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Problem Set IV 
 

Problem 1 – Document Alignment 

 Initially, the tilted documents contain handwriting strokes that run not only along the tilted vertical 

axis but also perpendicular to that main axis; in other words, handwriting on the primary documents 

display strong preferential direction not only up and down the page (as with the letter I) but also left and 

right, where, for example, hyphens and crossed letters dominate.  

 Thus, in order to isolate the former vertical strokes, we strive first to eliminate their perpendicular 

counterparts through erosion.  Unfortunately, because erosion reduces the size of all characters, we might 

thin the strokes beyond detectability in the Hough Transform; thus, instead of merely eroding our 

handwritten letters, we open the document to preserve the size of vertical strokes following elimination of 

their horizontal counterparts.  The left edges of words and paragraphs display the strongest sense of 

vertical direction, so we set our structuring element to accentuate leftmost points: 

imopen(~doc1, strel('line', charSize, likelyTilt(1))); 
 
Experimenting with various character sizes, we find that a length of 20 pixels resonates most closely with 

the vertical strokes in the document.  Finally, we apply opening with linear structuring elements of several 

different slopes (tilts) until we find the angle that yields the greatest number of resulting regions; openings 

that involve structuring elements tilted at incorrect angles (different from the actual document tilt) will not 

preserve many of the characters in the tilted document, since the 20-pixel line will not fit into many 

vertical strokes during erosion.  When the maximal number of strokes remains following erosion, however, 

our linear structuring element likely aligns closely parallel to the vertical strokes in the document.  We then 

open our document with this properly tilted structuring element and use this pre-processed (opened) 

binary image as the basis for our Hough Transform, since the opening no longer contains any 

perpendicular strokes that could also dominate the transform: 
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 With only tilted vertical strokes prevalent in the opened image, the Hough Transform – or the Radon 

Transform – now easily converges to the dominant angle of vertical strokes: 

 

Problem 1 - Hough Transform of Opened Document #1
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From inspection of the bin plot (whose θ-axis we modified to be zero for an untilted document), we see 

that the bins around 4.15° off-vertical counterclockwise tilt accumulate the most hits in the Hough 

Transform.  After averaging the five tilt angles whose Hough bins boast the most content, we conclude 

that the vertical strokes dominating the first document lean approximately 4.15° counterclockwise from 

the vertical of a perfectly aligned document, indicating that the first document is tilted by about 4.15°.  

Manual measurement of the document rotation ascertains this result. 

 We repeat the document opening with a differently tilted linear structuring element for the second 

document, resulting in another opened image accentuating the vertical strokes that run strongly along the 

direction of the document’s rotation: 

 

Performing the Hough Transform on this vastly simplified opened image, a small concentration of θ-bins 

visibly accumulates more objects than bins at other angles, as we observe from the Hough Transform: 
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Unlike strokes in the first document, near-vertical marks in this second document seems to favor the 

opposite direction of rotation, with a negative tilt angle relative to the proper vertical axis.  As the Hough 

Transform attains its maxima in bins along θ ൎ -1.95° (obtained again through the arithmetic mean of the 

five angles with the most densely populated bins), we ascertain that the vertical strokes spanning the 

second document run along an axis tilted approximately 1.95° clockwise from perfect alignment.   

 

  

Problem 1 - Hough Transform of Opened Document #2
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Problem 2 – Reverse Engineering 

 The equation used to generate the Zoneplate pattern in ‘zoneplate.tif’ is 

݂ሺݔ, ሻݕ ൌ መ݂ · ݔ൫ܽ௫ሺݏܿ െ ሻଶݔ  ܽ௬ሺݕ െ ሻଶ൯ݕ  ݂ 

To determine the spatial frequency of this two-dimensional sinusoid, we first extract the phase argument: 

߮ሺݔ, ሻݕ ൌ ܽ௫ሺݔ െ ሻଶݔ  ܽ௬ሺݕ െ  .ሻଶݕ

By definition, the angular frequency is the rate of change in the phase along the direction of interest.  

Applying the Chain Rule from multivariate calculus, we differentiate the phase: 

߱௫ ൌ
డఝሺ௫,௬ሻ
డ௫

ൌ 2ܽ௫ሺݔ െ  .ሻݔ

߱௬ ൌ
డఝሺ௫,௬ሻ
డ௬

ൌ 2ܽ௬ሺݕ െ  .ሻݕ

These two expressions reveal that the frequency at any point in a zoneplate pattern is directly 

proportional to the distance of the point from center: ሺݔ,  ሻ.  In other words, the four replicas that weݕ

see in the processed zoneplate image could represent replicas in either frequency or time: 

 

The center of the processed zoneplate image seems unaltered, so the mystery image processing 

algorithm must have either produced spatial ringing or frequency aliasing.  From the zoneplate image 

Problem 2 - Original Zoneplate Image Problem 2 - Processed Zoneplate Image
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alone, we cannot determine whether replication has occurred in the spatial domain or the frequency 

domain, since the two are directly related for the zoneplate pattern. 

 If the algorithm duplicated the image spatially, then the frequency spectrum likely experienced 

ideal lowpass filtering, with the sharp frequency cutoff leading to spatial ringing at the corners.  On the 

other hand, frequency replication would result from aliasing, as undersampling the original zoneplate 

image (at a sampling frequency lower than the Nyquist Rate) would lead high-frequency copies of the 

spectrum to alias into the central region as low frequencies; especially at the edges of the zoneplate image, 

where the frequencies are highest, sampling-induced adjacent replica images could easily extend into the 

central lowpass portion of the spectrum and masquerade as low-frequency signal if we did not space our 

samples close enough together (and therefore place the replicas far enough apart). 

 To determine whether replication is spatial or spectral, we examine the Lena image: 

 

The two images look nearly identical.  The difference image virtually fails to register, differing only at the 

edges of Lena’s figure.  Since no replication occurs in the processed Lena image, we conclude that the 

image processing algorithm must replicate the zoneplate pattern’s central lobe in the frequency domain.  

Spectral aliasing occurs in the zoneplate image because its highest frequency is quite high, meaning that 

Problem 2 - Original Lena Image Problem 2 - Processed Lena Image
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undersampling occurs easily, for even a 2:1 downsampling; the Nyquist criterion for such a high maximum 

frequency holds that even slight downsampling will lead to some overlap in adjacent replicas in the 

sampled spectrum, resulting in the aliasing we witness in the corners, where high frequencies should 

appear.  However, the Lena image displays none of these sampling artifacts because the Lena image 

spectrum contains much fewer high frequencies; most of the Lena image is relatively flat and unchanging, 

and even the edges do not oscillate as quickly as the outer zoneplate rings.  Thus, downsampling the Lena 

image by a 2:1 factor and then interpolating to reconstruct a (512 ൈ 512) image hardly affects image 

quality, since the image never contained frequencies high enough to alias into the central spectrum. 

 Now that we have determined that undersampling is at fault for the zoneplate image’s four corner 

replicas, we note in particular that no replicas appear at the sides of the image; the four replicas cling to the 

four corners, suggesting that the algorithm sampled the image diagonally, along a line oriented േ45° to the 

axes.  Furthermore, the algorithm seems to have applied a 2:1 sampling ratio, since the replicas appear 

exactly at the edges of the image; the frequency variation seems to cycle through two periods, suggesting 

that the mystery algorithm compressed the frequency range between (discrete-time Fourier transform) 

spectral maxima by a factor of two before reconstructing the image.  In other words, by taking only half 

the samples in the spatial domain, the algorithm essentially halves the spectral distance between adjacent 

replicas in the frequency domain, allowing two such periods to fit into the (512 ൈ 512) domain frame.  

This perfect fitting can occur only if the sampling occurs along one of the 45° diagonals; otherwise, 

replicas would appear along other sides of the image. 

 In order to ascertain that the algorithm, indeed, performs diagonal downsampling by a factor of 

two, we implement the diagonal sampling algorithm in Matlab and operate on both images.  Juxtaposing 

our manually processed images beside the given processed images, we ascertain their similarity: 
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For the samples that do not rest along one of the 2:1 sampling diagonals, our algorithm simply interpolates 

by computing the arithmetic mean of the four neighbors which do fall on a sampling line.  The resultant 

image closely matches the given processed images; moreover, the mean square difference of the zoneplate 

images is approximately 1.077, while the mean square difference between the Lena images amounts to only 

0.003.  All in all, our diagonally downsampled linear interpolation must parallel the mystery algorithm. 

Problem 2 - Processed Zoneplate Image Problem 2 - Diagonally Sampled Zoneplate

Problem 2 - Processed Lena Image Problem 2 - Diagonally Sampled Lena
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Problem 3 – Eigenimages 

Let ݂ = ith training image in training image set: ሼ ଵ݂, ଶ݂, … , ݂ሽ. 

Let ܿ = Haar coefficients of the ith training image, organized in corresponding sets: ሼܿଵ, ܿଶ, … , ܿሽ. 

If we concatenate vectorized training images in matrix F = ሾ ଵ݂   ଶ݂   ڮ   ݂ሿ, and likewise combine 

vectorized Haar coefficients in corresponding order in matrix C = ሾܿଵ  ܿଶ  ሿ, then we can write theܿ  ڮ  

Haar coefficient matrix as a linear Haar transform of the training image matrix: 

C = Hr · F 

Multiplying both sides of this equation by CT, we obtain: 

CTC = (Hr · F)T · (Hr · F) 

CTC = FT · HrT · Hr · F 

CTC = FT · (HrT Hr) · F 

Because the Haar Transform is an orthogonal transformation with real coefficients, its inner product is 

identity: HrT Hr = I, allowing us to simplify our expression for the Gram matrix: 

CTC = FT · ( I ) · F 

ࢀ ൌ  ࡲࢀࡲ

Thus, the Haar coefficient images share an inner product with the training image set, meaning that the 

transformation on the training set conserves energy.  As a result, because the two matrices are identical, 

they must also share the same set of L eigenvectors ሼݒറଵ, ,റଶݒ … ,  .റሽݒ

 The Sirovich and Kirby method begins by considering a seemingly benign eigenvalue problem with 

regard to the Gram matrices:  

FTF · ݒറ ൌ ߣݒറ 

Pre-multiplying both sides of this eigenvalue problem by the training set matrix F, we obtain 

F · FTF · ݒറ ൌ F ·  ߣݒറ 

ሺ்ܨܨሻ · ሺݒܨറሻ ൌ ߣ   ·   ሺݒܨറሻ 
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From this mere multiplication and re-association, we see that the Sirovich and Kirby eigenvalue problem 

now resembles the problem of interest: 

ሺ்ܨܨሻ · Φ ൌ Φ ·  Λ 

where ሺ்ܨܨሻ approximates the autocorrelation matrix ܴ, the eigenmatrix Φ comprises the eigenimages 

of the training set, and the diagonal matrix Λ contains the eigenvalues along the main diagonal.  Thus, we 

have implicitly solved the eigenvalue problem for the autocorrelation matrix ሺ்ܨܨሻ, as the eigenmatrix 

must contain L concatenated eigenimages of the form ሺݒܨറሻ, where ݒറ represents the ݇௧ eigenvector of 

the much smaller matrix FTF.  In other words, our eigenimage matrix for training set F comprises the set 

of concatenated eigenvectors: 

Φ ൌ ሾݒܨറଵ  ݒܨറଶ  .റሿݒܨ  ڮ 

Likewise, employing similar reasoning, we can reshape the eigenvalue problem for the Haar coefficient 

matrix initially considering 

CTC · ݒറ ൌ ߣݒറ 

Here, we note that the eigenvectors ݒറ of the Gram matrix CTC identically match the eigenvectors of the 

Gram matrix FTF, because the two Gram matrices are equal – not only for the Haar Transform but also 

for any unitary transform.  Proceeding with the Sirovich and Kirby method, we pre-multiply as before 

C · CTC · ݒറ ൌ C ·  ߣݒറ 

ሺ்ܥܥሻ · ሺݒܥറሻ ൌ ߣ   ·   ሺݒܥറሻ 

We have once again reduced the Gram matrix eigenvalue problem into the problem of interest – the 

eigenvalue problem for the autocorrelation matrix ܴ ൌ  :்ܥܥ

ሺ்ܥܥሻ · Φୡ ൌ Φୡ   ·  Λ 

which decomposes our set of coefficient images into a set of eigenimages encapsulated in the eigenmatrix: 

Φ ൌ ሾݒܥറଵ  ݒܥറଶ  .റሿݒܥ  ڮ 
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However, recall that we obtain the coefficient sets C by applying the Haar Transform to the training set F: 

C = Hr · F 

Substitution into the coefficient eigenmatrix yields 

Φ ൌ ሾሺݎܪ · ݎܪറଵሻ  ሺݒܨ · ݎܪሺ  ڮ റଶሻݒܨ ·  .റሻሿݒܨ

Thus, the Sirovich and Kirby method reveals that the Eigen-Haar Transform coefficients obtained from 

solving the eigenvalue problem for the coefficient set ሼሺ்ܥܥሻ ·  Φୡ  ൌ  Φୡ · Λሽ  are linearly related to the 

eigenimages flowing forth from the eigenvalue problem on the training set ൛ሺ்ܨܨሻ ·  Φ  ൌ  Φ · Λൟ.  The 

Eigen-Haar Transform coefficients – the eigenimages resulting from the Haar coefficients set – is simply 

the Haar Transform of the eigenimages resulting from the training set: 

Φ ൌ ሾሺݎܪ · ݎܪറଵሻ  ሺݒܨ · ݎܪሺ  ڮ റଶሻݒܨ ·  .റሻሿݒܨ

Φ ൌ ݎܪ · ሾݒܨറଵ  ݒܨറଶ  .റሿݒܨ  ڮ 

ࢉ ൌ ࢘ࡴ · ࢌ  

Eigen-Haar Transform Coefficients = Haar Transform of Eigenimages 

Furthermore, because we have made no assumptions on the nature of the Haar Transform past its 

unitarity, this relation applies to any unitary transform – not merely the Haar Transform: 

ࢉ ൌ ࡴ · ࢌ for any unitary H. 

Therein lies the power of the unitary transform: the eigenmatrix of the transform coefficients is simply the 

transform of the eigenimage matrix. 


