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Problem Set IV

Problem 1 — Document Alignment

Initially, the tilted documents contain handwriting strokes that run not only along the tilted vertical
axis but also perpendicular to that main axis; in other words, handwriting on the primary documents
display strong preferential direction not only up and down the page (as with the letter I) but also left and
right, where, for example, hyphens and crossed letters dominate.

Thus, in order to isolate the former vertical strokes, we strive first to eliminate their perpendicular
counterparts through erosion. Unfortunately, because erosion reduces the size of all characters, we might
thin the strokes beyond detectability in the Hough Transform,; thus, instead of merely eroding our
handwritten letters, we gpen the document to preserve the size of vertical strokes following elimination of
their horizontal counterparts. The left edges of words and paragraphs display the strongest sense of
vertical direction, so we set our structuring element to accentuate leftmost points:

imopen(~docl, strel("line", charSize, likelyTilt(1)));
Experimenting with various character sizes, we find that a length of 20 pixels resonates most closely with
the vertical strokes in the document. Finally, we apply opening with linear structuring elements of several
different slopes (tilts) until we find the angle that yields the greatest number of resulting regions; openings
that involve structuring elements tilted at incorrect angles (different from the actual document tilt) will not
preserve many of the characters in the tilted document, since the 20-pixel line will not fit into many
vertical strokes during erosion. When the maximal number of strokes remains following erosion, however,
our linear structuring element likely aligns closely parallel to the vertical strokes in the document. We then
open our document with this properly tilted structuring element and use this pre-processed (opened)
binary image as the basis for our Hough Transform, since the opening no longer contains any

perpendicular strokes that could also dominate the transform:
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From inspection of the bin plot (whose f-axis we modified to be zero for an untilted document), we see
that the bins around 4.15° off-vertical counterclockwise tilt accumulate the most hits in the Hough
Transform. After averaging the five tilt angles whose Hough bins boast the most content, we conclude
that the vertical strokes dominating the first document lean approximately 4.15° counterclockwise from
the vertical of a perfectly aligned document, indicating that the first document is tilted by about 4.15°.

Manual measurement of the document rotation ascertains this result.

We repeat the document opening with a differently tilted linear structuring element for the second
document, resulting in another opened image accentuating the vertical strokes that run strongly along the

direction of the document’s rotation:
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Performing the Hough Transform on this vastly simplified opened image, a small concentration of 8-bins

visibly accumulates more objects than bins at other angles, as we observe from the Hough Transform:
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Problem 1 - Hough Transform of Opened Document #2
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Unlike strokes in the first document, near-vertical marks in this second document seems to favor the
opposite direction of rotation, with a negative tilt angle relative to the proper vertical axis. As the Hough
Transform attains its maxima in bins along 0 = -1.95° (obtained again through the arithmetic mean of the
five angles with the most densely populated bins), we ascertain that the vertical strokes spanning the

second document run along an axis tilted approximately 1.95° clockwise from perfect alignment.
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Problem 2 — Reverse Engineering

The equation used to generate the Zoneplate pattern in ‘zoneplate.tif is

fGey) =f - cos(a,(x —x0)% + a,(y —¥0)%) + fo

To determine the spatial frequency of this two-dimensional sinusoid, we first extract the phase argument:

@, y) = ax(x = x0)* + a, (¥ = y0)*.
By definition, the angular frequency is the rate of change in the phase along the direction of interest.
Applying the Chain Rule from multivariate calculus, we differentiate the phase:

dp(x,y)
e 2a,(x — xp).

20()
wy == = 2a,(y = o).

These two expressions reveal that the frequency at any point in a zoneplate pattern is directly

proportional to the distance of the point from center: (Xg, Vo). In other words, the four replicas that we

see in the processed zoneplate image could represent replicas in either frequency or time:

Problem 2 - Original Zoneplate Image Problem 2 - Processed Zoneplate Image
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The center of the processed zoneplate image seems unaltered, so the mystery image processing

algorithm must have either produced spatial ringing or frequency aliasing. From the zoneplate image
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alone, we cannot determine whether replication has occurred in the spatial domain or the frequency
domain, since the two are directly related for the zoneplate pattern.

If the algorithm duplicated the image spatially, then the frequency spectrum likely experienced
ideal lowpass filtering, with the sharp frequency cutoff leading to spatial ringing at the corners. On the
other hand, frequency replication would result from aliasing, as undersampling the original zoneplate
image (at a sampling frequency lower than the Nyquist Rate) would lead high-frequency copies of the
spectrum to alias into the central region as low frequencies; especially at the edges of the zoneplate image,
where the frequencies are highest, sampling-induced adjacent replica images could easily extend into the
central lowpass portion of the spectrum and masquerade as low-frequency signal if we did not space our
samples close enough together (and therefore place the replicas far enough apart).

To determine whether replication is spatial or spectral, we examine the Lena image:

Problem 2 - Original Lena Image Problem 2 - Processed Lena Image

The two images look nearly identical. The difference image virtually fails to register, differing only at the
edges of Lena’s figure. Since no replication occurs in the processed Lena image, we conclude that the
image processing algorithm must replicate the zoneplate pattern’s central lobe in the frequency domain.

Spectral aliasing occurs in the zoneplate image because its highest frequency is quite high, meaning that
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undersampling occurs easily, for even a 2:1 downsampling; the Nyquist criterion for such a high maximum
frequency holds that even slight downsampling will lead to some overlap in adjacent replicas in the
sampled spectrum, resulting in the aliasing we witness in the corners, where high frequencies should
appear. However, the Lena image displays none of these sampling artifacts because the Lena image
spectrum contains much fewer high frequencies; most of the Lena image is relatively flat and unchanging,
and even the edges do not oscillate as quickly as the outer zoneplate rings. Thus, downsampling the Lena
image by a 2:1 factor and then interpolating to reconstruct a (512 X 512) image hardly affects image
quality, since the image never contained frequencies high enough to alias into the central spectrum.

Now that we have determined that undersampling is at fault for the zoneplate image’s four corner
replicas, we note in particular that no replicas appear at the sides of the image; the four replicas cling to the
four corners, suggesting that the algorithm sampled the image diagonally, along a line oriented +45° to the
axes. Furthermore, the algorithm seems to have applied a 2:1 sampling ratio, since the replicas appear
exactly at the edges of the image; the frequency variation seems to cycle through two periods, suggesting
that the mystery algorithm compressed the frequency range between (discrete-time Fourier transform)
spectral maxima by a factor of two before reconstructing the image. In other words, by taking only Aa/f
the samples in the spatial domain, the algorithm essentially Aa/ves the spectral distance between adjacent
replicas in the frequency domain, allowing two such periods to fit into the (512 X 512) domain frame.
This petfect fitting can occur only if the sampling occurs along one of the 45° diagonals; otherwise,
replicas would appear along other sides of the image.

In order to ascertain that the algorithm, indeed, performs diagonal downsampling by a factor of
two, we implement the diagonal sampling algorithm in Matlab and operate on both images. Juxtaposing

our manually processed images beside the given processed images, we ascertain their similarity:
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Problem 2 - Processed Zoneplate Image Problem 2 - Diagonally Sampled Zoneplate

) JINS

Problem 2 - Processed Lena Image Problem 2 - Diagonally Sampled Lena

For the samples that do not rest along one of the 2:1 sampling diagonals, our algorithm simply interpolates
by computing the arithmetic mean of the four neighbors which do fall on a sampling line. The resultant
image closely matches the given processed images; moreover, the mean square difference of the zoneplate
images is approximately 1.077, while the mean square difference between the Lena images amounts to only

0.003. All in all, our diagonally downsampled linear interpolation must parallel the mystery algorithm.
Page 8 of 11



Christopher Tsai
May 5, 2007
EE 368 — Digital Image Processing

Problem 3 — Eigenimages

Let f; = /" training image in training image set: {f}, f, ..., fi.}.

Let ¢; = Haar coefficients of the /" training image, organized in corresponding sets: {cy, ¢z, ..., €. }.

If we concatenate vectorized training images in matrix F = [f; f, -+ fi], and likewise combine
vectorized Haar coefficients in corresponding order in matrix C = [¢; ¢; -+ ¢;], then we can write the
Haar coefficient matrix as a linear Haar transform of the training image matrix:

C=Hr-F
Multiplying both sides of this equation by C’, we obtain:
C'"C=(Hr-F)" - (Hr-F)
C'C=F-H/'-Hr-F
c'C=F -H/"Hy) -F
Because the Haar Transform is an orthogonal transformation with real coefficients, its inner product is
identity: Hr' Hr = I, allowing us to simplify our expression for the Gram matrix:
c'C=F -(I)-F
C"C=F'F

Thus, the Haar coefficient images share an inner product with the training image set, meaning that the
transformation on the training set conserves energy. As a result, because the two matrices are identical,
they must also share the same set of L eigenvectors {Vy, Uy, ..., U1 }.

The Sirovich and Kirby method begins by considering a seemingly benign eigenvalue problem with
regard to the Gram matrices:

F'F- 5y, = Ay
Pre-multiplying both sides of this eigenvalue problem by the training set matrix F, we obtain
F-F'F-v,=F- AV

(FFT) : (Fﬁk) = A (Fﬁk)
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From this mere multiplication and re-association, we see that the Sirovich and Kirby eigenvalue problem
now resembles the problem of interest:
(FFT) - D =Df - A
where (FFT) approximates the autocorrelation matrix Rgy, the eigenmatrix @ comprises the eigenimages
of the training set, and the diagonal matrix A contains the eigenvalues along the main diagonal. Thus, we
have implicitly solved the eigenvalue problem for the autocotrelation matrix (FF T, as the eigenmatrix
must contain L. concatenated eigenimages of the form (Fvy,), where Uy, represents the k th eigenvector of
the much smaller matrix F'F. In other words, our eigenimage matrix for training set ' comprises the set
of concatenated eigenvectors:
Op = [Fv, Fv, -+ Fvp].
Likewise, employing similar reasoning, we can reshape the eigenvalue problem for the Haar coefficient
matrix initially considering
CC By = AT
Here, we note that the eigenvectors Uy, of the Gram matrix C'C identically match the eigenvectors of the
Gram matrix F'F, because the two Gram matrices are equal — not only for the Haar Transform but also
for any unitary transform. Proceeding with the Sirovich and Kirby method, we pre-multiply as before
C-C'C-v,=C - Ay
(CCT) - (Cv) = A+ (CVy)
We have once again reduced the Gram matrix eigenvalue problem into the problem of interest — the
eigenvalue problem for the autocorrelation matrix R, = CCT:
CChy - o, =D, - A
which decomposes our set of coefficient images into a set of eigenimages encapsulated in the eigenmatrix:

(DC = [C‘Bl C‘EZ C‘BL]
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However, recall that we obtain the coefficient sets C by applying the Haar Transform to the training set F:
C=Hr-F

Substitution into the coefficient eigenmatrix yields

&, =[(Hr-Fv,) (Hr-Fv,) -+ (Hr-Fv,)].
Thus, the Sirovich and Kirby method reveals that the Eigen-Haar Transform coefficients obtained from
solving the eigenvalue problem for the coefficient set {(CC ). @, = ®.- A} are linearly related to the
eigenimages flowing forth from the eigenvalue problem on the training set {(F FT).- O = Of - A}. The
Eigen-Haar Transform coefficients — the eigenimages resulting from the Haar coefficients set — is simply
the Haar Transform of the eigenimages resulting from the training set:

&, =[(Hr-Fv,) (Hr-Fv,) -+ (Hr-Fv,)].

&, = Hr - [Fv, Fv, -+ Fvp).

[Eigen-Haar Transform Coefficients = Haar Transform of Eigenimages|

Furthermore, because we have made no assumptions on the nature of the Haar Transform past its

unitarity, this relation applies to any unitary transform — not merely the Haar Transform:

®. = H - & for any unitary H.

Therein lies the power of the unitary transform: the eigenmatrix of the transform coefficients is simply the

transform of the eigenimage matrix.
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