
 Digital Image Processing –Tsai, Zhang, Janatra, June 2007. 1

Abstract—“A picture is worth a thousand words,” but finding
the right thousand words to describe a picture has no simple
adage. Camera phones and other mobile devices can easily
capture a scene, but processing the image to inform its contents
and describe the scene requires efficient object recognition and
identification. In an effort to augment reality in a potential virtual
museum guide, this document presents an efficient method to
identify a painting centered in a camera phone digital image. This
expedient and accurate algorithm taps the principal component
transform to map the thirty-three paintings of interest into an
alternative subspace spanned by an orthogonal basis of
eigenimages. Within the eigenspace, Euclidean distance
computation and subsequent feature recognition simplify into
juxtaposition of the transformed image coordinates and the
known eigencoefficients of our thirty-three known paintings.

Index Terms—camera, painting, object recognition and
identification, principal component analysis (PCA), eigenimage

I. INTRODUCTION
ELLULAR phone and mobile device technology have
evolved beyond mere conversational communication to
support numerous forms of multimedia, the most prevalent

of which is image data. Camera-phones can capture scenes and
store their pictures in digital formats like the JPEG file, at a
resolution sufficiently fine for detailed object recognition,
whether it involves face discrimination, or, for our application,
painting identification. Furthermore, by properly recognizing the
features in a painting, the portable device can augment its user’s
reality by supplying additional information about the subject,
such as the painting’s title, artist, date, and background
information. Nevertheless, expedient identification begins with
digital image processing, and the following document examines
eigenanalysis – otherwise known as principal component analysis
(PCA) – as an efficient means to accurately identify works of art,
using examples from the European art gallery at the Cantor Arts
Center to train and test our algorithm. We characterize
successful identification by our algorithm’s ability to distinguish
thirty-three different paintings from this European art gallery.

II. PRE-PROCESSING PROCEDURE

A. Downsampling
Even at its coarse resolution (compared to camera images),

phone-captured image files are saturated with information. For
example, the 2048 ൈ 1536 JPEG images taken with the Nokia
N93 might provide less detail than a full-fledged digital camera
photo, but the amount of pixel redundancy allows us to
downsample the images eightfold while preserving
recognizability of imaged objects. Consider the following digital
image of the painting Edward Becher:

Fig. 1. Original 2048 ൈ 1536 JPEG color image of Edward Becher.

If we downsample the image by a factor of four, we obtain the
following comparatively detailed version:

Fig. 2. Downsampled 512 ൈ 384 color image of Edward Becher.

Similarly, downsampling the image by a factor of eight also
reduces detail but preserves recognizability of key features:

Fig. 3. Downsampled 256 ൈ 192 color image of Edward Becher.

While the naked eye can no longer discern Mr. Becher’s facial

Pictures at an Eigen-Exhibition
Christopher Tsai, June Zhang, and Ignatius I. Janatra

 tsaic@stanford.edu, junez@stanford.edu, ivan87@stanford.edu

Department of Electrical Engineering, Stanford University

C

 Digital Image Processing –Tsai, Zhang, Janatra, June 2007. 2

features, the shape of his hair, the colors of his jacket, the limbs
of the tree, and other key objects remain distinct. The
downsampled image has lost some of its fine detail, but it
remains distinctly and distinguishably Edward Becher.
 The advantages of downsampling far outweigh its minor
drawbacks; while the smaller, downsampled images display less
detail when compared to their full-sized counterparts, the
downsampled versions require far less time to process, making
them crucial to an augmented reality application in which
expedient description should quickly follow a photographed
scene. The number of pixels that an image processing algorithm
must process decreases as the square of the downsampling
factor: when we sample our original 2048 ൈ 1536 image down to
its 256 ൈ 192 rendition, the image has 64 times fewer pixels, so
any global or element-wise image processing matrix operation
performs 64 times fewer computations, cutting processing time
by 64 for our eightfold downsampled image, and by 256 for
sixteen-fold downsampling. However, downsampling by even
greater factors reaps little additional benefit in processing time:

Fig. 4. Approximately inverse relationship between the speed of pre-
processing and the factor by which we downsample the original image.

In the digital domain, each image is a matrix. For the human
eye, the loss of detail may arguably reduce a painting’s singular
qualities, but, for the digital eye used to distinguish one painting
from a finite number of others (such as the thirty-two other
paintings in the European art gallery), the downsampling retains
recognizability for the simple reason that hundreds of pixels still
remain to separate one image matrix from the finite number of
other possibilities.

As a matter of fact, we will shortly see that the reduction in
pixel redundancy also facilitates edge detection, as bridging gaps
between frame lines requires less smoothing and smaller
structuring elements than would be required for the unsampled
image.

B. Grayscaling
Continuing the quest for compact representation and hence

minimal computation, we prune our image further by coalescing
information from the three color channels into a single grayscale

intensity. While color remains a powerful visual discriminant
between different paintings, its limited value in principal
component analysis does not warrant the threefold increase in
computation that retaining all three channels would require.
Thus, in an effort to reduce the amount of unnecessary
information in our algorithm operand, we convert each input
image from the Red-Green-Blue (RGB) color space to grayscale
values between 1 and 256.

Following the transformation used in Matlab’s rgb2gray,
we merge the color channels in the linear combination:

௚݂௥௔௬ ൌ 0.29894 · ௥݂௘ௗ ൅ 0.58704 · ௚݂௥௘௘௡ ൅ 0.11402 · ௕݂௟௨௘

Because the coefficients add to unity, this weighted sum
preserves the intensity scale while accentuating the green channel
because of its strong relative contribution to the luminance or
human-perceived brightness of a pixel:

Fig. 5. Luminance efficiency curve. Maximum value occurs around a
wavelength (λሻ of 550 nanometers, in the middle of the green channel.

Recalling that the luminance efficiency curve peaks at green

wavelengths, we ensure that the green channel contributes
doubly to the grayscale intensity as the red channel, and more
than five times as much as the blue channel, whose luminance
contribution is minimally present in human perception.

C. Edge Detection
Prior to identifying any painting in an image, the algorithm

must first locate the painting within the image space and separate
it from its surroundings. To determine where a painting ends
and where the wall around it begins, our algorithm detects edges
by their exceptionally strong response under convolution with
the bidirectional Sobel operators:

൥
െ1 െ2 െ1
0 0 0
1 2 1

൩ and ൥
െ1 0 1
2 0 2
െ1 0 1

൩

Filtering the image with this pair of Sobel operators extracts

the horizontal and vertical image gradients, which are highest
where the grayscale intensity changes most rapidly. Because the
transition in brightness from a painting frame to its surrounding
wall typically produces the sharpest pixel value changes in the
image, the Sobel operators readily extract the lines separating
each frame from the wall on which it hangs. From empirical
trial and error with the data from our Nokia N93 images, we

2 4 6 8 10 12 14 16 18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Processing Time as a Function of Subsampling Factor

Subsampling Factor

P
ro

ce
ss

in
g

Ti
m

e
(re

la
tiv

e
to

 ti
m

e
w

ith
ou

t s
am

pl
in

g)

 Digital Image Processing –Tsai, Zhang, Janatra, June 2007. 3

declare a pixel in the resultant filtered image to be part of a line
or object edge if its Sobel gradient exceeds 0.052 on the unit
intensity scale [0, 1]. For example, consider the following
downsampled snapshot of Napoleon:

Fig. 6. Downsampled grayscale image of Napoleon.

Filtering this image with subsequent passes of the Sobel
operators with a threshold at 0.052, we obtain the edge map:

Fig. 7. Sobel gradient edge map of Napoleon. Not all pixels connect.

As desired, the painting frames yield the largest Sobel gradient
values, so their edges protrude most prominently in the gradient
output. However, because these edge points may not form a
closed boundary or even an unbroken line, we bridge the gaps in
the edge map by morphologically closing the image with a small
isotropic structuring element, such as the radius-one diamond:

൥
0 1 0
1 1 1
0 1 0

 ൩

Morphologically closing the binary edge map not only
connects fragmented frame edges but also smears false edges
together, ensuring that the resulting image contains closed loops
– some of them false ones – rather than single isolated points:

Fig. 8. Morphological closing of the Sobel edge map with a radius-one
diamond structuring element. Lines are bridged, but not all holes are closed.

 Finally, noticing that many closed edge loops still contain
holes, we fill the image by setting all values within each boundary
to unity using an algorithm like Matlab’s imfill:

Fig. 9. Filled morphological closing of the Sobel gradient.

At this point, our processed image contains a sufficient
number of well-defined areas that we can proceed to isolating
the region of interest. However, before we proceed, we return
again to sampling.

D. Edge Effects of Image Downsampling
As we previously discussed, sampling reduces the size of the

input image. Smaller images require less processing time.
More importantly, downsampling removes many of the small

noise-induced fake edges in the original image. Decimation also
sharpens the desired frame edges, facilitating gap bridging by
removing the need for larger structuring elements; the simple
radius-one diamond easily bridges most downsampled image
edges. In conclusion, the downsampled image is more robust for
frame extraction. The following figure illustrates the
improvement in edge detection gained merely by eightfold
decimation. As shown below, morphological closing becomes
more effective after downsampling the image:

Fig. 10. Sobel edge map of Edward Becher when operating on (left) the
original image, and (right) on the eightfold downsampled image. With fewer
pixels to bridge, the decimated image responds better to closing.

E. Region of Interest Isolation
An image typically comprises several secondary objects in

addition to the primary painting of interest; for example, in
addition to Napoleon, three other paintings, three labels, and a
wooden dresser appear in the image, all of which could
potentially confuse our image processing algorithm when it
attempts to identify the central painting. Assuming that the
camera user points her device at the object of interest, we need
to identify only the central painting, so we must eliminate the
regions in which the central pixel does not belong.

To check whether or not a region contains the central pixel in
the image, we would need to both compute each region’s
bounding box and repeatedly evaluate the Boolean Matlab

 Digital Image Processing –Tsai, Zhang, Janatra, June 2007. 4

function inpolygon on bounding box vertices. We might also
consider checking the region itself rather than its bounding box
for the central pixel. However, if imfill failed to completely
fill a region because of concentric boundaries or improperly
closed loops, then the central pixel may not belong to any region,
rendering even exhaustive search futile in a debacle such as the
one pictured below:

Fig. 11. Example of failed (incomplete) filling of the morphologically closed
edge map. Because closing failed to bridge peripheral gaps, the central region
of the painting Adam and Eve does not necessarily contain the center pixel.

Fortunately, even if morphological closing fails to close

boundary loops, and even if the interior of the painting frame is
not entirely unity following imfill, the region of interest will
still boast one of the highest pixel counts out of the perimeter’s
sheer size. Hence, instead of checking the containment of pixels
in each region, our algorithm instead labels regions using
bwlabel and ranks all 300-500 regions by their unity-valued
pixel count, which we can calculate either by looping or using

regionprops(filledImage,’Area’)

thereby retaining the dominance of the painting regions even
when they are improperly closed or incompletely filled. Having
narrowed down the possible regions of interest to large clusters,
we can afford to compute all candidate bounding boxes to
ascertain containment of the central pixel. We select the region
with greatest area if its bounding box contains the central pixel,
and opt for the second-largest region otherwise, assuming that
an image rarely features a single small painting surrounded by
two larger ones. Finally, we still must tap inpolygon to
ensure that we choose the central painting, but proper selection
no longer relies on flawless filling or exhaustive search across all
bounding boxes, cutting the number of inpolygon calls from
hundreds to one or two. In our example, the largest region is our
answer:

Fig. 12. Largest region of the Napoleon image isolated from surroundings.

Before we proceed with region-based processing, we note

here that our image now informs whether or not our Sobel
gradient edge map threshold successfully isolated the frame.

If motion blur or alternative frame design somehow causes a
frame edge to transition more smoothly into its surrounding
wall, then edge detection with a high threshold of 0.052 may fail,
so our algorithm must then lower the threshold and retry Sobel
edge detection.

Initially, the program has no way of knowing whether or not
this empirical threshold unambiguously locates the frame edges,
but we can foresee failure after filling regions from the edges.
Certain measures that indicate the failure of our initial threshold
include wild elongation of improperly encircled regions, or
simply a lack of clustered pixels after the fill operation. Once we
obtain the central region of interest, we check it for elongation
and irregular clustering.

If Sobel segmentation fails to highlight a significant portion of
the frame, then pixels within the artwork may connect to form a
region comprising only part of the painting, as shown below:

Fig. 13. Example of failed region segmentation due to over-thresholding. The
triangular shape (and therefore proportion of the bounding box) of the
resulting region raises the flag, leading to a lowered threshold in the next trial.

In this case, the segmented region of interest may be either
extremely elongated or strangely shaped. For example, if the
aspect ratio of the region’s bounding box exceeds 2.4 or dips
below 0.55, then segmentation likely cropped a significant
portion of the painting, since no painting exhibits such
elongation. Furthermore, if the number of pixels in the region
amounts to less than 7/10 of its bounding box area, then the
segmented region must not be rectangular, again indicating failed
frame edge detection. If either of these scenarios unfolds, then
we backtrack to Sobel gradient filtering with an empirically
lowered threshold of 0.042. Following subsequent region
isolation, we again perform the same two checks, lowering
threshold further if necessary. We thus decrement the Sobel
threshold every time the central region exhibits extreme aspect
ratio or unusual (non-rectangular) shape, stopping only after we
obtain an approximately rectangular central region.
 After isolating the largest region, our algorithm smoothens the
region boundaries by computing the convex hull; because the
convex hull is the smallest convex polygon that can contain the
region, it subdues pointed edges or jagged boundaries, tempering
sudden changes with longer, sweeping sides. Our algorithm
exploits the Matlab command:

regionprops(regionImage,’ConvexImage’)

Fitting the convex hull not only smoothens region boundaries
but also crops the image to its bounding box, thereby eliminating
all background pixels.

 Digital Image Processing –Tsai, Zhang, Janatra, June 2007. 5

F. Corner Detection
Because of perspective-based tilt and oblique camera angles,

the painting on the wall does not always appear rectangular in
the image plane, such as the Daughters of Jethro image below:

Fig. 14. Image of Daughters of Jethro, distorted by camera angle.

 Our algorithm must recognize paintings whether or not they
directly face the camera, but the principal component transform
cannot possibly transform two differently angled paintings into
the same point. To standardize all paintings of interest before
applying the principal component transform, our algorithm must
rectify the perspective distortion of parallelogram-shaped regions
with an inverse perspective transform. Matlab supplies a control-
point-based perspective transform but requires specification of a
region’s four corners.

Numerous sophisticated algorithms for corner detection such
as the Haralick and Harris corner detectors already exist.
However, these advanced algorithms supply superfluous detail in
their corner detection:

Fig. 15. Excessive detail in Haralick corner detection.

 Because the Haralick corner detector spots even slight
intermediate corners along the painting sides, we opt for a
simpler method.

As control point transform requires only four corners, we
divide our convex region into four quadrants and locate the
point in the region with the maximal displacement from the
image center:

max

ୡ୭୬୴ୣ୶ ୦୳୪୪
ሾ|ݔ െ |଴ݔ ൅ ݕ| െ ଴|ሿݕ

where the region origin is ሺݔ଴, ଴ሻ. The maximum in each ofݕ
the four quadrants constitutes the four corners of our region.
For instance, suppose we input the convex hull of the tilted
Daughters of Jethro:

Fig. 16. Sum of coordinates as a measure of the degree of cornerness.

The red regions display the largest sum ሾ|ݔ െ |଴ݔ ൅ ݕ| െ ଴|ሿ inݕ
the convex hull, indicating the highest degree of cornerness in
the painting. By locating the critical point in each of the four
quadrants, we deduce the locations of the four corners.
 After repeated trial and error, we remark that the corners
always occur along the region boundary, so we can expedite
corner detection by maximizing along the perimeter of the convex
hull instead of its entirety; we then need search only a sparse
matrix, thereby reducing the number of required computations.
Juxtaposing the two matrices, we see that the perimeter corner
detection yields the same result despite operating on the
incomplete region:

Fig. 17. All four corners occur along the perimeter, so corner detection need
not examine the interior of a region. Sparse matrices expedite computation.

With the corners of the convex hull located, our algorithm
proceeds to invert the perspective transform.

20 40 60 80 100

20

40

60

80

100

120

140

160

0

20

40

60

80

100

120

140

20 40 60 80 100

20

40

60

80

100

120

140

160

0

20

40

60

80

100

120

140

20 40 60 80 100

20

40

60

80

100

120

140

160

0

20

40

60

80

100

120

140

 Digital Image Processing –Tsai, Zhang, Janatra, June 2007. 6

G. The Inverse Perspective Transform
Matlab’s cp2tform command requires two sets of control

points – one for the distorted image and another for its
rectangular alignment. The four corners previously detected
provide the perspective-distorted input points, but we can also
use the same corners to estimate the base points:

Fig. 18. Intermediate x and y coordinates define a rectangle to which an
inverse perspective transform can map the distorted quadrilateral.
Intermediate values come from the sorted corners.

As the graphic above reveals, the two intermediate x-coordinates
and two intermediate y-coordinates define a box that
approximates the painting’s rectangular shape. In this manner,
the four control points share coordinates with the sorted corners
previously obtained; having previously computed the distorted
painting’s four corners, we need only order them and extract the
second-highest and second-lowest x and y corner coordinates to
form the rectangle shown above. This method provides a
workable approximation only when the camera angle from the
wall is not too severe; there is no hope for recovery from
extreme degrees of perspective distortion.
 With these control coordinates, Matlab generates an inverse
projective transform with the command:

cp2tform(cornersXY, rectXY, 'projective')

where rectXY lists the four intermediate pairs shown above.
Upon performing the previously generated inverse perspective
transform using imtransform, we obtain the image:

Fig. 19. Inverse perspective transform rectifies camera angle distortion.

Although the transformed Education of the Virgin closely
resembles the frontal view of the original, eigenanalysis requires
standardized dimensions, so, in order to align all of our images
on the same dimensional scale prior to principal component
decomposition, we perform one additional affine transform to
square the rectangular image to 128 pixels ൈ 128 pixels:

Fig. 20. Affine transform maps rectangular painting to a 128 ൈ 128 square
image, so eigenanalysis can operate on images of the same dimensions.

III. EIGENPROJECTION
Thirty-three paintings exude obvious visual differences in

Cartesian space, but the variation in brightness and shadow from
one digital image to another complicates automatic
identification, since the slightest flash spot or differing camera
angle captures an entirely different image even when the subject
remains the same. Ultimately, the matrix of pixel values that
results from a digital image depends more heavily on the lighting
conditions and camera geometry than on the finely nuanced
painting pigments themselves. Considering the sensitivity of
matching in Cartesian image space, we base our identification in
a different space – an eigenspace spanned by orthonormal basis
images, otherwise known as principal components or eigenimages [2].

Given thirty-three paintings of interest, we stack their
registered square matrices, one on top of the other, to form a
128 ൈ 128 ൈ 33 rectangular prism of images:

20 40 60 80 100

20

40

60

80

100

120

140

160

0

20

40

60

80

100

120

140

Control Points

 Digital Image Processing –Tsai, Zhang, Janatra, June 2007. 7

IV. EXPERIMENTS IN EIGENSPACE

Fig. 21. Upon stacking 33 training images (not all pictured), we define the
vector population X comprising the vectors through each set of pixels.

Each point in the 128 ൈ 128 grid defines a 33-element vector.
Moving through the stack, this vector contains one pixel from
each of the 33 images, allowing us to describe the image stack by
a population of such x vectors, one for each point in the 128 ൈ
128 grid. Arranging these 16,384 vectors as columns of a matrix
X, we can describe the image set by a mean vector µ୶ and a
covariance matrix Σ୶, defined to be

ܠૄ ൌ
1

128 ൈ 128 ෍ ܓܠ

ଵଶ଼ ൈଵଶ଼

୩ୀଵ

Σ୶ ൌ
1

128 ൈ 128 ෍ ୩Tܠܓܠൣ െ ୶T൧ૄܠૄ
ଵଶ଼ ൈଵଶ଼

୩ୀଵ

Because the covariance matrix Σ୶ is real and symmetric, the

Spectral Theorem holds that it must be orthogonally diagonalizable
with real eigenvalues and orthonormal eigenvectors [9]. Thus,
we can use the eigenvectors of Σ୶ as an orthonormal basis to
span the image space. However, in Cartesian (image) space, the
vectors bear strong correlation, as Σ୶ is not a diagonal matrix; in
fact, the off-diagonal entries can be quite large, indicating that
the vector of pixels through one point in the image grid does not
differ considerably from its neighboring vectors. Such a vector
comparison in the image space will still yield viable
identification, provided that our algorithm accounts for the
nonzero correlation between pixels. However, discrimination
grows much more robust when the eigenbasis is orthonormal,

the correlation matrix is purely diagonal, and the main
coordinate axes are spaced as far apart (90°) as possible. Hence,
in the first step of principal component decomposition, we
orthonormally diagonalize the image covariance matrix with an
orthogonal transformation given by matrix A:

AΣ୶ ൌ Σ୷A

Σ୶ ൌ AିଵΣ୷A

If we choose an orthogonal transformation such as the

Hotelling transform (widely used in PCA), then Aିଵ ൌ AT since A
is a unitary, real, and therefore orthogonal matrix [2].

Σ୶ ൌ ATΣ୷A

Σ୷ ൌ AΣ୶AT

The orthogonal transformation matrix A orthonormally

diagonalizes the image covariance matrix. As a result, Σ୷ – the
covariance matrix in the new eigenbasis given by the columns of
A – is a diagonal matrix comprising the eigenvalues of our
original covariance matrix Σ୶:

Σ୷ ൌ ቎
λ୶,ଵ ڮ 0
ڭ ڰ ڭ
0 ڮ λ୶,ଷଷ

቏

Most importantly, the off-diagonal elements of the covariance

matrix are now zero, meaning that diagonalization has
decorrelated the image vectors. The choice of an orthogonal
transformation – the Hotelling transform – further provides an
orthonormal eigenbasis particularly suitable for representation
and identification. As we know from elementary linear algebra,
the column vectors of the transformation matrix A are precisely
the 33 orthonormal eigenvectors of Σ୶.

In order to construct this matrix A that our algorithm needs
to perform the Hotelling transform on given input images, we
first generate a model covariance matrix of 33 perfectly aligned
images, as an ideal case for the 33 possible paintings that we
must identify. (In actuality, we can compute the covariance
matrix from any 33 training images of the 33 paintings, but,
assuming that our pre-processing alignment functions flawlessly,
we begin with a model set.) After computing the covariance
matrix Σ୶ of this model vector population X (with vectors x
arranged as columns in 33 ൈ 16,384 matrix X), we arrange its
eigenvalues in descending order along the main diagonal of our
model diagonal matrix Σ୷ . We then stack their corresponding
eigenvectors in the same order to form the orthogonal
transformation matrix A.

Brandishing the principal components transform given by
matrix multiplication with A, we are prepared to transform any
training set of L = 33 model paintings using the algorithm [2]:

ܡ ൌ Aሺܠ െ ሻܠૄ

Vector x for pixel at (2,2)

 Digital Image Processing –Tsai, Zhang, Janatra, June 2007. 8

Thus, multiplication by the orthogonal matrix A maps vectors
in the training set space of x into the eigenspace vector y, in
which all principal components of the thirty-three model images
have been decorrelated and orthogonalized. Brightness values,
grayscale intensities, and shadow no longer dominate image
differentiation in this alternate subspace, since the eigenaxes
have been orthonormally aligned with the precise paintings,
making direction the primary discriminant rather than magnitude.

Recall the definition of a vector population X, for an image
stack of N ൈ N ൈ L images:

X = ൥
՛ ՛ ՛
૚ܠ ૛ܠ ڮ ૛ۼܠ
՝ ՝ ՝

൩ א Թ൫௅ ൈ ேమ൯

In image space, each of these vectors simply informs the

grayscale intensity of a pixel, but we can decorrelate these
intensities by transforming each image space vector into
eigenspace through premultiplication by the orthogonal principal
component transform matrix A:

A = ൥
՛ ՛ ՛
૚ܞ ૛ܞ ڮ ۺܞ
՝ ՝ ՝

൩ א Թሺ௅ ൈ௅ሻ

…where the vectors ܞ୧ represent the L = 33 eigenvectors of

the correlation matrix Σ୶. Notice that, while the columns ࢐ܞ of
matrix A comprise the L orthonormal eigenvectors of Σ୶, the
rows ࢛࢏ of matrix A reveal the eigencoordinates of the L training
images in matrix X, used to construct A:

A = ൦

՚ ࢛૚ ՜
՚ ࢛૛ ՜

ڭ
՚ ࡸ࢛ ՜

൪ א Թሺ௅ ൈ௅ሻ

Assuming that our images have previously been normalized to

zero mean (prior to concatenation in X), transforming our image
space into eigenspace entails a simple Cayley product:

Y = AX =൥
՛ ՛ ՛
૚ܠܣ ૛ܠܣ ڮ ૛ۼܠܣ
՝ ՝ ՝

൩ א Թ൫௅ ൈ ேమ൯

Because eigenspace matrix Y shares the same dimensions as

image stack matrix X ሺܮ ൈ Nଶሻ, and since L ا Nଶ, matrix Y is
a fat matrix. As all training images in image stack X differ,
matrices X and Y are also full rank.

To determine the coordinates of the given set of training
images in the eigenspace, we need only recall that we constructed
this very eigenbasis – the columns of matrix A – with models of
the training set, so the coordinates of that training set in the
eigenspace are the rows of A – a linear combination of the basis
columns. The model images we use to construct the
transformation A will enjoy simple representation in the
eigenspace, since the orthogonal axes, by design, align with our
model images.

However, our original formation of A assumed ideal model

images, perfectly aligned and registered. Such perfect alignment
rarely occurs in reality, as the empirical nature of edge detection
and projective transformation inevitably yields variable pre-
processing across images taken at different angles with varying
amounts of motion blur. Thus, to ensure that the transformation
is as robust as possible for all images of the same painting, we
construct A with all possible variations that could arise from our
training set; in addition to the 33 model images previously
discussed, we insert heavily shadowed, slightly tilted, and even
poorly-lit versions of an image to account for scenarios in which
edge detection and/or inverse perspective transforms yield
imperfect registration. Hence, even when the variability of pre-
processing rears its head, our expanded eigenbasis still contains
an eigenimage (or eigenaxis) that is relatively close to the
imperfectly aligned input, making detection by direction as easy
as if the input image had been perfectly aligned. Consequently,
in anticipation of numerous forms of misregistration, we expand
the eigenbasis to 57 eigenimages for the eightfold downsampling
(and 66 for sixteen-fold downsampling). We choose the
additions empirically to cover all scenarios that arise frequently
in pre-processing, such as excessive shadow detection under
Adam and Eve and Portrait of a Young Artist:

Fig. 22. Addition of a second eigenimage for Adam and Eve to cover pre-
processing that fails to segment the painting completely from shadow.

Fig. 23. Addition of a second eigenimage for Portrait of a Young Artist to
cover the large number of pre-processed training images with lower shadow.

In this manner, we incorporate our knowledge of pre-

processing weaknesses into the eigenbasis expansion to improve
the robustness of identification.

Once the images from which we generate our eigenbasis
adequately represent the spectrum of possible variations in pre-
processing output, we form the eigenbasis as described
previously for the model set: (1.) stack the chosen set of
representative images; (2.) form matrix X from the vectorized
image stack; (3.) compute the covariance matrix Σ୶; (4.) calculate
the eigenvalues and corresponding eigenvectors of the
covariance matrix Σ୶; (5.) arrange the eigenvectors as columns of
a matrix A; and (6.) transform the image set into eigenspace
coordinates through the multiplication Y = AX.

With a solid representative vector population and its

 Digital Image Processing –Tsai, Zhang, Janatra, June 2007. 9

eigenspace coordinates documented in Y, we are now prepared
to identify any painting that aligns similarly to paintings
represented in the columns of matrix X.

Suppose we receive an input image that our pre-processing
algorithm squares and aligns to a size of N ൈ N. Transforming a
single painting into the eigenspace spanned by columns of A
cannot be accomplished by simple matrix multiplication, since
the eigenbasis involved a stack of 57 (or 66) images, with each
pixel vector x penetrating the entire training set from the first
image to the last, through a single point in the grid:

Fig. 24. Illustration of the image stack and the vectors that represent not the
vectorized images but rather the common pixels in the stacked images. Each
vector x does not represent a single image but rather than intensities at one
location in all training images. [3]

One might wonder how a single image can enter the

eigenspace. Consider the transpose of the following equation:

Y = AX

YT ൌ XTAT

Since matrix Y is fat and full rank, its transpose YT is skinny and
full rank. Consequently, YT has a left inverse, which we denote the
pseudoinversei ሺYTሻற. Premultiplying both sides of the equation
by this left inverse of matrix YT, we obtain the equation:

I ൌ ሺYTሻற XTAT

Because the Hotelling transform is an orthogonal

transformation, its matrix is orthogonal: ିܣଵ ൌ AT.

I ൌ ሺYTሻற XTିܣଵ

ܣ ൌ ሺYTሻற XT

In this manipulated version of the transformation equation,

the transformation matrix is now ሺYTሻற. We denote this matrix
the eigenprojector. The matrix XT still derives from the stacked
image pixels, but its dimensions are ሺNଶ ൈ Lሻ, where N is the
side length of our pre-processed square image, and L is the
number of images used to construct the eigenbasis; in the
eightfold downsampling, our algorithm squares images to 128 ൈ

i By definition, the pseudoinverse of a matrix M is defined in terms of its

singular value decomposition: If M = ܷΣVT, then ܯற ൌ ܸΣିଵUT ሾ10ሿ.

128, so N = 128, while L = 57 images represent possible pre-
processing outputs robustly. However, if we downsample further
(by sixteen), we square images to 64 ൈ 64, so N = 64. Because
identification accuracy also decreases with the image size, we
must add more possible outcomes in the formation of the
eigenaxes, so L = 66 for the sixteen-fold downsampled case.

Nevertheless, regardless of the size of our registered square
input image, its dimension ሺNଶ ൈ Lሻ means that input images f
of dimension N ൈ N can be pre-multiplied in the same manner
by the eigenprojector ሺYTሻற. The number of image stack
vectors is the same size as the length of the vectorized image, so
we can perform eigenspace conversion without a stack by
exploiting the transpose for its identical size. The advantage is
evident. Having already computed the eigenprojector offline
(prior to identification), the conversion ሺYTሻற܋܍ܞሺ݂ሻii exacts
only one matrix product:

 ݃ ൌ ሺYTሻற ܋܍ܞሺ݂ሻ
ሺL ൈ 1ሻ ൌ ሺL ൈ Nଶሻ ሺNଶ ൈ 1ሻ

To which eigenaxis of A does the resultant set of coefficients ܏
correspond? Recall that the L columns of matrix XT, in place of
which we substituted input image f, correspond to the L images
from which we constructed our eigenbasis. The resultant set of
eigencoefficients ܏ is therefore comparable with the
eigencoordinates of our original training set, which we recall to
be the rows of matrix A. Thus, locating the most similar painting
to f in the given set of training images used to construct A
amounts to comparing the coordinates in eigenspace; the most
similar painting – ideally the painting with the same name as the
painting in the input image – will point preferentially along one
of the discreetly chosen eigenaxes, so its coordinates in the rows
of A will closely match the eigencoefficients ܏. The algorithm
concludes that the input image f features the painting in original
training image ݌௞ if the eigencoefficients ܏ ൌ ሺYTሻற܋܍ܞሺ݂ሻ are
closest in the mean-square sense to ࢛ܓ, the kth row of A:

หሺYTሻற܋܍ܞሺ݂ሻ െ ࢛࢑ห
ଶ ൌ min

ሼ௝ୀଵ,ڮ,௅ሽ
หሺYTሻற܋܍ܞሺ݂ሻ െ ࢛࢐ห

ଶ

ݎܾ݁݉ݑ݊ ݁݃ܽ݉݅ ൌ ݇ ׷ ܏| െ ࢛࢑|ଶ ൑ ห܏ െ ࢛࢐ห
ଶ ׊ ݆ א ሼ1,ڮ , ሽܮ

Much like mean-square comparison in the Cartesian image
domain, the mathematical computation required for such a
computation involves only L comparisons, but the separation –
and hence distinguishability – of the L images increases in
eigenspace because of the deliberate orthogonality of the
eigenimages. Meanwhile, by forming our eigenimages from not
only the thirty-three paintings but also their pre-processed
variations, each possible output has a closely aligned eigenaxis,
allowing the coordinates in ࢛࢏ to be as distinct as possible.
 To ensure that we correctly map the L possible eigenaxes to
their respective paintings, we create an index vector to relate
each row of A to its corresponding image space painting. Thus,
once our algorithm determines the image number k, we can
extract the painting number and title by indexing its kth entry.

iivec(f) concatenates the columns of matrix f, one below the other. If f is an
M ൈ N matrix, then vec(f) is an MN ൈ 1 column vector. In Matlab, vec(f) is
denoted f(:).

 Digital Image Processing –Tsai, Zhang, Janatra, June 2007. 10

V. EXPERIMENTS IN EIGENSPACE WITH SIROVICH & KIRBY
In addition to the aforementioned eigenaddition, we also

attempted solution with the more conventional Sirovich and
Kirby eigenimage decomposition. As the algorithm needs to
identify only 33 different paintings, it needs only 33 eigenimages
under perfect pre-processing.

As with the previous method’s model set, the eigenimage
solution compiles thirty-three unique, focused images, each
represented by a column vector ൛Γറଵ, Γറଶ,ڮ , Γറଷଷൟ to create the
training set matrix ܵ ൌ ൣ൫Γറଵ െ µሬറ൯ ൫Γറଶ െ µሬറ൯ ڮ ൫Γറଷଷ െ µሬറ൯൧,
where µሬറ is the mean of all the vectorized images. Tapping the
Sirovich & Kirby method to compute eigenimages,

ܵܵுܵݒపሬሬሬറ ൌ పሬሬሬറݒ௜ܵߣ

where ݒపሬሬሬറ are the eigenvectors of ܵுܵ. Consequently, ܵݒపሬሬሬറ are the
eigenvectors of ܵܵு , also known as eigenimages.

In order to reduce calculation time, the algorithm consults
only the twelve eigenimages with the largest eigenvalues, three of
which appear below:

Fig. 25. Three highest-energy eigenimages derived from Sirovich & Kirby.

This algorithm maps each of the thirty-three images into the
twelve-dimensional eigenimage space by finding the correlation
between each image and the eigenimages. The eigenimage matrix
and correlation matrix are stored in memory as

Σ௜ ൌ

ۏ
ێ
ێ
ێ
ۍ EൣΓറ୧ · ଵሬሬሬሬറ൧ݒܵ
EൣΓറ୧ · ଶሬሬሬሬറ൧ݒܵ

ڭ
EൣΓറ୧ · ےଵଶሬሬሬሬሬሬറ൧ݒܵ

ۑ
ۑ
ۑ
ې

After loading the eigenimage and correlation matrix, this
algorithm calculates the correlation between the unknown image
and the eigenimages, juxtaposing the mean square difference
between these correlation values and the correlation values of
the known 33 paintings. The most similar painting yields the
minimum mean square error.

Because of our pre-processing algorithm’s occasionally
imperfect performance, we again introduce additional images to
the training set matrix S in order to correctly identify blurrier and
more severely tilted images.

Eigenimage identification process proves to be an extremely
fast algorithm as the calculation-intensive step (e.g. calculating
the eigenimages) is done prior to recognition task. In addition,
eigenimage identification allows us to downsample the images to
further reduce processing time. The downside of eigenimage
recognition is its reliance on the consistency of pre-processing. It
is also somewhat unpredictable, as expanding the eigenset does
not always improve accuracy; one must constantly balance
interpolation – the addition of more eigenimages – and
extrapolation outside the training set. The danger of overmodeling
always looms one poorly chosen eigenimage away.

VI. EXPERIMENTS IN CARTESIAN SPACE
Minimization of Cartesian mean square error (MSE) remains

one of the most intuitive ways to identify similarity between
images. Finding the lowest MSE is straightforward in
implementation, fast in execution, and relatively robust. Over a
small region, the pixel values of the processed images remain
fairly constant. For that reason, the method is invariant to minor
shifts incurred during pre-processing.

The algorithm taps at least one processed image of each
picture as reference, while normalizing all reference images to a
mean of 128 and a standard deviation of 80 to reduce the effect
of uneven lighting conditions. The processed input image –
converted to grayscale, centered and projected to a pre-
determined size – is normalized to have the same mean and
deviation as the reference images. For every reference image, the
algorithm computes the MSE between the processed input and
the reference. The reference image yielding the lowest MSE
corresponds to the desired painting.

To properly identify the given training set of 33 × 3 images,
this approach can achieve perfect accuracy with 33 reference
images (one reference image per painting). However, when this
set of reference images is used to identify 601 images of the
expanded training set, accuracy declines to 97%. In order to
achieve perfect accuracy, the reference set has to be expanded by
taking more than one reference image per painting if necessary.
This implementation uses 48 reference images to achieve perfect
accuracy in the expanded training set.

Another equally important barometer of success is robustness
to noise, blur, angle, and shadow, which we quantify with
tolerance:

Tolerance ؜
min

௔௟௟ ெௌா
|݁ܿ݅݋݄ܿ ݐܿ݁ݎݎ݋ܿ݊݅ ݂݋ ܧܵܯ|

|݁ܿ݅݋݄ܿ ݐܿ݁ݎݎ݋ܿ ݂݋ ܧܵܯ|

High tolerance signifies clarity and ease in decision-making. In

these cases, minor changes in the processed input image very
likely will not affect the decision. On the other hand, low
tolerance signifies ambiguity. In this case, it is very likely that the
decision changes direction if the processed input image is
distorted by a very minor shift or additive noise.

Figure 26 displays the histogram of tolerance when identifying
601 images of the expanded training set using the set of 33
reference images, whereas Figure 27 shows the histogram of
tolerance using the original set of 48 reference images:

Fig. 26. Tolerance distribution as a measure of identification accuracy when
making mean square difference comparison over 33 reference images.

 Digital Image Processing –Tsai, Zhang, Janatra, June 2007. 11

Fig. 27. Tolerance distribution as a measure of identification accuracy when
making mean square difference comparison over 48 reference images.

Observe that, when we consult a reference set of 33 images,

9% of the decisions suffer from low tolerance of less than 1.1,
whereas, tapping a reference set of 48 images, only 3% of the
decisions exhibit tolerance less than 1.1. In conclusion,
minimizing the Cartesian MSE while appropriately expanding
the reference set improves not only accuracy but also robustness.

VII. COMPARISON

Method
10-Image
Test Set

Time

Mean
Time per
Painting

Training Set
(3 ൈ 33)

Accuracy

Total Set
(601)

Accuracy
Eigenprojection

(Downsample ൈ 4)
21.411 sec 1.772 sec 99/99

100%
595/601
99.002%

Eigenprojection
(Downsample ൈ 8)

4.202 sec 0.1226 sec 99/99
100%

590/601
98.17%

Eigenprojection
(Downsample ൈ 16)

2.722 sec 0.0788 sec 99/99
100%

578/601
96.173%

S & K Eigenimages
(Downsample ൈ 4ሻ 5.317 sec 0.1666 sec 96/99

96.97%
566/601
94.176%

Cartesian MSE
(Downsample ൈ 4)

11.241 sec 0.9567 sec 99/99
100%

595/601
99.002%

Cartesian MSE
(Downsample ൈ 8)

4.115 sec 0.3229 sec 99/99
100%

594/601
98.835%

Cartesian MSE
(Downsample ൈ 16)

3.251 sec 0.1451 sec 97/99
97.98%

558/601
92.845%

Table 1. Juxtaposition of identification algorithms in speed and accuracy. As
expected, accuracy decreases as speed (downsampling rate) increases. All
algorithms employ identical pre-processing as outlined in Section II.

Euclidean distance computation in both Cartesian coordinates

and eigenspace involve comparable numbers of operations, so
the mean operation times per painting are unsurprisingly similar.
Both methods also load matrices of comparable sizes, although
initial loading times consume a larger portion of the eigenspace
time than they do for the Cartesian total time, leading to the
dominance of Cartesian identification for low decimation rates.
However, once the eigenprojection matrix decreases to 66 ൈ
4096 in sixteen-fold downsampling, the speed of matrix
multiplication in Matlab quickly outpaces the setup time
necessary to compare in Cartesian space.
 All methods maintain nearly spotless accuracy for the
training set, although different algorithms miss different
paintings outside the original 3 ൈ 33 training images. A certain
set of pathologically blurry images consistently fails for every
identification algorithm, but the eigenprojection method remains

the most robust during extreme downsampling, likely because it
relies not on precise pixel placement but rather on overall
training set trends, since the algorithm erects an eigenbasis from
an image stack rather than individual paintings. Stress testing
strains each algorithm in different ways – Cartesian MSE is more
vulnerable to uneven lighting and shadow, whereas
eigenprojection falls prey to wild camera angles – but no
algorithm comes close to breaking at eightfold downsampling.

VIII. CONCLUSION
Eigenprojection seems an even more viable solution to

implement in camera-phone software since nearly all necessary
computation occurs offline, prior to use. With a reliable eigenbasis
loaded into cache memory, identification and hence information
can flow on-screen instantaneously upon image capture.
Furthermore, when the exhibition expands, the user need only
load an updated eigenprojection matrix and eigencoordinate set
into the device to maintain accurate identification. However, as
the pathological images reveal, severe motion blur and wide
camera angles can thwart pre-processing and ruin recognition, so
this implementation applies only for face-on static photography;
more dynamic applications would require more robust pre-
processing. Nevertheless, the reliability of eigenprojection under
even severe (sixteen-fold) decimation suggests that even smaller
imaging devices can gather enough information to distinguish
between a finite set of known objects. After all, even a picture
without a thousand pixels is worth a thousand words.

REFERENCES
[1] A.K. Jain. Fundamentals of Digital Image Processing. Upper Saddle River, NJ:

Prentice Hall, 1989, pp. 132-180.
[2] R.C. Gonzalez, and R.E. Woods. Digital Image Processing, Second Edition.

Upper Saddle River, NJ: Prentice Hall, pp. 675-683.
[3] R.C. Gonzalez, R.E. Woods, and S.L. Eddins. Digital Image Processing using

Matlab. Upper Saddle River, NJ: Pearson Prentice Hall, 2004, pp. 474-483.
[4] S.E. Umbaugh. Computer Imaging: Digital Image Analysis and Processing. Boca

Raton, FA: CRC Press, 2005.
[5] M. Petrou and P. Bosdogianni. Image Processing: The Fundamentals.

Chichester, England: John Wiley & Sons Ltd., 2004.
[6] J.S. Lim. Two-Dimensional Signal and Image Processing. Upper Saddle River,

NJ: Prentice Hall, 1990.
[7] R.N. Bracewell. Fourier Analysis and Imaging. New York: Kluwer

Academic/Plenum Publishers, 2003.
[8] L. Sirovich and M. Kirby. “Low-Dimensional Procedure for the

Characterization of Human Faces.” Journal of the Optical Society of
America A, 4(3), pp. 519-524, 1987.

[9] T. Yeh, K. Grauman, K. Tollmar, and T. Darrell. “A Picture is Worth a
Thousand Keywords: Image-Based Object Search on a Mobile Platform.”
In CHI 2005, Conference on Human Factors in Computing Systems, Portland, OR,
April 2005.

[10] G. Strang. Introduction to Linear Algebra. Wellesley, MA: Wellesley-
Cambridge Press, 2003.

[11] B. Noble and J.W. Daniel. Applied Linear Algebra, Third Edition. Upper
Saddle River, NJ: Prentice Hall, 1988.

[12] S. Boyd. Lecture Notes for EE 263: Introduction to Linear Dynamical Systems.
Stanford, CA: Stanford University Press, Autumn 2006.

[13] B. Girod. Lecture Notes for EE 368: Digital Image Processing, Spring 2007.
[14] G. Takacs. Conversations, 22 May 2007, 29 May 2007.
[15] S.L. Eddins. Conversations, 25 May 2007, 30 May 2007.

ACKNOWLEDGMENTS
We thank Professor Bernd Girod and teaching assistants Gabriel Takacs and
Aditya Mavlankar for the excitement and guidance they provided throughout the
quarter, not only for the project but also regarding digital image processing. This
document would not be possible without their assistance.

