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CVX Problem Set IV – Convex Optimization Problems 
 
 

Problem #2 – Complex Least-Norm Problem 

 
 In minimizing the Euclidean norm, we obtain a cluster of points close to but scattered at 

random distances from the origin, reflecting our desire to minimize distance (complex modulus) 

from the Argand origin subject to random constraints on each individual Euclidean distance. 

The Chebyshev norm, on the other hand, strives to minimize the maximum modulus, which 

yields a circular locus of points since the cost function is computed as a complex modulus, 

equivalent to (radial) distance in the complex plane.  By minimizing this complex modulus subject to 

our constraint, almost all of the points would naturally fall at the boundary dictated by the 

minimized maximum magnitude of the complex number.  After all, the optimal solution is often a 

compromise, with each complex element bearing approximately equal weight from a complex norm 

standpoint. 
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Problem 2C - Complex Least-Norm Problem Instance
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Problem #3 – Numerical Perturbation Analysis Example 
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In each case, the predicted optimal value underestimates the exact optimal value, as one might 

expect from a convex function; linear estimates are global underestimators:   ࢊࢋ࢘࢖࢖
څ  ൑ ࢚ࢉࢇ࢞ࢋ࢖

څ . 



Christopher Tsai 
February 7, 2008 

EE 364 – Convex Optimization 

Page | 3  
 

Problem #4 – FIR Filter Design 

 First, we design a sample filter and optimize the stopband attenuation with a fixed cutoff 

frequency, just to test our convex optimization prowess: 

 

The filter meets the specifications delineated in the sample diagram.  Indeed, the maximum 

passband ripple oscillates between 0.89 and 1.12, while the filter enters stopband at approximately 

1.57, or ஠
ଶ
 as designed.  Finally, we note a stopband attenuation of 0.0154, which is reasonably small. 

However, as we tighten the cutoff frequency, decreasing the transition bandwidth, we also 

increase the amount of ripple in the stopband.  For example, we observe the stopband attenuation 

(ripple amplitude) monotonically decreases as we increase the cutoff frequency; in other words, we 

can exchange filter sharpness for stopband ringing: 
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Problem 4D - Sample FIR Filter (ωc = π/2)



Christopher Tsai 
February 7, 2008 

EE 364 – Convex Optimization 

Page | 4  
 

 
 Generally, the ripple decreases as we increasing the cutoff frequency; as we loosen the 

restraints on our transition band by stretching the transition we are willing to tolerate, we reduce the 

ringing and strengthen the attenuation of our stopband.  However, although the general shape 

appears concave upward, the set of achievable specifications is not convex, since the flat regions 

along the curve are momentarily concave.  Instead, the function appears quasiconvex.  

 The flat portions in the curve represent constant attenuation over a small range of cutoff 

frequency choices; in other words, we can twiddle the transition bandwidth without altering the 

stopband ripple because the ringing that occurs can fit a certain number of cosinusoidal cycles 

before inevitably increasing the ripple amplitude.  Instead of rippling more for every fraction of 

bandwidth we remove from the transition band, the energy simply redistributes itself across the 

stopband until the bandwidth decreases to the point at which the transition is so sharp that the 

sidelobes must increase in amplitude to accommodate more energy.  
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Problem 4D - Tradeoff Curve: Attenuation vs. Cutoff Frequency
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Problem #5 – Minimum Fuel Optimal Control 

        

 We remark that the actuator signal is, for the most part, turned off for several consecutive 

cycles at a time; for example, for the first 27 seconds, five clusters of three-second dormancy 

alternate with four clusters of oscillating bursts.  The actuator signal appears to switch between three 

seconds of inactivity and three seconds of oscillatory input.  The final input is especially large.  With 

this exception, the general distribution of fuel use is well balanced, as one often sees in an optimal 

solution. 

The minimal total amount of fuel consumed is approximately څ࢖ ൎ 17.3236 units of fuel. 
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Problem 5 - Minimum Fuel Actuator Signal


