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Abstract—“A picture is worth a thousand words,” but finding 
the right thousand words to describe a picture has no simple 
adage. Camera phones and other mobile devices can easily 
capture a scene, but processing the image to inform its contents 
and describe the scene requires efficient object recognition and 
identification. In an effort to augment reality in a potential virtual 
museum guide, this document presents an efficient method to 
identify a painting centered in a camera phone digital image. This 
expedient and accurate algorithm taps the principal component 
transform to map the thirty-three paintings of interest into an 
alternative subspace spanned by an orthogonal basis of 
eigenimages. Within the eigenspace, Euclidean distance 
computation and subsequent feature recognition simplify into 
juxtaposition of the transformed image coordinates and the 
known eigencoefficients of our thirty-three known paintings. 
 

Index Terms—camera, painting, object recognition and 
identification, principal component analysis (PCA), eigenimage  
 

I. INTRODUCTION 
ELLULAR phone and mobile device technology have 
evolved beyond mere conversational communication to 
support numerous forms of multimedia, the most prevalent 

of which is image data. Camera-phones can capture scenes and 
store their pictures in digital formats like the JPEG file, at a 
resolution sufficiently fine for detailed object recognition, 
whether it involves face discrimination, or, for our application, 
painting identification. Furthermore, by properly recognizing the 
features in a painting, the portable device can augment its user’s 
reality by supplying additional information about the subject, 
such as the painting’s title, artist, date, and background 
information.  Nevertheless, expedient identification begins with 
digital image processing, and the following document examines 
eigenanalysis – otherwise known as principal component analysis 
(PCA) – as an efficient means to accurately identify works of art, 
using examples from the European art gallery at the Cantor Arts 
Center to train and test our algorithm.  We characterize 
successful identification by our algorithm’s ability to distinguish 
thirty-three different paintings from this European art gallery. 

 

II. PRE-PROCESSING PROCEDURE 

A. Downsampling 
Even at its coarse resolution (compared to camera images), 

phone-captured image files are saturated with information.  For 
example, the 2048 ൈ 1536 JPEG images taken with the Nokia 
N93 might provide less detail than a full-fledged digital camera 
photo, but the amount of pixel redundancy allows us to 
downsample the images eightfold while preserving 
recognizability of imaged objects.  Consider the following digital 
image of the painting Edward Becher: 

Fig. 1.  Original 2048 ൈ 1536 JPEG color image of Edward Becher. 
 

If we downsample the image by a factor of four, we obtain the 
following comparatively detailed version: 
 

 
Fig. 2.  Downsampled 512 ൈ 384 color image of Edward Becher. 
 
Similarly, downsampling the image by a factor of eight also 
reduces detail but preserves recognizability of key features: 
 

 
Fig. 3.  Downsampled 256 ൈ 192 color image of Edward Becher. 
 
While the naked eye can no longer discern Mr. Becher’s facial 
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features, the shape of his hair, the colors of his jacket, the limbs 
of the tree, and other key objects remain distinct. The 
downsampled image has lost some of its fine detail, but it 
remains distinctly and distinguishably Edward Becher.  
 The advantages of downsampling far outweigh its minor 
drawbacks; while the smaller, downsampled images display less 
detail when compared to their full-sized counterparts, the 
downsampled versions require far less time to process, making 
them crucial to an augmented reality application in which 
expedient description should quickly follow a photographed 
scene.  The number of pixels that an image processing algorithm 
must process decreases as the square of the downsampling 
factor: when we sample our original 2048 ൈ 1536 image down to 
its 256 ൈ 192 rendition, the image has 64 times fewer pixels, so 
any global or element-wise image processing matrix operation 
performs 64 times fewer computations, cutting processing time 
by 64 for our eightfold downsampled image, and by 256 for 
sixteen-fold downsampling.  However, downsampling by even 
greater factors reaps little additional benefit in processing time: 

 
Fig. 4.  Approximately inverse relationship between the speed of pre-
processing and the factor by which we downsample the original image. 
 

In the digital domain, each image is a matrix.  For the human 
eye, the loss of detail may arguably reduce a painting’s singular 
qualities, but, for the digital eye used to distinguish one painting 
from a finite number of others (such as the thirty-two other 
paintings in the European art gallery), the downsampling retains 
recognizability for the simple reason that hundreds of pixels still 
remain to separate one image matrix from the finite number of 
other possibilities. 

As a matter of fact, we will shortly see that the reduction in 
pixel redundancy also facilitates edge detection, as bridging gaps 
between frame lines requires less smoothing and smaller 
structuring elements than would be required for the unsampled 
image. 

B. Grayscaling 
Continuing the quest for compact representation and hence 

minimal computation, we prune our image further by coalescing 
information from the three color channels into a single grayscale 

intensity.  While color remains a powerful visual discriminant 
between different paintings, its limited value in principal 
component analysis does not warrant the threefold increase in 
computation that retaining all three channels would require.  
Thus, in an effort to reduce the amount of unnecessary 
information in our algorithm operand, we convert each input 
image from the Red-Green-Blue (RGB) color space to grayscale 
values between 1 and 256. 

Following the transformation used in Matlab’s rgb2gray, 
we merge the color channels in the linear combination: 

 

௚݂௥௔௬ ൌ 0.29894 · ௥݂௘ௗ ൅ 0.58704 · ௚݂௥௘௘௡ ൅ 0.11402 · ௕݂௟௨௘ 
 

Because the coefficients add to unity, this weighted sum 
preserves the intensity scale while accentuating the green channel 
because of its strong relative contribution to the luminance or 
human-perceived brightness of a pixel: 

 

 
Fig. 5.  Luminance efficiency curve.  Maximum value occurs around a 
wavelength (λሻ of 550 nanometers, in the middle of the green channel. 

 
Recalling that the luminance efficiency curve peaks at green 

wavelengths, we ensure that the green channel contributes 
doubly to the grayscale intensity as the red channel, and more 
than five times as much as the blue channel, whose luminance 
contribution is minimally present in human perception. 

C. Edge Detection 
Prior to identifying any painting in an image, the algorithm 

must first locate the painting within the image space and separate 
it from its surroundings.  To determine where a painting ends 
and where the wall around it begins, our algorithm detects edges 
by their exceptionally strong response under convolution with 
the bidirectional Sobel operators: 

 

൥
െ1 െ2 െ1
0 0 0
1 2 1

൩  and  ൥
െ1 0 1
2 0 2
െ1 0 1

൩ 

 
Filtering the image with this pair of Sobel operators extracts 

the horizontal and vertical image gradients, which are highest 
where the grayscale intensity changes most rapidly.  Because the 
transition in brightness from a painting frame to its surrounding 
wall typically produces the sharpest pixel value changes in the 
image, the Sobel operators readily extract the lines separating 
each frame from the wall on which it hangs.  From empirical 
trial and error with the data from our Nokia N93 images, we 
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declare a pixel in the resultant filtered image to be part of a line 
or object edge if its Sobel gradient exceeds 0.052 on the unit 
intensity scale [0, 1].  For example, consider the following 
downsampled snapshot of Napoleon: 

 

 
Fig. 6.  Downsampled grayscale image of Napoleon. 
 
Filtering this image with subsequent passes of the Sobel 
operators with a threshold at 0.052, we obtain the edge map: 
 

 
Fig. 7.  Sobel gradient edge map of Napoleon.  Not all pixels connect. 

 
As desired, the painting frames yield the largest Sobel gradient 
values, so their edges protrude most prominently in the gradient 
output.  However, because these edge points may not form a 
closed boundary or even an unbroken line, we bridge the gaps in 
the edge map by morphologically closing the image with a small 
isotropic structuring element, such as the radius-one diamond: 
 

൥
0 1 0
1 1 1
0 1 0

 ൩ 
 

Morphologically closing the binary edge map not only 
connects fragmented frame edges but also smears false edges 
together, ensuring that the resulting image contains closed loops 
– some of them false ones – rather than single isolated points: 

 

 
Fig. 8.  Morphological closing of the Sobel edge map with a radius-one 
diamond structuring element.  Lines are bridged, but not all holes are closed. 

 

 Finally, noticing that many closed edge loops still contain 
holes, we fill the image by setting all values within each boundary 
to unity using an algorithm like Matlab’s imfill: 

 

 
Fig. 9.  Filled morphological closing of the Sobel gradient. 
 

At this point, our processed image contains a sufficient 
number of well-defined areas that we can proceed to isolating 
the region of interest.  However, before we proceed, we return 
again to sampling. 

D. Edge Effects of Image Downsampling 
As we previously discussed, sampling reduces the size of the 

input image. Smaller images require less processing time. 
More importantly, downsampling removes many of the small 

noise-induced fake edges in the original image. Decimation also 
sharpens the desired frame edges, facilitating gap bridging by 
removing the need for larger structuring elements; the simple 
radius-one diamond easily bridges most downsampled image 
edges. In conclusion, the downsampled image is more robust for 
frame extraction. The following figure illustrates the 
improvement in edge detection gained merely by eightfold 
decimation.  As shown below, morphological closing becomes 
more effective after downsampling the image: 

 

 
Fig. 10.  Sobel edge map of Edward Becher when operating on (left) the 
original image, and (right) on the eightfold downsampled image.  With fewer 
pixels to bridge, the decimated image responds better to closing. 
 

E. Region of Interest Isolation 
An image typically comprises several secondary objects in 

addition to the primary painting of interest; for example, in 
addition to Napoleon, three other paintings, three labels, and a 
wooden dresser appear in the image, all of which could 
potentially confuse our image processing algorithm when it 
attempts to identify the central painting.  Assuming that the 
camera user points her device at the object of interest, we need 
to identify only the central painting, so we must eliminate the 
regions in which the central pixel does not belong. 

To check whether or not a region contains the central pixel in 
the image, we would need to both compute each region’s 
bounding box and repeatedly evaluate the Boolean Matlab 
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function inpolygon on bounding box vertices. We might also 
consider checking the region itself rather than its bounding box 
for the central pixel. However, if imfill failed to completely 
fill a region because of concentric boundaries or improperly 
closed loops, then the central pixel may not belong to any region, 
rendering even exhaustive search futile in a debacle such as the 
one pictured below:  

 

 
Fig. 11.  Example of failed (incomplete) filling of the morphologically closed 
edge map.  Because closing failed to bridge peripheral gaps, the central region 
of the painting Adam and Eve does not necessarily contain the center pixel. 

 
Fortunately, even if morphological closing fails to close 

boundary loops, and even if the interior of the painting frame is 
not entirely unity following imfill, the region of interest will 
still boast one of the highest pixel counts out of the perimeter’s 
sheer size.  Hence, instead of checking the containment of pixels 
in each region, our algorithm instead labels regions using 
bwlabel and ranks all 300-500 regions by their unity-valued 
pixel count, which we can calculate either by looping or using 

 

regionprops(filledImage,’Area’) 
 

thereby retaining the dominance of the painting regions even 
when they are improperly closed or incompletely filled.  Having 
narrowed down the possible regions of interest to large clusters, 
we can afford to compute all candidate bounding boxes to 
ascertain containment of the central pixel.  We select the region 
with greatest area if its bounding box contains the central pixel, 
and opt for the second-largest region otherwise, assuming that 
an image rarely features a single small painting surrounded by 
two larger ones. Finally, we still must tap inpolygon to 
ensure that we choose the central painting, but proper selection 
no longer relies on flawless filling or exhaustive search across all 
bounding boxes, cutting the number of inpolygon calls from 
hundreds to one or two. In our example, the largest region is our 
answer: 

 
Fig. 12.  Largest region of the Napoleon image isolated from surroundings.   

Before we proceed with region-based processing, we note 

here that our image now informs whether or not our Sobel 
gradient edge map threshold successfully isolated the frame. 

If motion blur or alternative frame design somehow causes a 
frame edge to transition more smoothly into its surrounding 
wall, then edge detection with a high threshold of 0.052 may fail, 
so our algorithm must then lower the threshold and retry Sobel 
edge detection. 

Initially, the program has no way of knowing whether or not 
this empirical threshold unambiguously locates the frame edges, 
but we can foresee failure after filling regions from the edges. 
Certain measures that indicate the failure of our initial threshold 
include wild elongation of improperly encircled regions, or 
simply a lack of clustered pixels after the fill operation. Once we 
obtain the central region of interest, we check it for elongation 
and irregular clustering.  

If Sobel segmentation fails to highlight a significant portion of 
the frame, then pixels within the artwork may connect to form a 
region comprising only part of the painting, as shown below: 

 

  
Fig. 13.  Example of failed region segmentation due to over-thresholding. The 
triangular shape (and therefore proportion of the bounding box) of the 
resulting region raises the flag, leading to a lowered threshold in the next trial. 
 
In this case, the segmented region of interest may be either 
extremely elongated or strangely shaped.  For example, if the 
aspect ratio of the region’s bounding box exceeds 2.4 or dips 
below 0.55, then segmentation likely cropped a significant 
portion of the painting, since no painting exhibits such 
elongation.  Furthermore, if the number of pixels in the region 
amounts to less than 7/10 of its bounding box area, then the 
segmented region must not be rectangular, again indicating failed 
frame edge detection. If either of these scenarios unfolds, then 
we backtrack to Sobel gradient filtering with an empirically 
lowered threshold of 0.042. Following subsequent region 
isolation, we again perform the same two checks, lowering 
threshold further if necessary.  We thus decrement the Sobel 
threshold every time the central region exhibits extreme aspect 
ratio or unusual (non-rectangular) shape, stopping only after we 
obtain an approximately rectangular central region. 
 After isolating the largest region, our algorithm smoothens the 
region boundaries by computing the convex hull; because the 
convex hull is the smallest convex polygon that can contain the 
region, it subdues pointed edges or jagged boundaries, tempering 
sudden changes with longer, sweeping sides.  Our algorithm 
exploits the Matlab command:  
 

regionprops(regionImage,’ConvexImage’) 
 

Fitting the convex hull not only smoothens region boundaries 
but also crops the image to its bounding box, thereby eliminating 
all background pixels. 
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F. Corner Detection 
Because of perspective-based tilt and oblique camera angles, 

the painting on the wall does not always appear rectangular in 
the image plane, such as the Daughters of Jethro image below: 

 
Fig. 14.  Image of Daughters of Jethro, distorted by camera angle. 
 

 Our algorithm must recognize paintings whether or not they 
directly face the camera, but the principal component transform 
cannot possibly transform two differently angled paintings into 
the same point.  To standardize all paintings of interest before 
applying the principal component transform, our algorithm must 
rectify the perspective distortion of parallelogram-shaped regions 
with an inverse perspective transform. Matlab supplies a control-
point-based perspective transform but requires specification of a 
region’s four corners. 

Numerous sophisticated algorithms for corner detection such 
as the Haralick and Harris corner detectors already exist.  
However, these advanced algorithms supply superfluous detail in 
their corner detection: 

 

 
Fig. 15.  Excessive detail in Haralick corner detection. 
 
 Because the Haralick corner detector spots even slight 
intermediate corners along the painting sides, we opt for a 
simpler method. 

As control point transform requires only four corners, we 
divide our convex region into four quadrants and locate the 
point in the region with the maximal displacement from the 
image center: 

 
max

ୡ୭୬୴ୣ୶ ୦୳୪୪
ሾ|ݔ െ |଴ݔ ൅ ݕ| െ  ଴|ሿݕ

 
where the region origin is ሺݔ଴,  ଴ሻ.  The maximum in each ofݕ
the four quadrants constitutes the four corners of our region.  
For instance, suppose we input the convex hull of the tilted 
Daughters of Jethro: 
 

 
Fig. 16.  Sum of coordinates as a measure of the degree of cornerness. 

 
The red regions display the largest sum ሾ|ݔ െ |଴ݔ ൅ ݕ| െ  ଴|ሿ inݕ
the convex hull, indicating the highest degree of cornerness in 
the painting.  By locating the critical point in each of the four 
quadrants, we deduce the locations of the four corners. 
 After repeated trial and error, we remark that the corners 
always occur along the region boundary, so we can expedite 
corner detection by maximizing along the perimeter of the convex 
hull instead of its entirety; we then need search only a sparse 
matrix, thereby reducing the number of required computations. 
Juxtaposing the two matrices, we see that the perimeter corner 
detection yields the same result despite operating on the 
incomplete region: 

 
Fig. 17.  All four corners occur along the perimeter, so corner detection need 
not examine the interior of a region.  Sparse matrices expedite computation. 
 
With the corners of the convex hull located, our algorithm 
proceeds to invert the perspective transform. 
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G. The Inverse Perspective Transform 
Matlab’s cp2tform command requires two sets of control 

points – one for the distorted image and another for its 
rectangular alignment.  The four corners previously detected 
provide the perspective-distorted input points, but we can also 
use the same corners to estimate the base points: 

 

 
Fig. 18.  Intermediate x and y coordinates define a rectangle to which an 
inverse perspective transform can map the distorted quadrilateral.  
Intermediate values come from the sorted corners. 

 
As the graphic above reveals, the two intermediate x-coordinates 
and two intermediate y-coordinates define a box that 
approximates the painting’s rectangular shape. In this manner, 
the four control points share coordinates with the sorted corners 
previously obtained; having previously computed the distorted 
painting’s four corners, we need only order them and extract the 
second-highest and second-lowest x and y corner coordinates to 
form the rectangle shown above. This method provides a 
workable approximation only when the camera angle from the 
wall is not too severe; there is no hope for recovery from 
extreme degrees of perspective distortion. 
 With these control coordinates, Matlab generates an inverse 
projective transform with the command: 
 

cp2tform(cornersXY, rectXY, 'projective') 
 

where rectXY lists the four intermediate pairs shown above.  
Upon performing the previously generated inverse perspective 
transform using imtransform, we obtain the image: 
 

          
Fig. 19.  Inverse perspective transform rectifies camera angle distortion. 

 
Although the transformed Education of the Virgin closely 
resembles the frontal view of the original, eigenanalysis requires 
standardized dimensions, so, in order to align all of our images 
on the same dimensional scale prior to principal component 
decomposition, we perform one additional affine transform to 
square the rectangular image to 128 pixels ൈ 128 pixels: 
 

         
Fig. 20.  Affine transform maps rectangular painting to a 128 ൈ 128 square 
image, so eigenanalysis can operate on images of the same dimensions. 
 
 

III. EIGENPROJECTION 
Thirty-three paintings exude obvious visual differences in 

Cartesian space, but the variation in brightness and shadow from 
one digital image to another complicates automatic 
identification, since the slightest flash spot or differing camera 
angle captures an entirely different image even when the subject 
remains the same. Ultimately, the matrix of pixel values that 
results from a digital image depends more heavily on the lighting 
conditions and camera geometry than on the finely nuanced 
painting pigments themselves. Considering the sensitivity of 
matching in Cartesian image space, we base our identification in 
a different space – an eigenspace spanned by orthonormal basis 
images, otherwise known as principal components or eigenimages [2]. 

Given thirty-three paintings of interest, we stack their 
registered square matrices, one on top of the other, to form a 
128 ൈ 128 ൈ 33 rectangular prism of images: 
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IV. EXPERIMENTS IN EIGENSPACE 
 
 
 
 
 
 
 
 
 
 
 
Fig. 21.  Upon stacking 33 training images (not all pictured), we define the 
vector population X comprising the vectors through each set of pixels. 
 
Each point in the 128 ൈ 128 grid defines a 33-element vector. 
Moving through the stack, this vector contains one pixel from 
each of the 33 images, allowing us to describe the image stack by 
a population of such x vectors, one for each point in the 128 ൈ 
128 grid. Arranging these 16,384 vectors as columns of a matrix 
X, we can describe the image set by a mean vector µ୶ and a 
covariance matrix Σ୶, defined to be 

 

ܠૄ ൌ
1

128 ൈ  128 ෍ ܓܠ

ଵଶ଼ ൈଵଶ଼

୩ୀଵ

 

 

Σ୶ ൌ
1

128 ൈ  128 ෍ ୩Tܠܓܠൣ െ ୶T൧ૄܠૄ
ଵଶ଼ ൈଵଶ଼

୩ୀଵ

 

 
Because the covariance matrix Σ୶ is real and symmetric, the 

Spectral Theorem holds that it must be orthogonally diagonalizable 
with real eigenvalues and orthonormal eigenvectors [9]. Thus, 
we can use the eigenvectors of Σ୶ as an orthonormal basis to 
span the image space. However, in Cartesian (image) space, the 
vectors bear strong correlation, as Σ୶ is not a diagonal matrix; in 
fact, the off-diagonal entries can be quite large, indicating that 
the vector of pixels through one point in the image grid does not 
differ considerably from its neighboring vectors. Such a vector 
comparison in the image space will still yield viable 
identification, provided that our algorithm accounts for the 
nonzero correlation between pixels.  However, discrimination 
grows much more robust when the eigenbasis is orthonormal, 

the correlation matrix is purely diagonal, and the main 
coordinate axes are spaced as far apart (90°) as possible.  Hence, 
in the first step of principal component decomposition, we 
orthonormally diagonalize the image covariance matrix with an 
orthogonal transformation given by  matrix A: 
 

AΣ୶ ൌ Σ୷A 
 

Σ୶ ൌ AିଵΣ୷A 
 
If we choose an orthogonal transformation such as the 

Hotelling transform (widely used in PCA), then Aିଵ ൌ AT since A 
is a unitary, real, and therefore orthogonal matrix [2]. 

 
Σ୶ ൌ ATΣ୷A 

 
Σ୷ ൌ AΣ୶AT 

 
The orthogonal transformation matrix A orthonormally 

diagonalizes the image covariance matrix. As a result, Σ୷ – the 
covariance matrix in the new eigenbasis given by the columns of 
A – is a diagonal matrix comprising the eigenvalues of our 
original covariance matrix Σ୶: 

 

Σ୷ ൌ ቎
λ୶,ଵ ڮ 0
ڭ ڰ ڭ
0 ڮ λ୶,ଷଷ

቏ 

 
Most importantly, the off-diagonal elements of the covariance 

matrix are now zero, meaning that diagonalization has 
decorrelated the image vectors. The choice of an orthogonal 
transformation – the Hotelling transform – further provides an 
orthonormal eigenbasis particularly suitable for representation 
and identification. As we know from elementary linear algebra, 
the column vectors of the transformation matrix A are precisely 
the 33 orthonormal eigenvectors of Σ୶. 

In order to construct this matrix A that our algorithm needs 
to perform the Hotelling transform on given input images, we 
first generate a model covariance matrix of 33 perfectly aligned 
images, as an ideal case for the 33 possible paintings that we 
must identify. (In actuality, we can compute the covariance 
matrix from any 33 training images of the 33 paintings, but, 
assuming that our pre-processing alignment functions flawlessly, 
we begin with a model set.) After computing the covariance 
matrix Σ୶ of this model vector population X (with vectors x 
arranged as columns in 33 ൈ 16,384 matrix X), we arrange its 
eigenvalues in descending order along the main diagonal of our 
model diagonal matrix Σ୷ . We then stack their corresponding 
eigenvectors in the same order to form the orthogonal 
transformation matrix A. 

Brandishing the principal components transform given by 
matrix multiplication with A, we are prepared to transform any 
training set of L = 33 model paintings using the algorithm [2]: 

 
ܡ ൌ Aሺܠ െ  ሻܠૄ

 

Vector x for pixel at (2,2) 
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Thus, multiplication by the orthogonal matrix A maps vectors 
in the training set space of x into the eigenspace vector y, in 
which all principal components of the thirty-three model images 
have been decorrelated and orthogonalized. Brightness values, 
grayscale intensities, and shadow no longer dominate image 
differentiation in this alternate subspace, since the eigenaxes 
have been orthonormally aligned with the precise paintings, 
making direction the primary discriminant rather than magnitude. 

Recall the definition of a vector population X, for an image 
stack of N ൈ N ൈ L images: 

 

X = ൥
՛ ՛ ՛
૚ܠ ૛ܠ ڮ ૛ۼܠ
՝ ՝ ՝

൩ א Թ൫௅ ൈ ேమ൯ 

 
In image space, each of these vectors simply informs the 

grayscale intensity of a pixel, but we can decorrelate these 
intensities by transforming each image space vector into 
eigenspace through premultiplication by the orthogonal principal 
component transform matrix A: 

 

A = ൥
՛ ՛ ՛
૚ܞ ૛ܞ ڮ ۺܞ
՝ ՝ ՝

൩ א Թሺ௅ ൈ௅ሻ 

 
…where the vectors ܞ୧ represent the L = 33 eigenvectors of 

the correlation matrix Σ୶. Notice that, while the columns ࢐ܞ of 
matrix A comprise the L orthonormal eigenvectors of Σ୶, the 
rows ࢛࢏ of matrix A reveal the eigencoordinates of the L training 
images in matrix X, used to construct A: 

 

A = ൦

՚ ࢛૚ ՜
՚ ࢛૛ ՜

ڭ
՚ ࡸ࢛ ՜

൪ א Թሺ௅ ൈ௅ሻ 

 
Assuming that our images have previously been normalized to 

zero mean (prior to concatenation in X), transforming our image 
space into eigenspace entails a simple Cayley product: 

 

Y = AX =൥
՛ ՛ ՛
૚ܠܣ ૛ܠܣ ڮ ૛ۼܠܣ
՝ ՝ ՝

൩ א Թ൫௅ ൈ ேమ൯ 

 
Because eigenspace matrix Y shares the same dimensions as 

image stack matrix X  ሺܮ  ൈ Nଶሻ, and since L ا Nଶ, matrix Y is 
a fat matrix. As all training images in image stack X differ, 
matrices X and Y are also full rank. 

To determine the coordinates of the given set of training 
images in the eigenspace, we need only recall that we constructed 
this very eigenbasis – the columns of matrix A – with models of 
the training set, so the coordinates of that training set in the 
eigenspace are the rows of A – a linear combination of the basis 
columns. The model images we use to construct the 
transformation A will enjoy simple representation in the 
eigenspace, since the orthogonal axes, by design, align with our 
model images. 

However, our original formation of A assumed ideal model 

images, perfectly aligned and registered.  Such perfect alignment 
rarely occurs in reality, as the empirical nature of edge detection 
and projective transformation inevitably yields variable pre-
processing across images taken at different angles with varying 
amounts of motion blur. Thus, to ensure that the transformation 
is as robust as possible for all images of the same painting, we 
construct A with all possible variations that could arise from our 
training set; in addition to the 33 model images previously 
discussed, we insert heavily shadowed, slightly tilted, and even 
poorly-lit versions of an image to account for scenarios in which 
edge detection and/or inverse perspective transforms yield 
imperfect registration. Hence, even when the variability of pre-
processing rears its head, our expanded eigenbasis still contains 
an eigenimage (or eigenaxis) that is relatively close to the 
imperfectly aligned input, making detection by direction as easy 
as if the input image had been perfectly aligned.  Consequently, 
in anticipation of numerous forms of misregistration, we expand 
the eigenbasis to 57 eigenimages for the eightfold downsampling 
(and 66 for sixteen-fold downsampling).  We choose the 
additions empirically to cover all scenarios that arise frequently 
in pre-processing, such as excessive shadow detection under 
Adam and Eve and Portrait of a Young Artist: 

 

     
Fig. 22.  Addition of a second eigenimage for Adam and Eve to cover pre-
processing that fails to segment the painting completely from shadow. 

 

     
Fig. 23.  Addition of a second eigenimage for Portrait of a Young Artist to 
cover the large number of pre-processed training images with lower shadow. 

 
In this manner, we incorporate our knowledge of pre-

processing weaknesses into the eigenbasis expansion to improve 
the robustness of identification. 

Once the images from which we generate our eigenbasis 
adequately represent the spectrum of possible variations in pre-
processing output, we form the eigenbasis as described 
previously for the model set: (1.) stack the chosen set of 
representative images; (2.) form matrix X from the vectorized 
image stack; (3.) compute the covariance matrix Σ୶; (4.) calculate 
the eigenvalues and corresponding eigenvectors of the 
covariance matrix Σ୶; (5.) arrange the eigenvectors as columns of 
a matrix A; and (6.) transform the image set into eigenspace 
coordinates through the multiplication Y = AX. 

With a solid representative vector population and its 
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eigenspace coordinates documented in Y, we are now prepared 
to identify any painting that aligns similarly to paintings 
represented in the columns of matrix X. 

Suppose we receive an input image that our pre-processing 
algorithm squares and aligns to a size of N ൈ N.  Transforming a 
single painting into the eigenspace spanned by columns of A 
cannot be accomplished by simple matrix multiplication, since 
the eigenbasis involved a stack of 57 (or 66) images, with each 
pixel vector x penetrating the entire training set from the first 
image to the last, through a single point in the grid: 

 

 
Fig. 24.  Illustration of the image stack and the vectors that represent not the 
vectorized images but rather the common pixels in the stacked images. Each 
vector x does not represent a single image but rather than intensities at one 
location in all training images. [3] 

 
One might wonder how a single image can enter the 

eigenspace.  Consider the transpose of the following equation: 
 

Y = AX 
 

YT ൌ XTAT 
 

Since matrix Y is fat and full rank, its transpose YT is skinny and 
full rank. Consequently, YT has a left inverse, which we denote the 
pseudoinversei ሺYTሻற.  Premultiplying both sides of the equation 
by this left inverse of matrix YT, we obtain the equation: 

 
I ൌ ሺYTሻற XTAT 

 
Because the Hotelling transform is an orthogonal 

transformation, its matrix is orthogonal: ିܣଵ ൌ AT. 
 

I ൌ ሺYTሻற XTିܣଵ 
 

ܣ ൌ ሺYTሻற XT 
 
In this manipulated version of the transformation equation, 

the transformation matrix is now ሺYTሻற.  We denote this matrix 
the eigenprojector.  The matrix XT still derives from the stacked 
image pixels, but its dimensions are ሺNଶ  ൈ Lሻ, where N is the 
side length of our pre-processed square image, and L is the 
number of images used to construct the eigenbasis; in the 
eightfold downsampling, our algorithm squares images to 128 ൈ 

 
i By definition, the pseudoinverse of a matrix M is defined in terms of its 

singular value decomposition: If M = ܷΣVT, then ܯற ൌ ܸΣିଵUT ሾ10ሿ. 

128, so N = 128, while L = 57 images represent possible pre-
processing outputs robustly. However, if we downsample further 
(by sixteen), we square images to 64 ൈ 64, so N = 64.  Because 
identification accuracy also decreases with the image size, we 
must add more possible outcomes in the formation of the 
eigenaxes, so L = 66 for the sixteen-fold downsampled case. 

Nevertheless, regardless of the size of our registered square 
input image, its dimension ሺNଶ  ൈ Lሻ means that input images f 
of dimension N ൈ N can be pre-multiplied in the same manner 
by the eigenprojector ሺYTሻற.  The number of image stack 
vectors is the same size as the length of the vectorized image, so 
we can perform eigenspace conversion without a stack by 
exploiting the transpose for its identical size. The advantage is 
evident. Having already computed the eigenprojector offline 
(prior to identification), the conversion ሺYTሻற܋܍ܞሺ݂ሻii exacts 
only one matrix product: 

 

    ݃       ൌ       ሺYTሻற      ܋܍ܞሺ݂ሻ 
ሺL ൈ 1ሻ  ൌ ሺL  ൈ Nଶሻ ሺNଶ  ൈ 1ሻ 

 

To which eigenaxis of A does the resultant set of coefficients ܏ 
correspond? Recall that the L columns of matrix XT, in place of 
which we substituted input image f, correspond to the L images 
from which we constructed our eigenbasis.  The resultant set of 
eigencoefficients ܏ is therefore comparable with the 
eigencoordinates of our original training set, which we recall to 
be the rows of matrix A. Thus, locating the most similar painting 
to f in the given set of training images used to construct A 
amounts to comparing the coordinates in eigenspace; the most 
similar painting – ideally the painting with the same name as the 
painting in the input image – will point preferentially along one 
of the discreetly chosen eigenaxes, so its coordinates in the rows 
of A will closely match the eigencoefficients ܏. The algorithm 
concludes that the input image f features the painting in original 
training image ݌௞ if the eigencoefficients ܏ ൌ ሺYTሻற܋܍ܞሺ݂ሻ are 
closest in the mean-square sense to ࢛ܓ, the kth row of A: 
 

หሺYTሻற܋܍ܞሺ݂ሻ െ ࢛࢑ห
ଶ ൌ min

ሼ௝ୀଵ,ڮ,௅ሽ
หሺYTሻற܋܍ܞሺ݂ሻ െ ࢛࢐ห

ଶ
 

ݎܾ݁݉ݑ݊ ݁݃ܽ݉݅ ൌ ݇ ׷   ܏| െ ࢛࢑|ଶ ൑ ห܏ െ ࢛࢐ห
ଶ ׊ ݆  א ሼ1,ڮ ,  ሽܮ

 
Much like mean-square comparison in the Cartesian image 
domain, the mathematical computation required for such a 
computation involves only L comparisons, but the separation – 
and hence distinguishability – of the L images increases in 
eigenspace because of the deliberate orthogonality of the 
eigenimages. Meanwhile, by forming our eigenimages from not 
only the thirty-three paintings but also their pre-processed 
variations, each possible output has a closely aligned eigenaxis, 
allowing the coordinates in ࢛࢏ to be as distinct as possible. 
 To ensure that we correctly map the L possible eigenaxes to 
their respective paintings, we create an index vector to relate 
each row of A to its corresponding image space painting. Thus, 
once our algorithm determines the image number k, we can 
extract the painting number and title by indexing its kth entry. 
 

iivec(f) concatenates the columns of matrix  f, one below the other. If f is an 
M ൈ N matrix, then vec(f) is an MN ൈ 1 column vector. In Matlab, vec(f) is 
denoted f(:). 



 Digital Image Processing –Tsai, Zhang, Janatra, June 2007. 10

V. EXPERIMENTS IN EIGENSPACE WITH SIROVICH & KIRBY 
In addition to the aforementioned eigenaddition, we also 

attempted solution with the more conventional Sirovich and 
Kirby eigenimage decomposition. As the algorithm needs to 
identify only 33 different paintings, it needs only 33 eigenimages 
under perfect pre-processing.  

As with the previous method’s model set, the eigenimage 
solution compiles thirty-three unique, focused images, each 
represented by a column vector ൛Γറଵ, Γറଶ,ڮ , Γറଷଷൟ to create the 
training set matrix ܵ ൌ ൣ൫Γറଵ െ µሬറ൯ ൫Γറଶ െ µሬറ൯ ڮ ൫Γറଷଷ െ µሬറ൯൧, 
where µሬറ is the mean of all the vectorized images.  Tapping the 
Sirovich & Kirby method to compute eigenimages, 
 

ܵܵுܵݒపሬሬሬറ ൌ  పሬሬሬറݒ௜ܵߣ
 

where ݒపሬሬሬറ are the eigenvectors of ܵுܵ. Consequently, ܵݒపሬሬሬറ are the 
eigenvectors of ܵܵு , also known as eigenimages. 

In order to reduce calculation time, the algorithm consults 
only the twelve eigenimages with the largest eigenvalues, three of 
which appear below: 
 
 
 
 
 
 
 
 
Fig. 25.  Three highest-energy eigenimages derived from Sirovich & Kirby. 
 
This algorithm maps each of the thirty-three images into the 
twelve-dimensional eigenimage space by finding the correlation 
between each image and the eigenimages. The eigenimage matrix 
and correlation matrix are stored in memory as 
 

Σ௜ ൌ

ۏ
ێ
ێ
ێ
ۍ EൣΓറ୧ · ଵሬሬሬሬറ൧ݒܵ
EൣΓറ୧ · ଶሬሬሬሬറ൧ݒܵ

ڭ
EൣΓറ୧ · ےଵଶሬሬሬሬሬሬറ൧ݒܵ

ۑ
ۑ
ۑ
ې
 

 

After loading the eigenimage and correlation matrix, this 
algorithm calculates the correlation between the unknown image 
and the eigenimages, juxtaposing the mean square difference 
between these correlation values and the correlation values of 
the known 33 paintings. The most similar painting yields the 
minimum mean square error.   

Because of our pre-processing algorithm’s occasionally 
imperfect performance, we again introduce additional images to 
the training set matrix S in order to correctly identify blurrier and 
more severely tilted images.  

Eigenimage identification process proves to be an extremely 
fast algorithm as the calculation-intensive step (e.g. calculating 
the eigenimages) is done prior to recognition task. In addition, 
eigenimage identification allows us to downsample the images to 
further reduce processing time. The downside of eigenimage 
recognition is its reliance on the consistency of pre-processing. It 
is also somewhat unpredictable, as expanding the eigenset does 
not always improve accuracy; one must constantly balance 
interpolation – the addition of more eigenimages – and 
extrapolation outside the training set.  The danger of overmodeling 
always looms one poorly chosen eigenimage away. 

VI. EXPERIMENTS IN CARTESIAN SPACE 
Minimization of Cartesian mean square error (MSE) remains 

one of the most intuitive ways to identify similarity between 
images. Finding the lowest MSE is straightforward in 
implementation, fast in execution, and relatively robust.  Over a 
small region, the pixel values of the processed images remain 
fairly constant. For that reason, the method is invariant to minor 
shifts incurred during pre-processing. 

The algorithm taps at least one processed image of each 
picture as reference, while normalizing all reference images to a 
mean of 128 and a standard deviation of 80 to reduce the effect 
of uneven lighting conditions. The processed input image – 
converted to grayscale, centered and projected to a pre-
determined size – is normalized to have the same mean and 
deviation as the reference images. For every reference image, the 
algorithm computes the MSE between the processed input and 
the reference.  The reference image yielding the lowest MSE 
corresponds to the desired painting. 

To properly identify the given training set of 33 × 3 images, 
this approach can achieve perfect accuracy with 33 reference 
images (one reference image per painting). However, when this 
set of reference images is used to identify 601 images of the 
expanded training set, accuracy declines to 97%.  In order to 
achieve perfect accuracy, the reference set has to be expanded by 
taking more than one reference image per painting if necessary.  
This implementation uses 48 reference images to achieve perfect 
accuracy in the expanded training set. 

Another equally important barometer of success is robustness 
to noise, blur, angle, and shadow, which we quantify with 
tolerance: 

Tolerance ؜
min

௔௟௟ ெௌா
|݁ܿ݅݋݄ܿ ݐܿ݁ݎݎ݋ܿ݊݅ ݂݋ ܧܵܯ|

|݁ܿ݅݋݄ܿ ݐܿ݁ݎݎ݋ܿ ݂݋ ܧܵܯ|  

 
High tolerance signifies clarity and ease in decision-making. In 

these cases, minor changes in the processed input image very 
likely will not affect the decision.  On the other hand, low 
tolerance signifies ambiguity.  In this case, it is very likely that the 
decision changes direction if the processed input image is 
distorted by a very minor shift or additive noise.  

Figure 26 displays the histogram of tolerance when identifying 
601 images of the expanded training set using the set of 33 
reference images, whereas Figure 27 shows the histogram of 
tolerance using the original set of 48 reference images: 

 

 
Fig. 26.  Tolerance distribution as a measure of identification accuracy when 
making mean square difference comparison over 33 reference images.  
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Fig. 27.  Tolerance distribution as a measure of identification accuracy when 
making mean square difference comparison over 48 reference images. 

 
Observe that, when we consult a reference set of 33 images, 

9% of the decisions suffer from low tolerance of less than 1.1, 
whereas, tapping a reference set of 48 images, only 3% of the 
decisions exhibit tolerance less than 1.1.  In conclusion, 
minimizing the Cartesian MSE while appropriately expanding 
the reference set improves not only accuracy but also robustness. 

 

VII. COMPARISON 

Method 
10-Image 
Test Set 

Time 

Mean 
Time per 
Painting 

Training Set 
(3 ൈ 33) 

Accuracy 

Total Set 
(601) 

Accuracy
Eigenprojection 

(Downsample ൈ 4) 
21.411 sec 1.772 sec 99/99 

100% 
595/601 
99.002% 

Eigenprojection 
(Downsample ൈ 8) 

4.202 sec 0.1226 sec 99/99 
100% 

590/601 
98.17% 

Eigenprojection 
(Downsample ൈ 16) 

2.722 sec 0.0788 sec 99/99 
100% 

578/601 
96.173% 

S & K Eigenimages 
(Downsample ൈ 4ሻ 5.317 sec 0.1666 sec 96/99 

96.97% 
566/601 
94.176% 

Cartesian MSE 
(Downsample ൈ 4) 

11.241 sec 0.9567 sec 99/99 
100% 

595/601 
99.002% 

Cartesian MSE 
(Downsample ൈ 8) 

4.115 sec 0.3229 sec 99/99 
100% 

594/601 
98.835% 

Cartesian MSE 
(Downsample ൈ 16) 

3.251 sec 0.1451 sec 97/99 
97.98% 

558/601 
92.845% 

Table 1.  Juxtaposition of identification algorithms in speed and accuracy. As 
expected, accuracy decreases as speed (downsampling rate) increases.  All 
algorithms employ identical pre-processing as outlined in Section II. 

 
Euclidean distance computation in both Cartesian coordinates 

and eigenspace involve comparable numbers of operations, so 
the mean operation times per painting are unsurprisingly similar. 
Both methods also load matrices of comparable sizes, although 
initial loading times consume a larger portion of the eigenspace 
time than they do for the Cartesian total time, leading to the 
dominance of Cartesian identification for low decimation rates.  
However, once the eigenprojection matrix decreases to 66 ൈ 
4096 in sixteen-fold downsampling, the speed of matrix 
multiplication in Matlab quickly outpaces the setup time 
necessary to compare in Cartesian space. 
   All methods maintain nearly spotless accuracy for the 
training set, although different algorithms miss different 
paintings outside the original 3 ൈ 33 training images. A certain 
set of pathologically blurry images consistently fails for every 
identification algorithm, but the eigenprojection method remains 

the most robust during extreme downsampling, likely because it 
relies not on precise pixel placement but rather on overall 
training set trends, since the algorithm erects an eigenbasis from 
an image stack rather than individual paintings. Stress testing 
strains each algorithm in different ways – Cartesian MSE is more 
vulnerable to uneven lighting and shadow, whereas 
eigenprojection falls prey to wild camera angles – but no 
algorithm comes close to breaking at eightfold downsampling. 
 

VIII. CONCLUSION 
Eigenprojection seems an even more viable solution to 

implement in camera-phone software since nearly all necessary 
computation occurs offline, prior to use. With a reliable eigenbasis 
loaded into cache memory, identification and hence information 
can flow on-screen instantaneously upon image capture. 
Furthermore, when the exhibition expands, the user need only 
load an updated eigenprojection matrix and eigencoordinate set 
into the device to maintain accurate identification.  However, as 
the pathological images reveal, severe motion blur and wide 
camera angles can thwart pre-processing and ruin recognition, so 
this implementation applies only for face-on static photography; 
more dynamic applications would require more robust pre-
processing. Nevertheless, the reliability of eigenprojection under 
even severe (sixteen-fold) decimation suggests that even smaller 
imaging devices can gather enough information to distinguish 
between a finite set of known objects. After all, even a picture 
without a thousand pixels is worth a thousand words. 
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