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Problem Set I 
 

Problem 1 – Quantization 

First, let us concentrate on the illustrious Lena: 

 

 

Problem 1A - Original Lena Image Problem 1A - Quantized Lena Image

Problem 1B - Dithered Lena Image Problem 1B - Dithered and Quantized Lena Image
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IMAGE PROCESSING PROCEDURE  LENA 
Original Image  0 

Eight‐Level Quantized Image  83.760159 
Dithered Image  85.485791 

Dithered & Quantized Image  167.337551 
Lowpass‐Filtered Quantized Image  62.355633 

Lowpass‐Filtered Dithered & Quantized Image  48.730312 
 

 Because our image contains 256 levels by default, quantizing the image into eight evenly 

spaced intervals restricts the number of possible pixel values to eight: 16, 48, 80, 112, 144, 176, 208, 

and 240.  This quantization introduces not only a finite mean squared error (83.76) but also sets of 

contours in the image connecting pixels that seemed identical in the original image; even though 

these contoured regions originally belonged to a larger set of seemingly uniform gray values, 

quantization pushed them far enough apart that they formed new regions, which deeply disturb our 

perception of the image.  These additional areas protrude noticeably from Lena’s hat and skin, giving 

the image an artificial, contrived appearance. 

Problem 1D - Lowpass Filtered Quantized Lena Image Problem 1D - Lowpass Dithered & Quantized Lena
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 In an effort to eliminate these contours, we dither the image by adding random uniformly 

distributed noise, with half-level amplitudes sufficient enough to push pixels out of contoured 

regions during quantization.  In other words, with small amounts of random noise added to break 

up the total uniformity of pixel values in any given region, we randomize quantization error and 

reduce contouring to such a point-wise effect that the groups never form large enough to displease 

our eyes.  However, even without quantization, we see that the noise added during dithering 

introduces mean squared error (MSE ൎ 85.486) nearly equivalent to quantization itself.  The noise 

manifests itself as small grains speckled haphazardly throughout the image.  Quantizing the dithered 

image increases the mean squared error even further (167.338), and the graininess resulting from 

noise becomes even more visible.  This degeneration occurs because the noise distances the 

processed image from the original image and contributes to the mean squared error at every point; 

subsequent quantization further distances points from their original values since the noise could 

have changed pixel values beyond the threshold between quantization levels, thus increasing the 

mean squared error two-fold. 

 Clearly, the dithered and quantized image yields a much higher mean-squared error than the 

merely quantized image, so Part (B.) would appear to be a more erroneous image.  However, 

because dithering effectively eliminates visible contouring from the quantized image, the result in 

Part (B.), despite its higher mean squared error, is more visually pleasing than the quantization in 

Part (A.), whose contours degrade the image’s subjective quality to the sensitive human eye. 

 While Part (B.) wins only in visual quality after quantization, lowpass-filtering the results of 

Part (A.) and Part (B.) lead to a clear-cut victory for Part (B.) not only in visual quality but also in 

mean squared error; lowpass-filtering blurs the image and smoothens edges but fails to remove 

contouring, so Part (A.) still looks worse than Part (B.).  Furthermore, the smoothening tempers the 

effect of the dithering noise by smoothening over the sharp fluctuations, thus improving the visual 
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quality of the dithered and quantized image from Part (B.).  Most importantly, however, dithering 

significantly decreases the mean squared error by blending the noise into the image.  Now, pure 

quantization followed by filtering yields an MSE of 62.356, whereas the lowpass filter reduces the 

MSE of the dithered and filtered image to approximately 48.73, lower than any of the other mean 

squared errors.  Now, not only the subjective quality but also the mean squared error of the dithered 

result in Part (B.) emerge superior to the quality and accuracy of the non-dithered image.  

Smoothening the noise greatly lowers its effect on the MSE, to the point that it beats even the 

filtered noiseless image of Part (A.)! 

 We now proceed to the Einstein image: 

  

 

Problem 1A - Original Einstein Image Problem 1A - Quantized Einstein Image

Problem 1B - Dithered Einstein Image Problem 1B - Dithered & Quantized Einstein
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IMAGE PROCESSING PROCEDURE  LENA  EINSTEIN 
Original Image  0  0 

Eight‐Level Quantized Image  83.760159  71.597488 
Dithered Image  85.485791  84.506219 

Dithered & Quantized Image  167.337551 153.997879
Lowpass‐Filtered Quantized Image  62.355633  78.973221 

Lowpass‐Filtered Dithered & Quantized Image  48.730312  77.005875 
 

 As we observed in Lena, image quantization introduces undesirable contours, this time 

blending Einstein’s forehead and hair into an unnatural amalgam of gray.  Meanwhile, dithering the 

Einstein image prior to quantization yields a visible graininess throughout the image, but the random 

additive noise breaks up the contours, making the quantized image more visually pleasing, even if 

the mean squared error (153.998) is more than twice the mean squared error from Part (A.)’s 

noiseless quantization. 

 Unlike Lena, however, the dithered Einstein does not improve as significantly in MSE 

following lowpass-filtering.  The lowpass filtering does improve the dithered image more than it 

improves the purely quantized image, as the contouring from Part (A.) remains, but the final MSE 

values of the noised and noiseless lowpass images are comparable (around 77-79).  In fact, lowpass 

Problem 1D - Lowpass Quantized Einstein Problem 1D - Lowpass Dithered Quantized Einstein
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filtering actually increases the MSE of the quantized image, perhaps because smoothening an image 

with so many sharp edges actually degrades accuracy; meanwhile, though, lowpass filtering following 

dithering and quantization continues to prove a powerful combination, as the MSE drops from its 

prodigious post-quantization value. 

 Finally, we conclude our image study with the Man: 

 

 

Problem 1A - Original Man Image Problem 1A - Quantized Man Image

Problem 1B - Dithered Man Image Problem 1B - Dithered & Quantized Man Image
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IMAGE PROCESSING PROCEDURE  LENA  EINSTEIN  MAN 
Original Image  0  0  0 

Eight‐Level Quantized Image  83.760159  71.597488  93.386036 
Dithered Image  85.485791  84.506219  80.199482 

Dithered & Quantized Image  167.337551 153.997879  164.101856
Lowpass‐Filtered Quantized Image  62.355633  78.973221  129.470234

Lowpass‐Filtered Dithered & Quantized Image  48.730312  77.005875  133.802326
 

 Quantizing the Man image generates contours along the back and skin of the woman sitting 

behind the Man, but the visual displeasure resulting from contouring is not nearly as pronounced as 

it was for the Lena and Einstein images, which contained significantly more skin tones and 

background than the Man image. 

 As expected, dithering the image introduces speckle throughout, and quantization 

contouring vanishes as the random noise breaks up the uniformity of the woman’s back and arm. 

Just as we concluded with Lena and Einstein, the subjective visual quality of the dithered quantized 

image dwarves the contoured Man image from Part (A.), even though the MSE of the dithered 

quantization is unfortunately much higher than the quantization MSE. 

Problem 1D - Lowpass Filtered Quantized Man Image Problem 1D - Lowpass Filtered Dithered & Quantized Man
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 Lowpass-filtering the Man image brings the dithered quantization and the noiseless 

quantization to equal footing in terms of mean squared error, but neither MSE decreases below 120; 

the image error is still worse than the simple quantization case.  The Man image responds less 

favorably to smoothing because the photo contains much more detail, from the rapidly changing 

colors in the background shirts and the detailed patterns on clothing to the straw in the lower-right 

hand corner.  Thus, lowpass filtering (smoothening) blurs some of these details and therefore cannot 

achieve the low MSE we attained by filtering Lena and Einstein.  However, when comparing the two 

lowpass-filtered images, we still prefer the dithered image since it contains no contours. 
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Problem 2 – Color Balancing 

FRUIT IMAGE 
ILLUMINATION 

GRAY‐WORLD  SCALE‐BY‐MAX 

kR  kG  kB  kR  kG  kB 

Daylight  0.66905  1  2.823543  1.101184  1.143017  1.80742 
Fluorescent Light  0.798162  1  5.52549  1.273973  1.083686  3.196875 
Tungsten Light  0.433268  1  4.808248  1  1.540663  3.138037 

 

Applying these algorithmic scale factors to their respective color slices, we obtain color-balanced 

images, which we display after compensating for CRT gamma nonlinearity with a  ଵ
ஓ
 exponent: 

     

 

     

Problem 2 - Original Fruit in Daylight Image Problem 2A - Gray-World Fruit in Daylight Problem 2B - Scale-by-Max Fruit in Daylight

Problem 2 - Original Fruit in Fluorescent Light Problem 2A - Gray-World Fruit in Fluorescent Problem 2B - Scale-by-Max Fruit in Fluorescent

Problem 2 - Original Fruit in Tungsten Light Problem 2A - Gray-World Fruit in Tungsten Problem 2B - Scale-by-Max Fruit in Tungsten
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 Even though each illumination source supplies a different spectrum of light with different 

perceived brightnesses, the two color-balancing algorithms yield similar effect on the fruit image.  For 

example, consider the daylight-illuminated fruit with the following histogram distributions: 

 

From the histogram, we see significant amounts of red with an entire range of intensities, most likely the 

result of the orange, pumpkin, red pepper, and apple.  Green also appears liberally throughout the image, 

though less intensely than red.  Finally, although blue appears to peak around 0.3, a significant number of 

pixels contain no blue component at all, as the high histogram bar at zero intensity reveals. 

 The Gray-World color-balancing algorithm yields a strangely colored image. As desired, we have 

preserved the mean of the green intensity values, but the other two colors now share coinciding density 

functions because of the gray-world assumption.  As a result, the image of the fruit looks considerably 

greener and bluer than it should, with an unnatural aquamarine tint covering the entire image; this 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2000

4000

6000

Pixel Value

C
ou

nt

Problem 2 - Original Fruit in Daylight Color Histogram
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Problem 2A - Gray-World Color-Balanced Fruit in Daylight Color Histogram
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Problem 2B - Scale-by-Max Color-Balanced Fruit in Daylight Color Histogram
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displeasing shade arises from the disturbance of relative color proportions, as the red no longer has a 

higher mean intensity because of the gray-world normalization, which shifted all means to the green mean.  

Without relatively higher intensity in the red component and relatively lower intensity in the green 

component, the orange and red fruits and vegetables lose their natural expected colors. 

 The Scale-by-Max algorithm, on the other hand, preserves the peak locations of the three color 

primaries, so that the red component still possesses pixels with the highest intensity.  The algorithm 

appears to have normalized the three distributions without merging their average values, so the resulting 

image color retains its relative proportions with intensities properly tuned.  Both the histogram and the 

image ascertain that the Scale-by-Max algorithm performs best from our subjective perspective. 

 We now consider the fluorescent-lit fruit image, which features an intensity distribution with 

approximately equally centered blue and green components (ൎ0.2), with considerably brighter red pixels: 
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Problem 2 - Original Fruit in Fluorescent Light Color Histogram
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Problem 2A - Gray-World Color-Balanced Fruit in Fluorescent Light Color Histogram
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Problem 2B - Scale-by-Max Color-Balanced Fruit in Fluorescent Light Color Histogram
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 As with the daylight illumination, the Gray-World algorithm forces all three component 

distributions to behave with similar pattern and identical means, so the undesirable aqua-blue tint once 

again materializes.  The histogram reveals that the red component, previously centered at much greater 

intensities, has been scaled below the other two components, explaining the seeming dearth of oranges and 

reds (or the seeming plethora of bluish green) in the Gray-World balanced image; hence, the Gray-World 

algorithm has once again disturbed the relative intensities of the three components, and, although the 

colors are balanced from a frequency standpoint, the relative intensities ultimately control our visual 

perception of the scene.  The Scale-by-Max algorithm once again prevails in fluorescent light, with the 

frequencies scaled to match (except at zero intensity) and the relative intensities preserved. 

 The tungsten-lit fruit image responds similarly to the two algorithms: 
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Problem 2 - Original Fruit in Tungsten Light Color Histogram
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Problem 2A - Gray-World Color-Balanced Fruit in Tungsten Light Color Histogram
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Problem 2B - Scale-by-Max Color-Balanced Fruit in Tungsten Light Color Histogram
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 Unlike the other two images, the tungsten-lit scene contains considerably more blue pixels, which 

we can witness in the image as a greater brightness, or purer whiteness throughout the scene.  Meanwhile, 

though red pixels are still the most intense, fewer of them cluster around a center main lobe.  As we can tell 

from the histogram, the Gray-World algorithm succeeds in clustering the three distributions around the 

green mean, leading once again to the red imbalance and consequent bluish tint.  Interestingly, the Scale-

by-Max algorithm brings the green and blue central peaks to the same brightness (ൎ0.35), but the 

prevalence of intensity in the red component remains, preserving the natural balance of visible colors in the 

image. 

 Subjectively, our conclusion is no different; the Scale-by-Max algorithm performs better than the 

Gray-World algorithm because the resulting image looks the most genuine when juxtaposed next to the 

original unscaled image; the final tungsten image might look brighter than the other illumination final 

images, but the Scale-by-Max algorithm has approximately balanced the color frequencies, and the brighter 

whiteness results simply from a higher overall intensity distribution. 

 Because of its dependence on the mean value of a component, applying the Gray-World algorithm 

to the gamma pre-distorted images would not yield the same color-balanced images.  Since gamma pre-

distortion occurs as exponentiation by ଵ
ఊ
, the resultant color-balancing scale factors would become 
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భ
ം remains the same under pre-distortion and post-distortion, but its product 

with the new scale factor will not, in general (γ്1), match our current post-distorted scale factor: 
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݇ோ ് ݇ோᇱ  

Therefore, the Gray-Scale algorithm will change depending on whether it operates before or after gamma 

distortion. 

 Conversely, as its name suggests, the Scale-by-Max algorithm computes its color-balancing scale 

factors by scaling by the maximum pixel value, thus making pre-distortion and post-distortion essentially 

identical.  In other words, the new scale factor, computed with pre-distorted pixel values, will be 
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Because raising a number to a positive exponential is a monotonically increasing transformation, the 

maximum value of the pre-distorted pixel is equal to the post-distortion of the maximum undistorted pixel 

value.  Finally, as with the Gray-Scale algorithm, distorting an image pixel before or after scaling yields no 

difference, since 

݇ோᇱ · ሾ ோ݂ሺݔ, ሻሿݕ
ଵ
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ଵ
ఊ 

In conclusion, whereas the Gray-Scale algorithm generates different color-balanced images depending on 

the time of its application relative to gamma distortion, the Scale-by-Max algorithm will yield the same 

color-balanced product for both pre-distorted and post-distorted images; the Scale-by-Max procedure is 

gamma-distortion-invariant! 


