Christopher Tsai
February 19, 2008
EE 364 — Convex Optimization

CVX Problem Set VI — Approximation and Fitting

Problem #1 — Minimax Rational Fit to the Exponential

We fit a rational function of the following form to the exponential et:

ap + a;t + a,t?
1+ byt + b,t?

f@) =

The optimal fitting function results from the following coefficients:

a, =~ 1.0099
a, = 0.6121
a, =~ 0.1134
b, = —0.4146

b, ~ 0.0485

yielding an optimal minimax residual of

ap + a,t; + a,t;?
1+ byt; + byt;?

min {_max - yi|} ~ 0.0228
l=1,"',k

After 17 iterations, our bisection algorithm converges to the following “best fitting” rational

function for the exponential:
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Problem 1A - Minimax Rational Fit to the Exponential: Fitting Function
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To even a trained human eye, the rational function fits the exponential without noticeable

error along any interval; for all intents and purposes, our 0.001-accuracy fit is perfect, and the

minuscule error plot corroborates our success:

Problem 1B - Minimax Rational Fit to the Exponential
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Problem #2 — Maximum Likelihood Prediction of Team Ability

From the data provided in team_data, we predict the following team ability:
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Using the maximum likelihood estimate @ derived in Patt (b.), we cotrectly predict 39 of this yeat’s

45 games (86.67% correct). Simply assuming that last year’s victor prevails again this year leads to a

correct prediction in only 34 of this yeat’s 45 games (75.56% correct). Many outcomes are easily

predictable and therefore readily replicated!
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Problem 3 - Piecewise-Linear Fit with No Knots
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Problem 3 - Piecewise-Linear Fit with Two Knots
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Problem #3 — Piecewise Linear Fitting

.

Problem 3 - Piecewise-Linear Fit with One Knot
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Problem 3 - Piecewise-Linear Fit with Three Knots
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For a piecewise linear fit with no knots,
a; = 19110
B, = —0.8725

m

minZ[f(xi) —y;]? = 12.7407

i=1
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For a piecewise linear fit with one knot,
a, = —0.2708
a, =~ 4.0928
p1 = —0.3325

B, ~ —2.5143

m

minZ[f(xi) — 2 ~ 2.6243

i=1

For a piecewise linear fit with two knots,

a,; = —1.8094
a, =~ 2.6785
as ~ 4.2059
By ~ —0.1022
B, =~ —1.5982
By ~ —2.6165
m
minZ[f(xi) —y;]* ~ 0.5897
i=1
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For a piecewise linear fit with three knots,
a, =~ —3.1558
a, ~ 2.1155
az = 2.6762
a, ~ 4.8993
p1 = 0.0309
P2 =~ —1.2869

Bs ~ —1.5673

Q

B, ~ —3.2345

m

minZ[f(xi) —y;]? = 0.219

i=1

Problem 3 - Piecewise-Linear Fit with No Knots Problem 3 - Piecewise-Linear Fit with One Knot
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Problem #4 — Robust Least-Squares with Interval Coefficient Matrix
We first consider the nominal problem:
minimize ||Ax — b|| ,

This problem admits the least-squares solution

—53.160004241256
X;s = | +51.600004138684
—107.700008577305

The minimal least-squares residual norm is ‘”Axls — b|| , =~ 7.589 5‘

The worst-case least-squares residual norm is “l |/Txlg —b| + R|xlg|” 5 = 26.7012‘.

However, we can improve our stability by solving the robust least-squares problem:
minimize |||Ax;s — b| + R|x;lll 5

This problem admits the robust least-squares solution

—0.28105375806103
Xr1s = [+0.00000009231658
—0.75850674531460

The minimal least-squares residual norm is HIAxﬂS - b” 9 = 17.7106|.

The worst-case least-squares residual norm is “| |Axﬂq —b| + Rlxlg”l ) = 17.7940|.
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Problem #5 — Total Variation Image Interpolation

We solve the following convex optimization problem for optimal £, vatiation:

cvx_begin;
variable UI2(m,n);
Ux = Ul2(2:end, :) - Ul2{1:(end-1), :);
Uy = Ul2(:, 2:end) - UlI2(z, 1:(end-1));
minimize (norm(Ux, °“fro®) + norm(Uy, °“fro%"))
subject to
Ul2(Known) == Uorig(Known);
ul2 >= 0;
cvx_end;

% Optimal value (cvx_optval): +7422.94

Similatly, we replace the €,-norm with the £1-norm for optimal total vatiation:

cvx_begin;
variable Utv(m,n);
Ux = Utv(2:end, :) - Utv(l:(end-1), :);
Uy = Utv(:, 2:end) - Utv(:, 1l:(end-1));
minimize (norm([Ux(:) ; Uy(:)1, 1))
subject to
Utv(Known) == Uorig(Known);
utv >= 0;
cvx_end;

% Optimal value (cvx_optval): +167790
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Problem #6 — Relaxed and Discrete A-Optimal Experiment Design

We first solve the relaxed A-optimal experiment design problem:

p
minimize — Trace <z R )
m

1

-1

i=1

p
subject to ZAi =1, A=0
i=1

We obtain the optimal A* vector:

eNolooNooloNoolololoNoloNoNoNoNoNoNe)

-00000000099085
.13813261762990
.06336198279685
.12740605141608
.03794162807680
.13035163490341
.09117813911511
-00000000036918
.12483692256096
.00000000163787
.00000000196060
.00000000044819
.00000000253303
.00000000056890
.11333654573959
-00000000033047
.00715728720602
.00000000366153
-00000000026620
.16629717764358

leading to the following discretized M vectot:

O OO0 O0OWOOOoOoOoOoOrOoOWrAEL,IMNAMO

The optimal value of our relaxed problem is

— Trace(XV_, Av;v] )" ~ 0.24808807792122.

The suboptimal point for the discrete problem is % Trace(X!_, mv vl )‘1 ~ 0.2483 1384936181,

Thus, the gap between our upper bound and lower bound is approximately [0.00022577144|
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