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CVX Problem Set VII – Unconstrained Minimization 
 

 
Problem 9.30 – Gradient and Newton Methods 

 

(a.) Although values of α and β on the order of 0.1 – 0.3 yield seemingly adequate convergence, 

all of our experiments pushed the number of iterations well beyond 100, meaning that the algorithm 

only ostensibly converges.  When we decrease β too far (below 0.1), convergence requires even 

more iterations.  Thus, while convergence remains likely robust at a variety of α values, we must 

keep β high enough to expedite convergence to the true optimal value of -144.6979.  Note here that 

we implemented the gradient descent method with gradient norm backtracking line search rather than 

objective function backtracking. 
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However, if we plumb deeper into the iteration cycle, we find convergence well into the five 

hundreds.  However, the method does verifiably converge: 

 

Regrettably, it seems like the gradient method, though convergent, typically requires around 

500 iterations to settle on its final value and terminate operation.  However, we could terminate 

earlier and settle for a slightly suboptimal value.  With our tolerance of 10-6, we find reasonably close 

optimal values after only 40-50 iterations.  The other noteworthy feature of the gradient method is 

its steadily decreasing step size; initially, while most steps seem constant, the gradual approach 

toward the true solution means that the steps grow ever shorter, with the final steps shortest.  

However, the step size could also vary in periodic fashion throughout the algorithm, but, for the 

most part, the final steps are the smallest. 
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The gradient method incrementally converges to the optimizing value of x with a steadily  
 

decreasing step size.  Although many of the iterations display zero decrement, the nonzero steps 
 

 toward the optimizing value decrease inversely with the iteration, as expected. 
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(b.) Newton’s Method clearly converges to the proper optimum at an approximately quadratic 

pace.  In fact, the algorithm terminates on its own after 8-10 iterations with the properly chosen 

parameters α = 0.1 and β = 0.5.  Meanwhile, other choices of (α, β) yield similarly satisfactory 

convergence; the α = 0.02, β = 0.1 curve, in particular, tracks the optimal value almost immediately 

(after only six iterations!), but its precise convergence to within the specified error tolerance (10-6) 

actually requires more iterations (nearly 20).  Meanwhile, the pathologically low β = 0.01 retards 

convergence by more than one hundred iterations, but it makes much more progress than the 

gradient method managed, still beating it by over a hundred iterations! 
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 As with the gradient method, the moderate values of α and β yield steady convergence 

toward the optimizing x, with occasional large (1) steps spaced by smaller steps.  However, unlike 

the gradient method steps, the Newton Method step sizes seem much more haphazard and 

unpredictable, with the only certainty being their eventual diminishment close to the optimizing 

value.  Other than that, their variation with iteration appears much more random.  Overall, 

compared to the gradient method, the Newton Method manages much smaller residuals much 

sooner, but the size trend is not monotonically decreasing. 

 The residual plots on the following page track the difference between the true optimum and 

the perceived optimum.  These curves are simply shifted versions of the objective curves, but they 

do reveal that the error approaches zero steadily.  The more haphazard variations in the Newton 

Method step size do not appear because the slight fluctuations are much too small for the scale. 
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Problem 9.31 – Some Approximate Newton Methods 

(a.) The cost of Newton’s Method is dominated by the cost of evaluating the Hessian and the 

cost of solving the Newton system.  Thus, we can save computation flops by evaluating and 

factoring the Hessian once only every N iterations, using the search step ∆x = -H-1f(x) and avoiding 

copious unnecessary reevaluation.  Results follow: 

 
 

Apparently, Hessian reuse saves an entire order of magnitude of flops.  Whereas the N =1 case 

requires a comparable number of iterations to the gradient method (no surprise, since N = 1 

represents the ordinary fully evaluated Newton’s Method), the N = 15 and N = 30 cases require far 

fewer flops.  In terms of computation time, only the N = 15 case represents a significant time 

savings; while the N = 30 algorithm evaluates the Hessian far less frequently, its infrequent update 

retards the convergence, thereby forcing many more iterations than the N = 15 case to properly 

converge on the optimal value.  The gradient method consumes the most time by far: 
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Thus, there exists a limit to which we can meaningfully exploit the savings gained by 

distancing our Hessian reevaluations; if we space the calculations too far apart, then our 

computation time could suffer.  It is important to find the optimal (or near-optimal) value of N to 

profit from the method maximally! 

 

(b.) The diagonal approximation yields nearly disastrous results, requiring a number of iterations 

(570) and computation time (10.64 seconds) commensurate with the gradient method.  Apparently, 

by reducing the Hessian matrix to its main diagonal, we discard too much information about the fine 

variation of the objective and converge much more slowly than we would if we kept the off-diagonal 

elements.  The flop count has decreased considerably, but this number is meaningless on a clock 

since the number of iterations required has skyrocketed.  We conclude that Hessian reuse offers 

much better computation time improvements. 
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SUMMARY OF RESULTS 

Strategy Number of Iterations Number of Flops CPU Time 

Gradient Method 581 iterations 6.5374 ൈ 107 flops 10.704848 seconds 

Newton’s Method 

(N = 1) 
8 iterations 2.8267 ൈ 106 flops 0.284346 second 

Hessian Reuse 

(N = 15) 
32 iterations 1.6401 ൈ 106 flops 0.113939 second 

Hessian Reuse 

(N = 30) 
49 iterations 1.6467 ൈ 106 flops 0.109546 second 

Diagonal 

Approximation 
570 iterations 1.14 ൈ 105 flops 10.640586 seconds 
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Additional Problem #1 – Three-Way Linear Classification 

Using disciplined convex programming, we solve the following feasibility problem: 

     ݐ ݐ݆ܾܿ݁ݑݏ      0  ݁ݖ݅݉݅݊݅݉

ሺܽଵ െ ܽଶሻ்ሾݔሺଵሻ ڮ ሺேሻሿݔ െ ሺܾଵ െ ܾଶሻ غ  1 

ሺܽଵ െ ܽଷሻ்ሾݔሺଵሻ ڮ ሺேሻሿݔ െ ሺܾଵ െ ܾଷሻ غ  1 

ሺܽଶ െ ܽଵሻ்ሾݕሺଵሻ ڮ ሺெሻሿݕ െ ሺܾଶ െ ܾଵሻ غ  1 

ሺܽଶ െ ܽଷሻ்ሾݕሺଵሻ ڮ ሺெሻሿݕ െ ሺܾଶ െ ܾଷሻ غ  1 

ሺܽଷ െ ܽଵሻ்ሾݖሺଵሻ ڮ ሺሻሿݖ െ ሺܾଷ െ ܾଵሻ غ  1 

ሺܽଷ െ ܽଶሻ்ሾݖሺଵሻ ڮ ሺሻሿݖ െ ሺܾଷ െ ܾଶሻ غ  1 
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Problem #2 – Efficient Numerical Method for Regularized Least-Squares 

ݔ൫்ܽ  ݁ݖ݅݉݅݊݅݉ െ ܾ൯
ଶ



ୀଵ

 ݔሺߜ െ ାଵሻଶݔ
ିଵ

ୀଵ

 ଶݔߟ


ୀଵ

 

We implement both the ponderously slow direct method as well as our efficient strategy in code: 

 
% DIRECT METHOD: 
% -------------- 
  
tic; 
xDirect = (A.'*A + delta*D + eta*I)\(A.'*b); 
toc; 
 
% SOLVING WITH THE DIRECT METHOD. . . 
% Elapsed time is 5.234242 seconds. 
 
 
 
% EFFICIENT METHOD: 
% ----------------- 
 
tic; 
 
% [i.] - Solving for q and Q: 
X = triD\[g A.']; 
q = X(:,1); 
Q = X(:,2:(k+1)); 
  
% [ii.] - Forming w and W: 
w = A*q; 
W = A*Q; 
  
% [iii.] - Solving for z: 
z = (eye(k) + W) \ w; 
  
% [iv.] - Forming solution: 
xEfficient = q - Q*z; 
  
toc; 
  
% SOLVING WITH THE EFFICIENT METHOD. . .  
% Elapsed time is 0.120394 seconds. 
 
  

Clearly, the efficient method prevails, outpacing the direct method by more than an entire 

order of magnitude: 0.12 sec = 120 milliseconds << 5.234 seconds!  We compare the two solutions 

and ascertain that the maximal difference is less than 0.00000015821%; the solutions are identical. 


