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Problem Set II 
 

Problem 1 – Satellite Image Processing 

 Because Lake Tahoe fails to dominate any single component of the primary Red-Green-Blue 

(RGB) color space, we first convert our image to the Luminance-Chrominance (YCbCr) color space.  As a 

YCbCr image, Lake Tahoe protrudes readily from its surroundings in the blue chrominance (Cb) channel, 

where bodies of water appear with an especially distinct signature, as seen on the right: 

 

In order to determine an appropriate threshold to isolate water from land, we iteratively compute the 

midpoint between the two threshold regions until this midpoint converges.  Beginning with a threshold 

estimate of 255/2 = 127.5, we segment the blue chrominance (Cb) image into two areas, each with its own 

average intensity; advancing our estimate to the midpoint between these two intensity values, we produce 

another segmentation, and we continue in this fashion until the midpoint ceases to change, yielding a 

threshold value that rounds to 139.  The Cb image histogram validates our choice: 

Problem 1 - RGB Lake Tahoe Satellite Image
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Problem 1 - YCbCr Lake Tahoe Satellite Image
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As we observe from the histogram, the point of convergence (139) lies approximately halfway between the 

less-intense land background (left distribution) and the strong water signature (right distribution).  Using 

this threshold, we obtain a binary image highlighting all watery locations: 

 

Since we seek to characterize only the main central lake, we must eliminate all of the smaller regions from 

our binary mask.  After employing the Matlab command bwlabel to numerically tag all of the eight-
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Problem 1 - Histogram of Blue Chrominance in Lake Tahoe Image

Ideal Threshold ≈ 139

Problem 1 - RGB Lake Tahoe Satellite Image

West-East [km]

N
or

th
-S

ou
th

 [k
m

]

0 10 20 30 40 50 60 70

54

48

42

36

30

24

18

12

6

0

Problem 1 - Thresholded Lake Tahoe Highlighting Water
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connected regions, we determine the numbered region with the most pixels in our thresholded image by 

computing the non-zero mode; in order to compute this statistical mode, we must first rarify the zero-

labeled background pixels by random noise (randn), hence making the main lake body the most 

dominant region.  Upon setting all non-mode values to zero, we obtain the main lake binary mask: 

 

 By counting the white pixels in the binary mask, we conclude that the central lake in our digital image 

comprises 28,646 pixels. 

 Furthermore, if we know that the height and width of the image correspond to 69.01 km and 52.58 

km, respectively, then we can approximate the surface area of Lake Tahoe by multiplying the pixel spacing 

by the previously computed pixel count: 

Surface Area of Lake Tahoe ൎ ଽ.ଵ ୩୫
ହଶହ ୮୧୶ୣ୪ୱ

· ହଶ.ହ଼ ୩୫
ସ ୮୧୶ୣ୪ୱ

· 28,646 pixelsଶ ൎ 494.968205 km2. 

Problem 1 - RGB Lake Tahoe Satellite Image
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Problem 1 - Mask Image Labeling Lake Tahoe in White
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Problem 2 – Image Magnification through Interpolation 

 Please refer to the hand-written section for solutions to Problem 2.1 and Problem 2.2. 

 In Problem 2.3, we examine the nearest-neighbor and bilinear interpolation algorithms when 

applied to (256 bit ൈ 256 bit) images magnified by factors of m = 1.1 and m = 1.3. 

 We begin by magnifying the cameraman digital image using nearest-neighbor interpolation: 

 

 

Problem 2.3B - Unmagnified Cameraman
Nearest-Neighbor Cameraman (m = 1.1)

Problem 2.3B - Unmagnified Cameraman

Nearest-Neighbor Cameraman (m = 1.3)
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As we observe in the sleeve of the magnified cameraman images, nearest-neighbor interpolation generates 

artifacts along edges; the jaggedness of the cameraman’s hair and jacket – especially for the larger 

magnification (m = 1.3) – tarnishes the subjective quality of the original image, since these boundaries 

should be straight lines, as the unmagnified image reveals.  While these artifacts do not seem so severe for 

the smaller magnification, the larger magnification makes even the camera tripod appear splintered; in 

particular, notice how the white stripe on the left tripod leg now zigzags like a lightning bolt.  Let us 

juxtapose these magnifications with the bilinearly interpolated images: 

 
 

We immediately notice a slight blur in the image, but the sleeve of the cameraman’s jacket looks smoothly 

intact, without the artificial stair-steps produced in nearest-neighbor interpolation.  We expect a certain 

degree of blurring because of the merging of four data values in the bilinear interpolation algorithm, but 

this merging appears to solve the problem of blocky edges, which arose primarily because nearest-neighbor 

interpolation simply chose the nearest neighbor without any regard for other nearby neighbors with 

intensely different pixel values.  While the nearest-neighbor method was simpler to implement, the blind 

duplication of pixels created unnatural boundaries.  The bilinear interpolation solves even the m = 1.3 case: 

Problem 2.3B - Unmagnified Cameraman

Bilinear Interpolation Cameraman (m = 1.1)
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Juxtaposition beside the original image reveals only a slight blur, which we must expect from the addition 

of fabricated data points.  However, most notably, the bilinearly interpolated magnifications contain no 

jagged edges, since each interpolated pixel value properly accounts for all surrounding pixel values; in other 

words, the added image data varies smoothly and continuously from pixel to pixel, unlike the pixel 

duplication used in nearest-neighbor interpolation.  Besides the slight blur that image expansion has 

introduced, the bilinearly interpolated image exhibits no artifacts or eccentricities in either the small (m = 

1.1) or large (m = 1.3) magnification.  As a result, the subjective quality of the bilinear interpolation 

dwarves the jagged, visibly discontinuous image from nearest-neighbor interpolation. 

  

Problem 2.3B - Unmagnified Cameraman

Bilinear Interpolation Cameraman (m = 1.3)
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 We repeat our comparison exercise on the Einstein digital image with nearest-neighbor algorithm: 

       

We first remark that, even more so than with the cameraman image, the Einstein image magnification with 

m = 1.1 does not flaunt noticeable flaw, perhaps because the image is too small for our eyes to notice 

slight imperfections along the edges.  Moreover, the contrast between background and subject in the 

Einstein image pales in comparison to the contrast between the sky and cameraman’s coat, making jagged 

edges more difficult to perceive in the Einstein image.  The only visible artifact is the dark tie on Einstein’s 

white shirt, which begins to appear slightly blocky because of nearest-neighbor blind duplication. 

 Let us examine the larger magnification, which, as expected, exposes the flaws of nearest-neighbor 

interpolation more blatantly: 

Problem 2.3B - Unmagnified Einstein
Nearest-Neighbor Einstein (m = 1.1)
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Whereas the edges of Einstein’s suit jacket still look reasonably genuine transitioning into the curtain, the 

white shirt that protrudes from the gray surroundings now assumes an extremely artificial look, much like 

the cameraman’s trench coat.  Specifically, the striped tie no longer looks properly striped, and it merges 

unnaturally with the white shirt, which now appears blocky.  Here, with a larger magnification, our eyes 

find more space to detect irregularities, as we must interpolate more data points; in general, as the image 

size increases, interpolation artifacts appear more blatantly, since our algorithm must fabricate a larger and 

larger proportion of the image data.  With the high contrast of Einstein’s shirt and tie, the discontinuities 

resulting from nearest-neighbor cut-and-paste quickly manifest themselves, since the grayscale fails to vary 

continuously, instead assuming one value over a larger area before jumping abruptly.   As with the 

cameraman image, bilinear interpolation maintains a better transition between sharply contrasting regions: 

Problem 2.3B - Unmagnified Einstein

Nearest-Neighbor Einstein (m = 1.3)
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In the larger magnification, Einstein’s tie loses some of its fine detail due to image expansion, but no 

jagged edges taint the subjective quality of either magnification.  Thus, we conclude that bilinear 

interpolation, though computationally more complex than nearest-neighbor interpolation, produces a 

more visually pleasing image, since boundaries separating two contrasting regions preserve the expected 

linearity (or curvature) by incorporating all neighboring pixel values into the computation. 

Problem 2.3B - Unmagnified Einstein
Bilinear Interpolation Einstein (m = 1.1)

Problem 2.3B - Unmagnified Einstein

Bilinear Interpolation Einstein (m = 1.3)


