scheme – will not alter the image further, since the 

same binning scheme will find the first compression’s values already properly centered.  Only 

changing the quantization table will change the JPEG compression; otherwise, the result of the first 

compression will fall exactly within the same bins during the second compression, and no further 

loss will occur since the quantization table will map all bin centers back onto themselves.  We test 

this theory using Matlab’s imwrite command: 

 

The first and second JPEG compressions match identically.  We conduct the same test using the 

tutorial’s JPEG compression function, under a quality factor of 30: 

 

Again, the results are comparable, although slight loss appears numerically, due not to JPEG itself 

but the truncation that follows it.  In general, two consecutively compressed images will match; 

truncating the images in between will degrade the images slightly. 

Original Einstein First JPEG Compression Second JPEG Compression

Original Einstein First JPEG Compression Second JPEG Compression
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(e.) Because the pixels at the edges of 8 ൈ 8 image blocks are compressed without any 

information about neighboring pixels in an adjacent block, JPEG-DCT block-compressed images 

will display blocking artifacts – sudden and irregular jumps from the edge of one block into another, 

without any correlation between originally similar pixels.  This unnatural transition occurs because 

JPEG-DCT compresses blocks independently; the lack of consideration for surrounding blocks 

causes noticeable differences moving from one block to another. 

 All images are susceptible to blocking, but the ones in which blocking will be most obvious 

are images with features that extend across blocks; large, constant regions, for example, might 

appear in slightly different shades from one block to the next, therefore protruding quite noticeably 

as square-shaped regions dot the otherwise smooth landscape.  Likewise, smooth contours or edges 

that cross a block boundary might also seem jagged or irregular following blockwise compression, 

since the effects of compression differ from one block containing the edge to another.  Ultimately, 

the images that respond least favorably to block compression are the ones whose regions or features 

extend across several adjacent blocks. 
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Problem #2 – Grayscale Error Metrics 

 We compress the Einstein image according to JPEG quality levels of 75, 50, 25, and 0: 

 

As expected, the blocking artifacts grow worse and worse as we decrease the quality factor (or, 

equivalently, as we increase the quantization step size).  For the Q = 0 image, Einstein is almost 

unrecognizable because we have so few levels to represent the image.  

(a.) The square error image for Q = 25 manifests that the greatest error occurs along the edges, 

such as those between Einstein’s shirt and suit jacket, as well as edges between Einstein’s face, hair, 

and the background wall: 

Compressed Einstein (Q = 75) Compressed Einstein (Q = 50)

Compressed Einstein (Q = 25) Compressed Einstein (Q = 0)
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(b.) Indeed, we expect greatest error along the edges because the JPEG-DCT algorithm 

quantizes the high frequency coefficients most aggressively; by using fewer quantization levels on 

the high-frequency coefficients, JPEG-DCT essentially discards more edge information than smooth 

region data, since the average loss is higher for fewer quantization levels.  As a result, we see the 

most squared error along these edges, especially along sharp or sudden transitions such as those 

between Einstein’s white shirt and dark jacket.  Furthermore, we can see blocking artifacts visibly in 

the absolute error image: 

 

Problem 2A - Square Error Image for Q = 25
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(c.) To compute the mean square error, we first normalize the original Einstein image and our 

compressed version of it.  Then, we define ܧܵܯ ൌ ଵ
ேమ
∑ ∑ ሺ݁݅݊݊݅݁ݐݏ െ ሻଶே݀݁ݏݏ݁ݎ݉ܿ

ୀଵ
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(d.) To compute the 95th percentile error, we sort the error values and remove the highest 5%: 
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Problem 2C - Mean Square Error as a Function of Quantization
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(e.) If we were evaluating image quality for this image, then we would favor the 95th percentile 

error metric since it displays much more evenly spaced error values across the entire range of 

quantization factors.  Juxtaposing the two plots, we notice that, while both metrics capture the 

decrease in distortion with higher quality factors, the mean square error values cluster around 0.02 

with little disparity to differentiate the Q = 25 and Q =50 image, for example.  As a result, the more 

finely spaced 95th percentile metric better captures the steadily increasing image quality (with 

increasing quality factor) and better reflects the overall quality of the image.  Apparently, discarding 

the extreme outliers in the top 5% allows the metric to be less sensitive to edge loss (where the 

largest errors reside) and therefore more representative of quality throughout the image, as our eyes 

might extract. 

 On the other hand, one could also argue the merits of the mean square error metric by citing 

the lack of improvement past Q = 50.  In other words, some human eyes – like my own – struggle 

to discern much quality improvement beyond a certain detectability threshold; the errors are much 

harder to catch as we increase Q.  Thus, in this sense, by representing smaller improvements with 

increasingly smaller decreases in error, the mean square error metric more accurately reflects our 

perception that the image improves less and less as we detect fewer and fewer errors. The steep 

decline around Q = 0 also justifies our vision of the sudden improvement achieved when moving 

from the unrecognizable block image to the first fully recognizable Einstein.  In conclusion, both 

metrics have their merits, although the 95th percentile error metric is more successful at summarizing 

the general global quality since it disregards the most extreme edge effects. 
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Tutorial V – JPEG Color 
 
 

Problem #1 – YCbCr Information 

 In order to familiarize ourselves with the information content in each channel of the YCbCr 

color space, we load a color image of Typhlosion and decompose it into YCbCr: 

 

Typhlosion illustrates the information content well because its body comprises both red and blue 

parts. 

The blue chrominance channel (Cb) isolates all shades and tints of blue in the original color 

image, such as the blue stripe along Typhlosion’s back and head, as well as the greenish blue present 

in the image background.  Cb represents a color difference between blue and a reference value. 

Full-Color Typhlosion Luminance (Y) Channel

Blue Chrominance (Cb) Channel Red Chrominance (Cr) Channel
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The red chrominance channel (Cr) isolates all shades and tints of red, including those in the 

tan-colored torso of Typhlosion.  Cr represents a color difference between red and a reference value.  

Just as red does not appear in the Cb channel, blue does not appear in the Cr channel; we can see 

that the Cb and Cr images of Typhlosion are mutually exclusive, with missing (black) content in one 

channel appearing strong (white) in the other.   

Despite its grayscale appearance, the luminance channel (Y) contains most of the edge detail 

to which our eye is most responsive.  Whereas the edges in the chrominance channels are soft and 

often imperceptible, the luminance channel displays them in all its high-frequency detail, essentially 

replicating the original image in grayscale.  Thus, we can begin to understand why image 

compression algorithms decimate and aggressively quantize the chrominance channels; the human 

eye is most sensitive and receptive to the information presented in the luminance channel, as the 

principal variations and features appear much more clearly and completely in luminance than they 

do in either color channel.  We can recognize Typhlosion from the luminance channel alone; in the 

two chrominance images, the ferret’s identity is much less obvious. 

Mathematically, we can transform an RGB signal to a YCbCr signal with a linear 

transformation represented as matrix multiplication: 
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Problem #2 – Exploitation of YCbCr for Lossy Compression 

 

Our general visual insensitivity to high-spatial-frequency color information allows us to 

discard high frequency content in the Cb and Cr channels, thereby compressing the bandwidth of 

two of our three channels and achieving a high compression ratio without sacrificing noticeable 

image quality.  As the Typhlosion example reveals, our visual system perceives the most high-spatial-

frequency detail in light-dark modulations such as those represented in the luminance channel; on 

the other hand, the high-spatial-frequency variations in color-difference signals are generally 

imperceptible to the human eye, so we can completely omit them without degrading the viewed 

image.  As a result, compression algorithms like JPEG typically exploit the imperceptibility of high 

frequency chrominance by leaving only low-frequency content in the color difference channels 

(CbCr).  This reduction in bandwidth achieves high compression at very little cost, since our eyes 

cannot readily discern the high frequency components; color edges are effectively invisible, so 

removing them from the signal preserves most of the image quality, which we can still perceive from 

the detail in the luminance (Y) channel (see Typhlosion). 
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Problem #3 – Compression of Color Images in Different Spaces 

 To accentuate the properties inherent in color channels, we load a fundamentally colored 

image into Matlab – the cover art for the Capcom classic, Phoenix Wright: 

 

We notice that the three channels appear roughly equivalent in information content; all of the color 

component images contain enough high frequency data (edges) to distinguish the characters from 

their surroundings.  The image is recognizable in any of the three channels. 

 The Red-Green-Blue (RGB) image transforms readily into a Luminance-Chrominance 

(YCbCr) image, which we display on the following page: 

Phoenix Wright RGB Image Phoenix Wright Red (R)

Phoenix Wright Green (G) Phoenix Wright Blue (B)



Christopher Tsai 
February 20, 2008 

EE 362 – Applied Vision and Image Systems 

Page | 13  
 

 

Clearly, it makes no sense to display an RGB image from the YCbCr components, as we attempt to 

do in the upper-left trichromatic image; we simply obtain a pseudocolor image bearing shamefully 

little resemblance to the true color image.  However, the individual channels hold meaning.  The 

luminance (Y) channel displays all of the high-spatial-frequency data that we can perceive, so it is the 

most visually recognizable of the three channels; the chrominance channels contain pure color data, 

whose high-spatial-frequency content is not nearly as perceptible to our visual system.  We can, 

however, clearly distinguish Phoenix’s blue suit from the blue chrominance (Cb) channel, while the 

red tie protrudes prominently from the red chrominance (Cr) channel.  Thus, we can crudely 

correlate the blue and red chrominance channels with the red and blue channels, with the primary 

difference being the opponent-color referencing in the blue and red chrominance channels; a low Cb 

value indicates more yellow content, whereas a low Cr value simultaneously admits more green 

content. 

Phoenix Wright YCbCr Image Phoenix Wright Luminance (Y)

Phoenix Blue Chrominance (Cb) Phoenix Red Chrominance (Cr)
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(a.) Our investigation of color channel compression begins with an aggressive quantization of 

the blue (B) channel in the RGB image: 

 

As the lower-right image reveals, the blue channel essentially loses all fine structure under our coarse 

(Q = 5) quantization.  However, the reconstructed image retains most of its content!  We can still 

distinguish the human characters from their surroundings.  The only artifact of our aggressive 

quantization is the immense blockiness throughout the image, none more visible than the dark blue 

on Phoenix Wright’s suit; because the quantized blue data varies coarsely and transitions sharply, the 

corresponding blue regions in our reconstruction – namely, Phoenix’s suit – also appear blocky to 

reflect the extremely limited range of values we have to represent shades of blue. 

Coarse Blue Reconstruction Compressed Red (R) at Q = 75

Compressed Green (G) at Q = 75 Compressed Blue (B) at Q = 5
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(b.) Similarly, we can aggressively quantize the blue chrominance (Cb) channel while preserving 

the luminance and red chrominance channels.  We reconstruct the following image: 

 

From the lower-left blue chrominance image, we can tell that quantization has severely crippled the 

blue chrominance channel to the point that no detail is visible, and no features identifiable.  

However, the reconstruction suffers only a discoloration.  Unlike the blue quantization detailed in 

the previous part, the chrominance compression simply alters color information by restricting the 

range of blue we can represent; however, the suit displays few blocking artifacts because all of that 

detail resides in the luminance channel, which we quantized quite finely (Q = 75).  As a result, we 

conclude that the YCbCr color space decorrelates fine, feature-related detail and pure color, allowing 

us to aggressively quantize a single color without compromising the quality of the features or edges.  

Coarse Cb Reconstruction Compressed Luminance (Y) at Q = 75

Blue Chrominance (Cb) at Q = 5 Red Chrominance (Cr) at Q = 75
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Of course, the color information is also a visible artifact, but the strangely altered hair color in 

Phoenix Wright and Miles Edgeworth are arguably less severe than the blocky regions observed after 

blue quantization.  All in all, Cb quantization reduces the range of blue values without drastically 

reducing the range of spatial detail our image can display. 

(c.) Setting various chrominance components to zero, we witness the dominance of the 

opponent colors: 

 

When we eradicate blue chrominance, blue’s opponent color, yellow, floods our image.  Likewise, as 

we remove red chrominance, red’s opponent color, green, overwhelms the viewing plane.  Setting 

luminance to its midpoint essentially removes all perceptible high-spatial-frequency detail, as the 

edges outlining Phoenix’s body and characters’ faces fade into a blur of red and blue.  Colors still 

Phoenix Wright Complete Reconstruction Lost Luminance (Y = 128)

Lost Blue Chrominance (Cb = 0) Lost Red Chrominance (Cr = 0)
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appear because the chrominance channels contribute pure color, but the edges vanish with the 

luminance.  

 Finally, we can set the chrominance channels to their midpoint values, now eradicating 

luminance: 

 

The luminance-deficient image is darker than its Y = 128 counterpart because a low luminance also 

invites low brightness; however, the red and blue chrominance components persist, as the 

background crimson and Phoenix’s dark blue suit attest!  Meanwhile, when we set chrominance 

components to 128, the focus color completely disappears from the image, accentuating the 

opposite channel; setting Cb = 128 removes the blue from Phoenix’s suit while highlighting the pink 

throughout the background, whereas setting Cr = 128 removes all the red while preserving the now-

conspicuous blue in Phoenix’s suit.  Interestingly, Phoenix’s tie also turns blue! 

Phoenix Wright Complete Reconstruction Lost Luminance (Y = 0)

Lost Blue Chrominance (Cb = 128) Lost Red Chrominance (Cr = 128)
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Bonus Problem #4 – The Fourth Primary in JPEG 

 We assume that the JPEG color gamut is a small subset of the visible gamut, and that the 

gamut of the three-primary monitor is itself a smaller subset of the JPEG gamut. 

(a.) In the color-matching tutorial, we noted that the fourth monitor primary allowed us to cover 

a larger area of the visible gamut.  However, this fourth primary helps in the display of the JPEG 

image only to the extent that the additional area afforded by the fourth monitor gamut vertex 

overlaps with the JPEG gamut: 

 

Notice that the fourth primary – augmented to the monitor gamut as a fourth vertex – could add a 

significant number of colors (area) to the displayable gamut, but all the additional colors that fall 

outside the JPEG gamut do not contribute to displaying the colors in the JPEG image; if the original 

JPEG gamut does not include a newly displayable color, then the addition of that color to the color 
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monitor’s gamut will not matter when displaying the JPEG image.  Even though the augmented 

gamut clearly boasts a wider range of displayable colors, JPEG images will contain and therefore 

require only colors in its own subset, rendering all exterior displayable colors irrelevant to its quality.  

In conclusion, the additional colors that fall within the JPEG gamut will help reproduce JPEG 

colors on the screen, but colors external to the JPEG gamut will not contribute at all. 

(b.) A cost-inefficient method involves the brute force addition of a fourth color primary to the 

JPEG basis so that its gamut fully envelopes the entire gamut of the augmented color monitor: 

 

In order to implement this additional primary, the JPEG standard would have to support a fourth 

color channel, therefore necessitating a fourth image (33% more data overhead) as well as 

performing an additional set of calculations upon compression.  In other words, instead of declaring 

images as stacks of three component images, we would have to support image stacks of four 
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component images every time we declare a color image, either for computation or storage.  The 

storage overhead itself would complicate matters, but the computational costs of an additional 

channel would prove cumbersome for compression algorithms optimized for speed.  This simply 

does not seem efficient given our well-established comfort with three primary colors. 

 However, a more efficient option exists.  We can modify the standard without any extra data 

costs by simply rotating the existing JPEG gamut so that it maximally covers the color monitor 

gamut.  We can implement this JPEG gamut rotation and translation by assigning slightly different 

color primaries for each of the three vertices, thereby completely covering the monitor’s gamut: 

 

Physically, we have reassigned the primary chromaticity coordinate pairs of each JPEG basis, which 

entails a simple linear coordinate transformation.  With a simple matrix multiplication, we can now 

fully exercise the full range of our new color monitor’s display spectrum! 
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