CVX Problem Set III – Convex Optimization Problems

Problem #1 – Optimal Activity Levels

$$x^{\star} = \begin{bmatrix} 4\\22.5\\31\\1.5 \end{bmatrix} \qquad r^{\star} = \begin{bmatrix} 12\\32.5\\139\\9 \end{bmatrix} \qquad \bar{p} = \begin{bmatrix} 3\\1.4444\\4.4839\\6 \end{bmatrix} \qquad \underline{\Sigma}_{j=1}^{4} r_{j}^{\star} = 192.5$$

On average, the third activity level x_3 yields the highest mean price but also generates the highest revenue of all four activities; meanwhile, the fourth activity level sports, by far, the lowest activity level since it consumes a copious amount of resources with its exorbitant average price. More than 72% of our ultimate maximized revenue arises from the third activity level, whereas the fourth activity level generates less than 5% of our total revenue!

Problem #2 – Reformulating Constraints in CVX

- (a.) The second entry (x-y) is neither concave nor convex!
 [x + 2*y, x y] == 0;
- (b.) The outer square is not monotonically increasing! (x + y)⁴ <= x - y;</pre>
- (c.) The reciprocal hyperbola can be concave or convex! inv_pos(x) + inv_pos(y) <= 1; x >= 0; y >= 0;
- (d.) The function composition isn't necessarily increasing!
 norm([u v]) <= 3*x + y;
 u >= x;
 u >= 1;
 v >= y;
 v >= 2;
- (e.) The quadratic cross-term can be concave or convex! x >= inv_pos(y); OR y >= inv_pos(x); x >= 0; y >= 0;
- (f.) Convex over concave is not, in general, convex!
 quad_over_lin (x + y, x y + 5) <= sqrt(y);</pre>
- (g.) Odd powers are both concave (x < 0) & convex (x > 0)! pow_pos(x,3) + pow_pos(y,3) <= 1; <u>OR</u> norm([x y], 3) <= 1; x >= 0; y >= 0;
- (h.) The quadratic cross-term can be concave or convex! quad_over_lin (x + z - 1, x) <= y - quad_over_lin (z, x); OR quad_over_lin (x + z - 1, y) <= x - quad_over_lin (z, y); x >= 0; y >= 0;

<u>Optimized</u>	Equal	Least-	Regularized	Chebyshev	<u>Convex</u>
<u>Quantity</u>	Powers	<u>Squares</u>	Lst-Squares	Approximation	Optimization
p_1^\star	0.3454	1	0.5004	1	1
p_2^{\star}	0.3454	0	0.4777	0.1165	0.2023
p_3^\star	0.3454	1	0.0833	0	0
p_4^\star	0.3454	0	0.0002	0	0
p_5^{\star}	0.3454	0	0.4561	1	1
p_6^\star	0.3454	1	0.4354	0	0
p_7^\star	0.3454	0	0.4597	1	1
p_8^\star	0.3454	1	0.4307	0.0249	0.1882
p_9^\star	0.3454	0	0.4034	0	0
p_{10}^{\star}	0.3454	1	0.4526	1	1
$f_o(p^{\star})$	0.467680	0.862784	0.443899	0.419824	0.357474

Problem #3 – The Illumination Problem