Christopher Tsai
March 4, 2008
EE 364 — Convex Optimization

CVX Problem Set VIII — Standard Form LP Barrier Method

Problem #1 — Centering Step

We first implement Newton’s Method for solving the analytic centering problem

n
minimize cTx — Z In x;
i=1

subjectto Ax =b

The following function accepts A, b, ¢, and starting point X to compute the primal optimal point

. . A2
x", the dual optimal point v*, and the Newton decrement computed as —-

function [x, v, nSteps] = NewtonCentering (A, b, c, x0, alpha, beta)

% [X, V, NSTEPS] = NEWTONCENTERING (A, B, C, XO, ALPHA, BETA)

% Taps Newton®"s Method to solve the analytic centering problem:

% minimize c"x - sum(In(x))
% subject to Ax = b

% A -- (m x n) coefficient matrix in constraint

% b -- (m x 1) vector in constraint

c -- (n x 1) coefficient vector in objective

X0 -- (n x 1) vector defining initial starting point in Newton®s Method
alpha -- scalar constant, affects convergence

beta -- scalar constant, affects convergence

OUTPUTS:
% x -- primal optimal point

% v -- dual optimal point
% nSteps -- number of Newton steps executed, contains lambda™2/2

[m,n] = size(A);

% Setting default backtracking parameters:
if (nargin < 5)
alpha = 0.01;

beta = 0.5;
elseif (nargin < 6)
beta = 0.5;

end

% Termination criteria:
tolerance = le-6;
maxlterations = 100;

i =0;

Page | 1

Christopher Tsai
March 4, 2008
EE 364 — Convex Optimization

it ((norm(A*x0 - b) > 1e-3) || (min(x0) <= 0))

fprintf("\nYou have chosen an ominous starting point! Aborting now.

x = [1:
v = [1;
nSteps = [1;
return;

else

% Beginning Newton®"s Method:
X = X0;
nSteps = [];

for i = 1 : maxlterations
hessian = diag(1./x-"2);
gradient = ¢ - 1./x;

% Employing block elimination to compute the Newton step:

y = [hessian, A." ; A, zeros(m,m)] \ [-gradient ; zeros(m,1)];
dx = y(1:n);

v = y(n+l:end);

% Stopping criterion based on lambdan2:
lambda2 = -gradient® * dx;
nSteps = [nSteps lambda2/2];
if (lambda2/2 <= tolerance)
break;
end

% BACKTRACKING LINE SEARCH:

t=1;

while (min(x + t*dx) <= 0)
t = beta*t;

end

% Incremental step modification:

\n®);

while (c.*"*(t*dx) - sum(log(x + t*dx)) + sum(log(x)) > alpha*t*gradient”*dx)

t = beta*t;
end

% Advancing time:
X = X + t*dx;

Generating random feasible data, we simulate the centering step and observe the decrement

gradually converge to zero over more and more iterations, until convergence is complete around 10

iterations. Note from the graph that a and 3 have little to no noticeable effect on either the optimal

value or the convergence process; the Newton steps are indistinguishable on a logarithmic scale, all

decaying to zero at the same rate:

Page | 2

Christopher Tsai
March 4, 2008
EE 364 — Convex Optimization

Newton Decrement for the Centering Step

10 | | | |
e : : :
e —
| | B~
e, S
2 1 1 1 1
10 -
o —a:O_Ol,B:OS
('\,l\ — o = O 8, B = 1
< @ =08 p=01
-4

e = 0.2, B = 0.1

16°. | ===0=02p=001
= =0.001, B =1
naxss 5 =0.001, B=0.1
. o = 0.001, g = 0.01
10 [[[[

1 2 3 4 5

Number of Iterations

As we expect, the Newton decrement decreases quadratically. Our algorithm behaves properly.

Finally, we verify that KK'T conditions hold when our solver yields a valid primal optimal point:

% Checking that our computed x* and v* satisfy the KKT conditions:
primalFeasibility = (abs(A*x-b) <= le-4);

primalPositivity = (x >= 0);

dualFeasibility (A."*v + ¢ >= 0);

complementarity (abs(A*x-b).*v <= 1le-4);

gradLagrangian = (abs(2*x + c + A."*v) <= le-4);

Indeed, our KKT conditions hold for optimal values.

Page | 3

Christopher Tsai
March 4, 2008
EE 364 — Convex Optimization

Problem #2 — LP Solver with Strictly Feasible Starting Point

We are now prepared to solve the standard form linear program (LP) with #2o constraints: an
inequality constraint Ax = b in addition to the positivity constraint on the primal optimal point:
minimize c¢Tx
subject to Ax = b, xz=0
We can use the centering code to compute the optimal point iteratively until the duality gap % has

sufficiently decreased to smaller than 10°. Thus, our wrapper function assumes the form:

function [x, v, history] = StandardLPBarrier (A, b, c, x0, mu)

% [X, V, HISTORY] = STANDARDLPBARRIER (A, B, C, X0, MU)

% Taps Newton®"s Method to solve the standard form LP:

% minimize c"x

% subject to Ax ==

% X >= 0

%

0 ——
%

% INPUTS:

[——

% A -- (m x n) coefficient matrix in constraint

% b -- (m x 1) vector in constraint

% ¢ -- (n x 1) coefficient vector in objective

% X0 -- (n x 1) vector defining initial starting point in Newton®s Method
% mu -- scalar constant, affects barrier method

%

% OUTPUTS:

[————

% x -- primal optimal point

% v -- dual optimal point

% history -- data concerning the convergence of the algorithm

% history(1,:) contains the number of iterations per centering
% history(2,:) contains the (ideally) closing duality gap

[m,n] = size(A);

% Setting barrier method parameters:
if (nargin < 5)

mu = 50;
end

tolerance = le-3;

t = 1;
% Initialization, preparing to begin:
X = X0;
t = tO;

history = [];

% lterating and solving until the duality gap is tolerably low:
while (true)
[xOpt, vOpt, nlterations] = NewtonCentering (A, b, t*c, x);

Page | 4

Christopher Tsai
March 4, 2008
EE 364 — Convex Optimization

X = XOpt;

% Computing the current duality gap:
dualityGap = m/t;

% Updating the history:
history = [history [length(nlterations) ; dualityGap]];

% Checking termination criterion . .
% STOP when duality gap is suff|C|entIy small:
if (dualityGap < tolerance)
break;
end

% Otherwise, advance .
mu*t;
-vOpt/t;

-+
1

Our LP solver checks affirmatively with CVX for several problem instances, returning an infeasible
tag for infeasible problems and an optimal point for feasible problems. Meanwhile, we can tweak
the parameter W to vary the rate at which the duality gap closes; unlike o and B, the value of [closely

governs the convergence rate of the duality gap, which we can witness in the number of iterations:

Duallty Gap for Standard LP Solver

Duality Gap

(AT L O]

x*

Number of Iterations

Page | 5

Christopher Tsai
March 4, 2008
EE 364 — Convex Optimization

As the plot reveals, increasing the value of | decreases the number of iterations while
lengthening the number of iterations at the same duality gap. The ultimate duality gap is a matter of
chance; depending on where a time step falls, another step may not be necessary. We see that,
coincidentally, the largest value of [also coincides with the smallest duality gap and the fastest
convergence (only 44 iterations).

We solve a sample problem with both a professional solver (CVX) as well as our homemade

LP solver, juxtaposing responses to ascertain their proper functionality:

% Solving a sample linear program to ensure that cvx agrees:
cvx_begin;

variable X(n);
minimize (c."*X)
subject to

A*X == b;

X >= 03

cvx_end;

% CVX yields an optimal value of ...37.032532!
% Our Standard LP Barrier Method yields an optimum of ...37.032632!

Indeed, our solver also fails when CVX fails, as for infeasible problems:

% INFEASIBLE problem:
A = randn(m - 1, n);
A [A ; ones(1,n)];
b rand(m,1);

cvx_begin;

variable X(n);
minimize (c."*X)
subject to

A*X == b;

X >= 03

cvx_end;
[x, v, history] = StandardLPBarrier (A, b, c, x0, 50);

CVX:
Status: Infeasible
Optimal value (cvx_optval): +Inf

StandardLPBarrier: >> You have chosen an ominous starting point! Aborting now.

Page | 6

Christopher Tsai
March 4, 2008
EE 364 — Convex Optimization

Problem #3 — LP Solver

In order to determine a logical feasible first step to our barrier method algorithm, we must
solve the Phase I problem:
minimize t
subject to Ax = b,
xx(1-01
t =0
The benefit to first solve the Phase I problem is its ability to shed the positivity constraint on x,

allowing us to begin the feasibility problem with azy feasible x. We choose, for instance, the least-

norm solution to our underdetermined (7 < #) system.
We can reformulate the Phase I problem as a standard form LP, which we can readily and

swiftly solve with the same barrier method that we will implement to solve the actual standard form

LP problem itself:
117t
Z
minimize ™z = |° !
0l lzn

subject to Az =bandz > 0

t bl_a{

- z b, —al
[-aT Al |=|"27 %}

Zn b —aT

m — Am
t 0
Tl
z) Lo
Thus, by creating a new vector with #as the first (or last) element, and augmenting the

coefficient matrix to accommodate # we can solve a standard form LP on the vector of z. Once we

Page | 7

Christopher Tsai
March 4, 2008
EE 364 — Convex Optimization

find a feasible z, and 7 we can recover a feasible x to insert into our barrier method by reverting our
variable: x = z — (t — 1) = z + 1 — t. If any x s feasible, then this x will be feasible, providing us
an initial point with which to begin our Newton’s Method-based barrier method to solve the primal

LP as follows:

function x = LPSolver (A, b, c)

% X = LPSOLVER (A, B, C)

% Taps Newton®"s Method to solve the standard form LP:

% minimize c"x

% subject to Ax ==

% X >= 0

%

) ——
%

% INPUTS:

0 —————

% A -- (m x n) coefficient matrix in constraint
% b -- (m x 1) vector in constraint

% ¢ -- (n x 1) coefficient vector in objective

% OUTPUTS:

[m,n] = size(A);
mu = 20;

% Devising a potential initial point for the Phase | Problem:
x0 pinv(A)*b
t0 2 + max(0,-min(x0))

% Forming the relevant matrices for the Phase | Feasibility LP:
rowSums = -A*ones(n,1);

APhase = [rowSums, A];
bPhase = b-A*ones(n,1);
cPhase = [1 ; zeros(n,1)]:

z0 = [t0 ; (X0 + (t0-1)*ones(n,1))];
% Solving the Phase | Feasibility LP for a valid initial point:
[zFeas, vFeas, past] = StandardLPBarrier (APhase, bPhase, cPhase, z0, mu);

if (cPhase"*zFeas >= 1)
error("Standard Form LP is INFEASBIBLE!");

return;
end
z = zFeas(2:end);
t = zFeas(1);

x0 = z-(t-1)*ones(n,1);

% If FEASBIBLE (x,t) found....
% Solving the primal problem:
[x, v, history] = StandardLPBarrier (A, b, c, x0);

Page | 8

Christopher Tsai
March 4, 2008
EE 364 — Convex Optimization

We devise a few simple test cases to verify that our linear program solver works:

0/0 ___
m=1;

n = 10;

c = (@:n).";

A = ones(1,n);

b =1;

% CVX RESPONSE:
% Status: Solved
% Optimal value (cvx_optval): +1

% LP SOLVER RESPONSE:
% optval = 1.0001

100;

200;

xOpt = (1:n).";
randn(“state”,1);
A = randn(m,n);
randn(“state”,2);
b = A*xOpt;

c = (rand(n,1));

=]
I

% CVX RESPONSE:
% Status: Solved
% Optimal value (cvx_optval): +5650.73

% LP SOLVER RESPONSE:
% optvVal = 5650.7274

= 100;

= 500;
randn(“state”,1);

A = randn(m,n);
randn(“state”,2);

x0 = 5 + randn(n,1);
A*x0;
2*(rand(n,1));

> 3

% CVX RESPONSE:
% Status: Solved
% Optimal value (cvx_optval): +6.25366

% LP SOLVER RESPONSE:
% optVal = 6.25367

m = 100;
n = 500;
randn(“state”,1);

A = randn(m-1,n);

A = [A ; ones(1,n)];
randn(“state”,2);

b = randn(m,1);

CVX RESPONSE:
Status: Infeasible
Optimal value (cvx_optval): +Inf

X

%

S

LP SOLVER RESPONSE:
??? Error using ==> LPSolver
Standard Form LP is INFEASBIBLE!

XX

Page | 9

