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Problem Set III 
 

Problem 1 – Linear Image Filtering and Sampling with the Zoneplate Image 

 The equation used to generate the Zoneplate pattern in ‘zoneplate.tif’ is 

݂ሺݔ, ሻݕ ൌ መ݂ · ݔ൫ܽ௫ሺݏܿ െ ሻଶݔ  ܽ௬ሺݕ െ ሻଶ൯ݕ  ݂ 

To determine the spatial frequency of this two-dimensional sinusoid, we first extract the phase argument: 

߮ሺݔ, ሻݕ ൌ ܽ௫ሺݔ െ ሻଶݔ  ܽ௬ሺݕ െ  ሻଶݕ

By definition, the angular frequency is the rate of change in the phase along the direction of interest.  

Applying the Chain Rule from multivariate calculus, we differentiate the phase: 

߱௫ ൌ
߲߮ሺݔ, ሻݕ

ݔ߲ ൌ 2ܽ௫ሺݔ െ  ሻݔ

߱௬ ൌ
߲߮ሺݔ, ሻݕ

ݕ߲ ൌ 2ܽ௬ሺݕ െ  ሻݕ

In order to center our 512 ൈ 512 pattern about the central pixel, we select a half-shift:  ݔ ൌ ݕ ൌ 256.  

Because we also seek an amplitude swing from 16 to 240 (centered on 128), we fix a constant DC term of 

݂ ൌ 128.  The amount of cosinusoidal oscillation in either direction is መ݂ ൌ േ112.  Finally, in order to 

ensure a full frequency sweep from 0 to േπ from the center, we need 2ܽ௫ሺݔ െ ሻ|௫ୀହଵଶݔ ൌ  and ,ߨ

2ܽ௬ሺݕ െ ሻหݕ
௬ୀହଵଶ

ൌ forcing us to choose  ܽ௫ ,ߨ ൌ ܽ௬ ൌ గ
ହଵଶ

ൎ 0.006136.  Thus, we use parameters: 

ݔ ൌ 256 

ݕ ൌ 256 

݂ ൌ 128 

መ݂ ൌ േ112 

ܽ௫ ൌ గ
ହଵଶ

ൎ 0.006136  

ܽ௬ ൌ గ
ହଵଶ

ൎ 0.006136  
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Displaying our artificially generated zoneplate pattern next to the actual test image zoneplate.tif, we see 

 

The test zoneplate image looks identical to our formula-fabricated rendition for መ݂ ൌ െ112.  Subtracting the 

two images, we ascertain that the difference is uniformly zero, meaning that the two images are, in fact, 

identical.  Thus, the parameters used to generate the image must be identical to the parameters we selected: 

ݔ ൌ 256 

ݕ ൌ 256 

݂ ൌ 128 

መ݂ ൌ െ112 

ܽ௫ ൌ గ
ହଵଶ

ൎ 0.006136  

ܽ௬ ൌ గ
ହଵଶ

ൎ 0.006136  

Next, we filter the zoneplate image with a linear, shift-invariant rectangular filter with impulse response: 

݄ ൌ ଵ
ଷହ

ۏ
ێ
ێ
ێ
ۍ
1 1 1
1 1 1
1 1 1

1 1 1
1 1 1
1 1 1

1
1
1

1 1 1 1 1 1 1
1 1 1 1 1 1 ے1

ۑ
ۑ
ۑ
ې
. 

As we convolve our image with a rectangular filter, we multiply the zoneplate spectrum by a sinc: 

Problem 1C - Test Zoneplate Image Problem 1C - Generated Zoneplate
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The lowpass filter significantly reduces the circular replicas surrounding the central set of rings, but a few 

faint replicas remain.  Most of the adjacent content disappears because the spatial rectangular filter 

operates as a frequency sinc multiplier; thus, the wide main lobe preserves the low frequency content at the 

center of the zoneplate image, while the much smaller side lobes save progressively less and less high 

frequency content farther from the main lobe.  Recalling that  ߱௫ ൌ 2ܽ௫ሺݔ െ  ሻ, we know that  higherݔ

frequency content lies farther from the center of the zoneplate image, so the sinc’s suppression of high 

frequencies naturally results in attenuated image brightness farther from the image center.  In particular, 

the four corners of the image appear particularly blurred, since the sinc attenuates the highest frequencies 

most completely.  Spatially, we can consider this high-frequency attenuation as averaging across several 

cycles of the zoneplate pattern.  However, the side replicas do not fade away entirely because the sinc 

waveform contains side lobes; the frequency domain filter is not uniformly zero outside the main lobe, so 

some replicas faintly remain. 

 Suppose we subsample the zoneplate image threefold, producing a (171 ൈ 171) zoneplate image: 

Problem 1D - Original Zoneplate Image Problem 1D - Filtered Zoneplate
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In this subsampled image, the eight replicas surrounding the main lobe grow especially prominent, with as 

much intensity as the central circle itself.  The seemingly low frequencies that appear as replicas are actually 

aliases from higher frequencies.  Because our threefold-reduced sampling rate does not exceed twice the 

maximum frequency in the zoneplate image, our subsampling fails to meet the Nyquist criterion and 

therefore cannot reproduce the highest frequencies.  Along the sides and corners, where the spatial 

frequency of the zoneplate’s radial variation exceeds the sampling frequency, aliasing occurs as the 

sampling erroneously interprets the higher frequencies ቀ߱  గ
ଷ

ቁ in the original zoneplate as low 

frequencies, which our subsampled image now displays as low-frequency ring patterns closely resembling 

the true low-frequency variation at the center of the image.  Since we know that our subsampling is still 

frequent enough to preserve the low frequencies in the original image, we know that the central set of 

circles must be the true result, whereas the eight surrounding sets are misrepresentations of high 

frequencies (aliasing). 

 In order to suppress the aliasing that accompanies undersampling the zoneplate image, we can 

attenuate the high frequency content in the original image prior to subsampling; in other words, we can 

Problem 1E - Subsampled Zoneplate
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apply a lowpass pre-filter to reduce the high frequency components in the image so that they appear less 

prominently in the undersampled image. 

 We propose four possible (5 ൈ 5) lowpass filters, beginning with the constant two-dimensional 

rectangular filter: 

݄ଵ ൌ ଵ
ଶହ

ۏ
ێ
ێ
ێ
ۍ
1 1 1
1 1 1
1 1 1

1
1
1

1
1
1

1 1 1 1 1
1 1 1 1 ے1

ۑ
ۑ
ۑ
ې
. 

A second possibility is the quadratically tapering filter that proved successful in reducing aliasing for the 

2:1 subsampling: 

݄ଶ ൌ ଵ
ଵ

ۏ
ێ
ێ
ێ
ۍ
1 2 4
2 4 8
4 8 16

2
4
8

1
2
4

2 4 8 4 2
1 2 4 2 ے1

ۑ
ۑ
ۑ
ې
. 

Furthermore, we can extend classic one-dimensional filter designs like the Hanning window and Gaussian 

lowpass filter into two dimensions: 

݄ଷ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ

ଵ
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  = (Hanning Window)  

 

 ݄ସ ൌ

ۏ
ێ
ێ
ێ
ۍ
0.0085 0.0223 0.0307
0.0223 0.0583 0.0802
0.0307 0.0802 0.1105

0.0223
0.0583
0.0802

0.0085
0.0223
0.0307

0.0223 0.0583 0.0802 0.0583 0.0223
0.0085 0.0223 0.0307 0.0223 ے0.0085

ۑ
ۑ
ۑ
ې
  = (Gaussian Window) 

Applying these four spatial filters through two-dimensional convolution with the original zoneplate image 

prior to 3:1 subsampling, we obtain the following quartet of undersampled images: 
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Each filter has its benefits and drawbacks.  The rectangular and tapering filters preserve the detail at higher 

frequencies but also exhibit more prominent aliasing replicas, as the low-frequency main lobe duplicates still 

appear adjacent to the center circles.  The Hanning and Gaussian filters suppress these replicas quite well 

but also smear the detail from the central image’s higher frequencies, so the perimeter degenerates into a 

gray blur devoid of any detail.  We can understand the reasoning behind these tradeoffs by studying the one-

dimensional window profiles in the frequency domain: 

(5 × 5) Rect-Filtered Subsample (5 × 5) Taper-Filtered Subsample

(5 × 5) Hanning-Filtered Subsample (5 × 5) Gaussian-Filtered Subsample
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From these central profiles of the frequency response, we clearly see why detail preservation and replica 

suppression cannot successfully coexist.  While all four lowpass filter frequency responses boast a wide main 

lobe capable of preserving low frequencies, the high-frequency responses either taper gradually to zero or 

return to nonzero values in side lobes.  The first two filters contain side lobes in their frequency responses, 

therefore passing higher frequencies with slight attenuation; when these high frequencies appear in the final 

image, they alias into low frequencies that we see as thick-ringed replicas.  We can remove these aliases by 

designing filters with little to no side lobe height, but doing so widens the main lobe, smearing the low 

frequencies and blurring the image.  Furthermore, when we suppress all high frequencies, we also remove 

any detail farther from the origin, resulting in the bland gray surrounding our Hanning and Gaussian results.  

Thus, given the level of undersampling that we must execute (3:1), we cannot capture high frequency detail 

at the edges of the zoneplate without suffering aliasing, so we must either suppress both high frequency 

detail and aliased replicas, or tolerate the presence of both. 
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 With a bit of consideration, however, we can attain an optimal tradeoff of alias suppression and 

detail preservation.  Consider the ideal frequency rectangular window that would remove all possible aliasing 

frequencies ቀ|߱|  గ
ଷ

ቁ with sharp cutoff: 

ହ൫݁ఠ൯ܪ ൌ  Π


ቌ
߱ െ ݇ߨ2

ߨ2
3

ቍ 

Because this ideal filter is discontinuous, its spatial representation will extend to േ∞.  Applying the inverse 

discrete-time Fourier transform (DTFT), we obtain the spatial representation: 

݄ହሾ݊ሿ ൌ
1
3 ܿ݊݅ݏ ቀ

݊
3ቁ 

We cannot possibly implement this ideal filter with only five entries; nevertheless, we can approximate this 

behavior by obtaining the five central coefficients of the impulse response along each dimension, therefore 

preserving most of the signal power even if we truncate the tailing entries.  The (5ൈ 5) approximation is the 

normalized matrix product of our two sinc functions evaluated from ݊ ൌ െ2 to  ݊ ൌ 2: 

݄ହ ൌ

ۏ
ێ
ێ
ێ
ۍ
0.0085 0.0223 0.0307
0.0223 0.0583 0.0802
0.0307 0.0802 0.1105

0.0223
0.0583
0.0802

0.0085
0.0223
0.0307

0.0223 0.0583 0.0802 0.0583 0.0223
0.0085 0.0223 0.0307 0.0223 ے0.0085

ۑ
ۑ
ۑ
ې
. 

The approximation has a frequency response that no longer bears ideal rectangular shape, but it possesses a 

distinct main lobe with small side lobes: 
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Because the side lobes are nearly non-existent but still present, we expect to see reduced aliases amid some 

of the original image details.  Indeed, we see a result comparable to that obtained under the Hanning 

window or Gaussian filter: 

 

The central detail remains, while the high-frequency details vanish into grayness.  With the spatial limit of a 

(5 × 5) filter, this suppression is the best we can achieve.  We have significantly suppressed the peaks of our 

aliasing replicas by removing high frequencies, but the price we pay is the simultaneous loss of edge detail.  

Note that the image display on a computer monitor also subsamples the image, accentuating image artifacts. 
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Problem 1F - Spatial Sinc (Frequency Rect) Window

(5 × 5) Sinc-Filtered Subsample
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 Magnifying the zoneplate images by 10% offers us a chance to test our interpolation algorithms: 

 

The nearest-neighbor interpolation of the zoneplate image displays not only the aliased replicas of the low-

frequency image but also interpolation artifacts along the edges between concentric circles; instead of 

curving smoothly, the rings display jagged edges, much like the jagged edges of the cameraman’s coat in the 

nearest-neighbor interpolated result from our previous magnification exercise. 

 These jagged edges arise because the nearest-neighbor interpolation algorithm makes no effort to 

ensure similarity between an interpolated pixel and all of its neighbors; each interpolated pixel simply 

emulates its nearest neighbor, so it could differ considerably from its other neighbors.  As a result, the 

Problem 1G - 10% Magnified Nearest-Neighbor-Interpolated Zoneplate
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discretization of the grid forces certain pixels toward values that look extremely awkward next to the 

majority of their neighbors, as the nearest pixel does not always provide a smooth transition between edges. 

 

Incorporating all four neighboring pixels, the bilinear interpolation does not display the jagged edges of the 

nearest-neighbor interpolation, but the highest frequency oscillations close to the corners of the image begin 

to blur together because of the interpolation algorithm.  Whereas bilinear interpolation’s neighbor 

combination allows edge pixels to transition smoothly from one brightness to another, the combination 

backfires in regions of fine detail (or high frequency), since combination in these regions smears closely 

spaced lines into incoherent blur, which we witness at the originally detailed corners.  Here, however, this 

blurring is not egregious. 

Problem 1G - 10% Magnified Bilinear-Interpolated Zoneplate
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 The 20% magnification unsurprisingly exacerbates the drawbacks of both interpolation schemes: 

 

Much as we saw in the 10% magnification, nearest-neighbor interpolation preserves the fine detail at high 

frequencies but also retains the aliased replicas while introducing the visually displeasing jagged edges along 

boundaries.  The radial transitions from ring to ring are sharp and sudden as expected, but the pixels lined 

azimuthally along the edges should form a smooth and continuous circle rather than the rough, blocky arcs 

we see here.  Once again, we turn to bilinear interpolation to correct these artifacts. 

Problem 1G - 20% Magnified Nearest-Neighbor-Interpolated Zoneplate
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The bilinear interpretation once again solves both problems seen in the nearest-neighbor interpolated result.  

First of all, the curves appear azimuthally smooth once again, as the merging of information at each 

interpolated pixel involves all surrounding pixels, preserving the circular characteristic along boundaries.  

Meanwhile, the replicas seen in the nearest-neighbor interpolation also vanish for all intents and purposes; 

while faint remnants still encircle the main lobe, bilinear interpolation reduces their amplitude considerably.  

We can attribute this latter advantage to the drawback of bilinear interpolation: attenuation of high 

frequencies.  By averaging or linearly combining groups of neighboring pixels, the algorithm essentially 

blends nearby values and blurs fine detail, therefore simultaneously removing the high-frequency oscillations 

near the image corners and suppressing replicas that resulted from high-frequency aliasing. 

Problem 1G - 20% Magnified Bilinear-Interpolated Zoneplate
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Problem 2 – Non-Linear Filtering with Soft Coring 

 In order to remove noise from an image while preserving edges, we apply a soft coring function in 

the system depicted below: 

 

The lowpass filter designated as “LPF” in the system has the following kernel: 

 

Finally, we tap the soft coring function: 

 
Because the soft coring function operates on the high-passed portion ݂ሺݔ,  – ሻ of our original imageݕ

edges, lines, and noise – we can adjust the parameters m, γ, and τ to control how much we accentuate the 

high frequencies relative to the passed low frequencies in ݂ሺݔ,  .ሻݕ

We begin by iteratively computing the minimum mean squared error (MMSE) triple, specifying all 

possible pairs within reasonable range and determining the triplet with the lowest MSE.  Since we seek 

exact parameter values, we should also refine the interval between our parameter values as we approach 

the optimal set; in other words, after we determine the MMSE solution for each image, we decrease our 

step size and optimize again around the previously determined optimum.  Eventually, we converge on the 

ideal MMSE set of parameters for both images: 
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Problem 2B – Convergence to the Minimum Mean Squared Error Parameters 
 
Optimal m for Einstein #1: 2.000000  
Optimal gamma for Einstein #1: 3.000000  
Optimal tau for Einstein #1: 8.000000  
Minimum MSE for Einstein #1: 56.051282  
 
Optimal m for Einstein #2: 1.000000  
Optimal gamma for Einstein #2: 2.500000  
Optimal tau for Einstein #2: 25.000000  
Minimum MSE for Einstein #2: 37.688570  
 
------ 
 
Optimal m for Einstein #1: 2.100000  
Optimal gamma for Einstein #1: 2.800000  
Optimal tau for Einstein #1: 8.600000  
Minimum MSE for Einstein #1: 55.927073  
 
Optimal m for Einstein #2: 0.900000  
Optimal gamma for Einstein #2: 2.800000  
Optimal tau for Einstein #2: 23.300000  
Minimum MSE for Einstein #2: 37.568082  
 
------- 
 
Optimal m for Einstein #1: 2.110000  
Optimal gamma for Einstein #1: 2.750000  
Optimal tau for Einstein #1: 8.640000  
Minimum MSE for Einstein #1: 55.926441  
 
Optimal m for Einstein #2: 0.930000  
Optimal gamma for Einstein #2: 2.720000  
Optimal tau for Einstein #2: 23.860000  
Minimum MSE for Einstein #2: 37.525128  
 
------- 
 
Optimal m for Einstein #1: 2.107000  
Optimal gamma for Einstein #1: 2.755000  
Optimal tau for Einstein #1: 8.634000  
Minimum MSE for Einstein #1: 55.926398  
 
Optimal m for Einstein #2: 0.933000  
Optimal gamma for Einstein #2: 2.709000  
Optimal tau for Einstein #2: 23.924000  
Minimum MSE for Einstein #2: 37.524703  
 
------- 
 

We begin our quest for the optimal subjective image parameters by trying the MMSE optimal parameters 

for the first Einstein image: 
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The primary problems with the first Einstein image are slight additive noise and moderate blur.  The 

MMSE-optimal parameters actually succeed quite well in removing some of the blur around Einstein’s 

eyes, as the value of m (2.107) boosts edges to higher values while retaining low frequencies. 

The low value of the suppression interval τ (8.634) indicates that only the flattest, most uniform 

areas survive unchanged; even slight variations will receive some boost, explaining the general brightness 

increase throughout the image.  If we seek even greater contrast and detail at the expense of admitting 

more noise, then we might further shorten this suppression interval τ (to separate low frequencies more) 

and simultaneously increase m to accentuate the higher frequency portion of the image: 

Problem 2 - Original Einstein Blurred and Noisy Image before Soft Coring

Soft-Cored Einstein
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Notice how the level of detail has increased around Einstein’s suit and face, allowing us to perceive his 

pupils with finer detail than we observed in the MMSE solution image.  However, because the decreased 

interval admits a noisier image, our MSE increases to 82.8061.  If the noise bothers our perception of the 

image, then we can also move toward a blurrier yet less noisy subjective preference by increasing the 

interval τ while maintaining m: 

Problem 2 - Original Einstein Blurred and Noisy Image before Soft Coring

Soft-Cored Einstein
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Notice that the lengthened suppression interval blurs the image slightly more, since flat areas with low 

frequencies do not experience any alteration through soft coring.  However, keeping m at a high level 

maintains the precision around the eyes and tie.  The mean squared error of this blurrier preference is 

59.8454, only slightly higher than the optimal MMSE solution.  This small sacrifice in MSE leads to a 

visually perceptible change in detail. 

 Thus, whereas changing γ yields little visible difference, increasing m to sharpen the contrast while 

increasing or decreasing τ to exchange noisiness for blurriness improves the image’s subjective quality. 

 We perform a similar analysis for the second Einstein image, which begins visibly noisier: 

Problem 2 - Original Einstein Blurred and Noisy Image before Soft Coring

Soft-Cored Einstein
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Unlike the first Einstein image, the second Einstein image still looks slightly tarnished by noise following 

minimum mean squared error (MMSE) soft coring.  As pictured above, the MMSE parameters remove 

most of the noise grains, but soft coring leaves a slightly white-splotched result.  In this case, refining the 

resolution or detail in the image is futile; if we try to preserve every edge detail by increasing m or 

decreasing τ, we only add more grain and noise to the image.  Furthermore, if we blur the image more 

vehemently, then we rapidly lose the detail in Einstein’s face.  Thus, even with its flaws, the MMSE 

solution provides an amenable balance upon which we have difficulties improving.  For example, suppose 

we try to blur the image by decreasing edge boosting: 

Problem 2 - Original Einstein Blurred and Noisy Image before Soft Coring

Soft-Cored Einstein
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Despite our efforts to alleviate all graininess, the resultant blur actually damages the resolution.  While we 

could argue that this blurred result contains fewer grains, the MMSE solution still yields one of the most 

sharply resolved results without total domination by noise.  Any further edge boosting yields disaster: 

Problem 2 - Original Einstein Blurred and Noisy Image before Soft Coring

Soft-Cored Einstein
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In this sharpened result, with only a slightly higher value of m, artifacts begin to dot Einstein’s face; with 

further boosting, random pixels begin to appear unusually white or black, displeasing our senses.  Thus, 

the MMSE solution provides the most detail possible under manageable noise grain, without surrendering 

to the noise inundation that plagues sharper images or the blur that obscures noise-free outputs. 

In conclusion, we settle on the following sets of parameters: 

SUBJECTIVE EINSTEIN #1  MMSE EINSTEIN #1  SUBJECTIVE EINSTEIN #2  MMSE EINSTEIN #2 

Optimal Slope m  3.107  2.107  0.933  0.933 

Optimal Gamma γ  2.755  2.755  2.709  2.709 

Optimal Tau τ  10.634  8.634  23.924  23.924 

Mean Squared Error  59.845375  55.926398  37.524703  37.524703 
 

Problem 2 - Original Einstein Blurred and Noisy Image before Soft Coring
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