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CVX Problem Set VI – Approximation and Fitting 
 

 
Problem #1 – Minimax Rational Fit to the Exponential 

We fit a rational function of the following form to the exponential ݁௧: 

݂ሺݐሻ ൌ
ܽ଴ ൅ ܽଵݐ ൅ ܽଶݐଶ

1 ൅ ܾଵݐ ൅ ܾଶݐଶ  

The optimal fitting function results from the following coefficients: 

ܽ଴ ൎ 1.0099 

ܽଵ ൎ 0.6121 

ܽଶ ൎ 0.1134 

ܾ଴ ൎ െ0.4146 

ܾଵ ൎ 0.0485 

 

yielding an optimal minimax residual of 

min ቊ max
௜ୀଵ,ڮ,௞

ቤ
ܽ଴ ൅ ܽଵݐ௜ ൅ ܽଶݐ௜

ଶ

1 ൅ ܾଵݐ௜ ൅ ܾଶݐ௜
ଶ െ ௜ቤቋݕ ൎ 0.0228 

After 17 iterations, our bisection algorithm converges to the following “best fitting” rational 

function for the exponential: 
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 To even a trained human eye, the rational function fits the exponential without noticeable 

error along any interval; for all intents and purposes, our 0.001-accuracy fit is perfect, and the 

minuscule error plot corroborates our success: 
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Problem 1A - Minimax Rational Fit to the Exponential: Fitting Function
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Problem 1B - Minimax Rational Fit to the Exponential: Fitting Error
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Problem #2 – Maximum Likelihood Prediction of Team Ability 

 From the data provided in team_data, we predict the following team ability: 
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Using the maximum likelihood estimate ොܽ derived in Part (b.), we correctly predict 39 of this year’s 

45 games (86.67% correct).  Simply assuming that last year’s victor prevails again this year leads to a 

correct prediction in only 34 of this year’s 45 games (75.56% correct).  Many outcomes are easily 

predictable and therefore readily replicated! 
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Problem #3 – Piecewise Linear Fitting 

 

For a piecewise linear fit with no knots, 

ଵߙ ൎ 1.9110 

ଵߚ ൎ െ0.8725 

min ෍ሾ݂ሺݔ௜ሻ െ ௜ሿଶݕ
௠

௜ୀଵ

ൎ 12.7407 
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Problem 3 - Piecewise-Linear Fit with No Knots
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Problem 3 - Piecewise-Linear Fit with One Knot
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Problem 3 - Piecewise-Linear Fit with Two Knots
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Problem 3 - Piecewise-Linear Fit with Three Knots
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For a piecewise linear fit with one knot, 

ଵߙ ൎ െ0.2708 

ଶߙ ൎ 4.0928 

ଵߚ ൎ െ0.3325 

ଶߚ ൎ െ2.5143 

min ෍ሾ݂ሺݔ௜ሻ െ ௜ሿଶݕ
௠

௜ୀଵ

ൎ 2.6243 

 

 

For a piecewise linear fit with two knots, 

ଵߙ ൎ െ1.8094 

ଶߙ ൎ 2.6785 

ଷߙ ൎ 4.2059 

ଵߚ ൎ െ0.1022 

ଶߚ ൎ െ1.5982 

ଷߚ ൎ െ2.6165 

min ෍ሾ݂ሺݔ௜ሻ െ ௜ሿଶݕ
௠

௜ୀଵ

ൎ 0.5897 

  



Christopher Tsai 
February 19, 2008 

EE 364 – Convex Optimization 

Page | 7  
 

 

For a piecewise linear fit with three knots, 

ଵߙ ൎ െ3.1558 

ଶߙ ൎ 2.1155 

ଷߙ ൎ 2.6762 

ସߙ ൎ 4.8993 

ଵߚ ൎ 0.0309 

ଶߚ ൎ െ1.2869 

ଷߚ ൎ െ1.5673 

ସߚ ൎ െ3.2345 

min ෍ሾ݂ሺݔ௜ሻ െ ௜ሿଶݕ
௠

௜ୀଵ

ൎ 0.219 
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Problem 3 - Piecewise-Linear Fit with No Knots
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Problem 3 - Piecewise-Linear Fit with One Knot
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Problem 3 - Piecewise-Linear Fit with Two Knots
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Problem 3 - Piecewise-Linear Fit with Three Knots
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Problem #4 – Robust Least-Squares with Interval Coefficient Matrix 

We first consider the nominal problem: 

minimize ԡܣҧݔ െ ܾԡ ଶ 

This problem admits the least-squares solution 

௟௦ݔ ൎ ൥
െ53.160004241256
൅51.600004138684

െ107.700008577305
൩ 

 

The minimal least-squares residual norm is ԡܣҧݔ௟௦ െ ܾԡ ଶ ൎ 7.5895. 

The worst-case least-squares residual norm is ԡ|ܣҧݔ௟௦ െ ܾ| ൅ ௟௦|ԡ ଶݔ|ܴ ൎ 26.7012. 

 
However, we can improve our stability by solving the robust least-squares problem: 

minimize ԡ|ܣҧݔ௟௦ െ ܾ| ൅  ௟௦|ԡ ଶݔ|ܴ

This problem admits the robust least-squares solution 

௥௟௦ݔ ൎ ൥
െ0.28105375806103
൅0.00000009231658
െ0.75850674531460

൩ 

 

The minimal least-squares residual norm is ԡܣҧݔ௥௟௦ െ ܾԡ ଶ ൎ 17.7106. 

The worst-case least-squares residual norm is ԡ|ܣҧݔ௥௟௦ െ ܾ| ൅ ௟௦|ԡ ଶݔ|ܴ ൎ 17.7940. 
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Problem #5 – Total Variation Image Interpolation 

We solve the following convex optimization problem for optimal ℓଶ variation: 

cvx_begin; 
    variable Ul2(m,n); 
    Ux = Ul2(2:end, :) - Ul2(1:(end-1), :); 
    Uy = Ul2(:, 2:end) - Ul2(:, 1:(end-1)); 
    minimize (norm(Ux, 'fro') + norm(Uy, 'fro')) 
    subject to 
        Ul2(Known) == Uorig(Known); 
        Ul2 >= 0; 
cvx_end; 
 
% Optimal value (cvx_optval): +7422.94 
 
Similarly, we replace the ℓଶ-norm with the ℓଵ-norm for optimal total variation: 

cvx_begin; 
    variable Utv(m,n); 
    Ux = Utv(2:end, :) - Utv(1:(end-1), :); 
    Uy = Utv(:, 2:end) - Utv(:, 1:(end-1)); 
    minimize (norm([Ux(:) ; Uy(:)], 1)) 
    subject to 
        Utv(Known) == Uorig(Known); 
        Utv >= 0; 
cvx_end; 
 
% Optimal value (cvx_optval): +167790 
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Problem #6 – Relaxed and Discrete A-Optimal Experiment Design 

We first solve the relaxed A-optimal experiment design problem: 

 ݁ݖ݅݉݅݊݅݉
1
݉ ݁ܿܽݎܶ  ൭෍ ௜ݒ௜ݒ௜ߣ

்

௣

௜ୀଵ

൱

ିଵ

 

෍ ݋ݐ ݐ݆ܾܿ݁ݑݏ ௜ߣ

௣

௜ୀଵ

ൌ 1, ߣ غ 0 

 

We obtain the optimal څߣ vector: 

0.00000000099085 
0.13813261762990 
0.06336198279685 
0.12740605141608 
0.03794162807680 
0.13035163490341 
0.09117813911511 
0.00000000036918 
0.12483692256096 
0.00000000163787 
0.00000000196060 
0.00000000044819 
0.00000000253303 
0.00000000056890 
0.11333654573959 
0.00000000033047 
0.00715728720602 
0.00000000366153 
0.00000000026620 
0.16629717764358 

 

leading to the following discretized ෝ݉  vector: 
 

0 
4 
2 
4 
1 
4 
3 
0 
4 
0 
0 
0 
0 
0 
3 
0 
0 
0 
0 
5 

 

The optimal value of our relaxed problem is ଵ
௠

∑൫݁ܿܽݎܶ  ௜ߣ
௜ݒ௜ݒڅ

்௣
௜ୀଵ ൯ିଵ ൎ 0.24808807792122. 

The suboptimal point for the discrete problem is ଵ
௠

∑൫݁ܿܽݎܶ  ෝ݉௜ݒ௜ݒ௜
்௣

௜ୀଵ ൯ିଵ ൎ 0.2483 1384936181. 

Thus, the gap between our upper bound and lower bound is approximately 0.00022577144. 


