
Christopher Tsai
February 28, 2008

EE 364 – Convex Optimization

Page | 1

CVX Problem Set VII – Unconstrained Minimization

Problem 9.30 – Gradient and Newton Methods

(a.) Although values of α and β on the order of 0.1 – 0.3 yield seemingly adequate convergence,

all of our experiments pushed the number of iterations well beyond 100, meaning that the algorithm

only ostensibly converges. When we decrease β too far (below 0.1), convergence requires even

more iterations. Thus, while convergence remains likely robust at a variety of α values, we must

keep β high enough to expedite convergence to the true optimal value of -144.6979. Note here that

we implemented the gradient descent method with gradient norm backtracking line search rather than

objective function backtracking.

0 20 40 60 80 100
-150

-100

-50

0

Iteration

O
bj

ec
tiv

e
f(x

)

Gradient Method Objective (α = 0.1, β = 0.5)

0 20 40 60 80 100
-150

-100

-50

0

Iteration
O

bj
ec

tiv
e

f(x
)

Gradient Method Objective (α = 0.25, β = 0.25)

0 20 40 60 80 100
-150

-100

-50

0

Iteration

O
bj

ec
tiv

e
f(x

)

Gradient Method Objective (α = 0.02, β = 0.1)

0 20 40 60 80 100
-150

-100

-50

0

Iteration

O
bj

ec
tiv

e
f(x

)
Gradient Method Objective (α = 0.5, β = 0.01)

Christopher Tsai
February 28, 2008

EE 364 – Convex Optimization

Page | 2

However, if we plumb deeper into the iteration cycle, we find convergence well into the five

hundreds. However, the method does verifiably converge:

Regrettably, it seems like the gradient method, though convergent, typically requires around

500 iterations to settle on its final value and terminate operation. However, we could terminate

earlier and settle for a slightly suboptimal value. With our tolerance of 10-6, we find reasonably close

optimal values after only 40-50 iterations. The other noteworthy feature of the gradient method is

its steadily decreasing step size; initially, while most steps seem constant, the gradual approach

toward the true solution means that the steps grow ever shorter, with the final steps shortest.

However, the step size could also vary in periodic fashion throughout the algorithm, but, for the

most part, the final steps are the smallest.

0 100 200 300 400 500 600
-150

-100

-50

0

Iteration

O
bj

ec
tiv

e
f(x

)

Gradient Method Objective (α = 0.1, β = 0.5)

0 100 200 300 400 500
-150

-100

-50

0

Iteration

O
bj

ec
tiv

e
f(x

)

Gradient Method Objective (α = 0.25, β = 0.25)

0 100 200 300 400 500
-150

-100

-50

0

Iteration

O
bj

ec
tiv

e
f(x

)

Gradient Method Objective (α = 0.02, β = 0.1)

0 200 400 600 800 1000
-150

-100

-50

0

Iteration

O
bj

ec
tiv

e
f(x

)
Gradient Method Objective (α = 0.5, β = 0.01)

Christopher Tsai
February 28, 2008

EE 364 – Convex Optimization

Page | 3

The gradient method incrementally converges to the optimizing value of x with a steadily

decreasing step size. Although many of the iterations display zero decrement, the nonzero steps

 toward the optimizing value decrease inversely with the iteration, as expected.

0 200 400 600
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Iteration

S
te

p
Le

ng
th

 Δ
x

Gradient Method Step Length (α = 0.1, β = 0.5)

0 100 200 300 400 500
0

0.02

0.04

0.06

0.08

0.1

Iteration

S
te

p
Le

ng
th

 Δ
x

Gradient Method Step Length (α = 0.25, β = 0.25)

0 100 200 300 400 500
0

0.02

0.04

0.06

0.08

0.1

0.12

Iteration

S
te

p
Le

ng
th

 Δ
x

Gradient Method Step Length (α = 0.02, β = 0.1)

0 200 400 600 800 1000
0

0.02

0.04

0.06

0.08

0.1

0.12

Iteration

S
te

p
Le

ng
th

 Δ
x

Gradient Method Step Length (α = 0.5, β = 0.01)

Christopher Tsai
February 28, 2008

EE 364 – Convex Optimization

Page | 4

(b.) Newton’s Method clearly converges to the proper optimum at an approximately quadratic

pace. In fact, the algorithm terminates on its own after 8-10 iterations with the properly chosen

parameters α = 0.1 and β = 0.5. Meanwhile, other choices of (α, β) yield similarly satisfactory

convergence; the α = 0.02, β = 0.1 curve, in particular, tracks the optimal value almost immediately

(after only six iterations!), but its precise convergence to within the specified error tolerance (10-6)

actually requires more iterations (nearly 20). Meanwhile, the pathologically low β = 0.01 retards

convergence by more than one hundred iterations, but it makes much more progress than the

gradient method managed, still beating it by over a hundred iterations!

2 4 6 8
-150

-100

-50

0

Iteration

O
bj

ec
tiv

e
f(x

)

Newton Method Objective (α = 0.1, β = 0.5)

2 4 6 8 10
-150

-100

-50

0

Iteration

O
bj

ec
tiv

e
f(x

)
Newton Method Objective (α = 0.25, β = 0.25)

5 10 15 20
-150

-100

-50

0

Iteration

O
bj

ec
tiv

e
f(x

)

Newton Method Objective (α = 0.02, β = 0.1)

0 100 200 300 400
-150

-100

-50

0

Iteration

O
bj

ec
tiv

e
f(x

)

Newton Method Objective (α = 0.5, β = 0.01)

Christopher Tsai
February 28, 2008

EE 364 – Convex Optimization

Page | 5

 As with the gradient method, the moderate values of α and β yield steady convergence

toward the optimizing x, with occasional large (1) steps spaced by smaller steps. However, unlike

the gradient method steps, the Newton Method step sizes seem much more haphazard and

unpredictable, with the only certainty being their eventual diminishment close to the optimizing

value. Other than that, their variation with iteration appears much more random. Overall,

compared to the gradient method, the Newton Method manages much smaller residuals much

sooner, but the size trend is not monotonically decreasing.

 The residual plots on the following page track the difference between the true optimum and

the perceived optimum. These curves are simply shifted versions of the objective curves, but they

do reveal that the error approaches zero steadily. The more haphazard variations in the Newton

Method step size do not appear because the slight fluctuations are much too small for the scale.

0 5 10 15
-0.05

0

0.05

0.1

0.15

0.2

Iteration

S
te

p
Le

ng
th

 Δ
x

Newton Method Step Length (α = 0.1, β = 0.5)

0 5 10 15
-0.1

0

0.1

0.2

0.3

Iteration

S
te

p
Le

ng
th

 Δ
x

Newton Method Step Length (α = 0.25, β = 0.25)

0 10 20 30 40
-0.1

0

0.1

0.2

0.3

Iteration

S
te

p
Le

ng
th

 Δ
x

Newton Method Step Length (α = 0.02, β = 0.1)

0 100 200 300 400 500
-0.05

0

0.05

0.1

0.15

0.2

Iteration

S
te

p
Le

ng
th

 Δ
x

Newton Method Step Length (α = 0.5, β = 0.01)

Christopher Tsai
February 28, 2008

EE 364 – Convex Optimization

Page | 6

0 20 40 60 80 100
0

50

100

150

Iteration

R
es

id
ua

l |
f(x

) -
 p

*|

Gradient Method Residual (α = 0.1, β = 0.5)

0 20 40 60 80 100
0

50

100

150

Iteration

R
es

id
ua

l |
f(x

) -
 p

*|

Gradient Method Residual (α = 0.25, β = 0.25)

0 20 40 60 80 100
0

50

100

150

Iteration

R
es

id
ua

l |
f(x

) -
 p

*|

Gradient Method Residual (α = 0.02, β = 0.1)

0 20 40 60 80 100
0

50

100

150

Iteration

R
es

id
ua

l |
f(x

) -
 p

*|

Gradient Method Residual (α = 0.5, β = 0.01)

0 5 10 15 20
0

50

100

150

Iteration

R
es

id
ua

l |
f(x

) -
 p

*|

Newton Method Residual (α = 0.1, β = 0.5)

0 5 10 15 20
0

50

100

150

Iteration

R
es

id
ua

l |
f(x

) -
 p

*|

Newton Method Residual (α = 0.25, β = 0.25)

0 10 20 30 40 50
0

50

100

150

Iteration

R
es

id
ua

l |
f(x

) -
 p

*|

Newton Method Residual (α = 0.02, β = 0.1)

0 20 40 60 80 100
0

50

100

150

Iteration

R
es

id
ua

l |
f(x

) -
 p

*|

Newton Method Residual (α = 0.5, β = 0.01)

Christopher Tsai
February 28, 2008

EE 364 – Convex Optimization

Page | 7

Problem 9.31 – Some Approximate Newton Methods

(a.) The cost of Newton’s Method is dominated by the cost of evaluating the Hessian and the

cost of solving the Newton system. Thus, we can save computation flops by evaluating and

factoring the Hessian once only every N iterations, using the search step ∆x = -H-1׏f(x) and avoiding

copious unnecessary reevaluation. Results follow:

Apparently, Hessian reuse saves an entire order of magnitude of flops. Whereas the N =1 case

requires a comparable number of iterations to the gradient method (no surprise, since N = 1

represents the ordinary fully evaluated Newton’s Method), the N = 15 and N = 30 cases require far

fewer flops. In terms of computation time, only the N = 15 case represents a significant time

savings; while the N = 30 algorithm evaluates the Hessian far less frequently, its infrequent update

retards the convergence, thereby forcing many more iterations than the N = 15 case to properly

converge on the optimal value. The gradient method consumes the most time by far:

10-5 100 105 1010
-150

-100

-50

0

Flop Count

O
bj

ec
tiv

e
f(x

)

Gradient Method (α = 0.1, β = 0.5)

105 106 107
-150

-100

-50

0

Flop Count

O
bj

ec
tiv

e
f(x

)

Newton Method (α = 0.1, β = 0.5, N = 1)

105 106 107
-150

-100

-50

0

Flop Count

O
bj

ec
tiv

e
f(x

)

Reusable Hessian (α = 0.1, β = 0.5, N = 15)

105 106 107
-150

-100

-50

0

Flop Count

O
bj

ec
tiv

e
f(x

)

Reusable Hessian (α = 0.1, β = 0.5, N = 30)

Christopher Tsai
February 28, 2008

EE 364 – Convex Optimization

Page | 8

Thus, there exists a limit to which we can meaningfully exploit the savings gained by

distancing our Hessian reevaluations; if we space the calculations too far apart, then our

computation time could suffer. It is important to find the optimal (or near-optimal) value of N to

profit from the method maximally!

(b.) The diagonal approximation yields nearly disastrous results, requiring a number of iterations

(570) and computation time (10.64 seconds) commensurate with the gradient method. Apparently,

by reducing the Hessian matrix to its main diagonal, we discard too much information about the fine

variation of the objective and converge much more slowly than we would if we kept the off-diagonal

elements. The flop count has decreased considerably, but this number is meaningless on a clock

since the number of iterations required has skyrocketed. We conclude that Hessian reuse offers

much better computation time improvements.

50 100 150 200 250 300 350 400 450 500 550
-160

-140

-120

-100

-80

-60

-40

-20

Number of Iterations

O
bj

ec
tiv

e
f(x

)

Diagonal Approximation Objective (α = 0.1, β = 0.5)

Christopher Tsai
February 28, 2008

EE 364 – Convex Optimization

Page | 9

SUMMARY OF RESULTS

Strategy Number of Iterations Number of Flops CPU Time

Gradient Method 581 iterations 6.5374 ൈ 107 flops 10.704848 seconds

Newton’s Method

(N = 1)
8 iterations 2.8267 ൈ 106 flops 0.284346 second

Hessian Reuse

(N = 15)
32 iterations 1.6401 ൈ 106 flops 0.113939 second

Hessian Reuse

(N = 30)
49 iterations 1.6467 ൈ 106 flops 0.109546 second

Diagonal

Approximation
570 iterations 1.14 ൈ 105 flops 10.640586 seconds

50 100 150 200 250 300 350 400 450 500 550
-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

Number of Iterations

S
te

p
S

iz
e
Δx

Diagonal Approximation Step Size (α = 0.1, β = 0.5)

Christopher Tsai
February 28, 2008

EE 364 – Convex Optimization

Page | 10

Additional Problem #1 – Three-Way Linear Classification

Using disciplined convex programming, we solve the following feasibility problem:

 ݋ݐ ݐ݆ܾܿ݁ݑݏ 0 ݁ݖ݅݉݅݊݅݉

ሺܽଵ െ ܽଶሻ்ሾݔሺଵሻ ڮ ሺேሻሿݔ െ ሺܾଵ െ ܾଶሻ غ 1

ሺܽଵ െ ܽଷሻ்ሾݔሺଵሻ ڮ ሺேሻሿݔ െ ሺܾଵ െ ܾଷሻ غ 1

ሺܽଶ െ ܽଵሻ்ሾݕሺଵሻ ڮ ሺெሻሿݕ െ ሺܾଶ െ ܾଵሻ غ 1

ሺܽଶ െ ܽଷሻ்ሾݕሺଵሻ ڮ ሺெሻሿݕ െ ሺܾଶ െ ܾଷሻ غ 1

ሺܽଷ െ ܽଵሻ்ሾݖሺଵሻ ڮ ሺ௉ሻሿݖ െ ሺܾଷ െ ܾଵሻ غ 1

ሺܽଷ െ ܽଶሻ்ሾݖሺଵሻ ڮ ሺ௉ሻሿݖ െ ሺܾଷ െ ܾଶሻ غ 1

 -6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

Problem 1 - Three-Way Linear Classification

Christopher Tsai
February 28, 2008

EE 364 – Convex Optimization

Page | 11

Problem #2 – Efficient Numerical Method for Regularized Least-Squares

ݔ෍൫ܽ௜் ݁ݖ݅݉݅݊݅݉ െ ܾ௜൯
ଶ

௞

௜ୀଵ

൅ ௜ݔ෍ሺߜ െ ௜ାଵሻଶݔ
௡ିଵ

௜ୀଵ

൅ ௜ଶݔ෍ߟ
௡

௜ୀଵ

We implement both the ponderously slow direct method as well as our efficient strategy in code:

% DIRECT METHOD:
% --------------

tic;
xDirect = (A.'*A + delta*D + eta*I)\(A.'*b);
toc;

% SOLVING WITH THE DIRECT METHOD. . .
% Elapsed time is 5.234242 seconds.

% EFFICIENT METHOD:
% -----------------

tic;

% [i.] - Solving for q and Q:
X = triD\[g A.'];
q = X(:,1);
Q = X(:,2:(k+1));

% [ii.] - Forming w and W:
w = A*q;
W = A*Q;

% [iii.] - Solving for z:
z = (eye(k) + W) \ w;

% [iv.] - Forming solution:
xEfficient = q - Q*z;

toc;

% SOLVING WITH THE EFFICIENT METHOD. . .
% Elapsed time is 0.120394 seconds.

Clearly, the efficient method prevails, outpacing the direct method by more than an entire

order of magnitude: 0.12 sec = 120 milliseconds << 5.234 seconds! We compare the two solutions

and ascertain that the maximal difference is less than 0.00000015821%; the solutions are identical.

