

JPEG	i-Re	con	nme	ende	ed Pe	ercep	tual I	Matrix
	[16	11	10	16	24	40	51	ן 61
T = Q.	12	12	14	19	26	58	60	55
	14	13	16	24	40	57	69	56
	14	17	22	29	51	87	80	62
	18	22	37	56	68	109	103	77
	24	35	55	64	81	104	113	92
	49	64	78	87	103	121	120	101
	72	92	95	98	112	100	103	99
 Matrix c 	hose	n for	huma	an vis	ual per	ceptior	า	
 DCT co quantize 	efficio ed mo	ents t ost fir	o whi nely (s	ch ou smalle	r eyes er step	are mo sizes 1	ost sen 6, 11,	sitive are 12,)
Asymmetry	etric	due to	o irreg	gular	monito	r pixel	sizes	,
D. Cerbelaud, C.	Tsai: Effe	cts of Ima	ge Compr	ession on	Extracted Fe	eature Qualit	/	

	A Brief Survey of Quantization Matrices												
	T' = Q T												
Wide range of Q: {0.1, 0.25, 0.5, 1, 2, 4, 8, 16, 32}													
 Fair comparison: For each Q, all quantization matrices T normalized to the same geometric mean (equivalent rate). 													
	M_{rec}	=	$ \begin{bmatrix} 16 \\ 12 \\ 14 \\ 14 \\ 18 \\ 24 \\ 49 \end{bmatrix} $	$ \begin{array}{r} 11 \\ 12 \\ 13 \\ 17 \\ 22 \\ 35 \\ 64 \end{array} $	10 14 16 22 37 55 78	16 19 24 29 56 64 87	24 26 40 51 68 81 103	40 58 57 87 109 104 121	$51 \\ 60 \\ 69 \\ 80 \\ 103 \\ 113 \\ 120$	61 55 56 62 77 92 101			
			[72	92	95	98	112	100	103	99]			
1000	D. Cerbelaud, C. Tsai: Effects of Image Compression on Extracted Feature Quality										no. 9		

Low Frequency Quantization Matrix											
 Wide range of 	Q: {	0.1, 0	T' = Q .25, 0.	<i>T</i> 5, 1, 2	2, 4, 8	, 16, 3	32}				
 Fair comparison: For each Q, all quantization matrices T normalized to the same geometric mean (equivalent rate). 											
	6	5	6 10	11 16	19 26	36 66	52 76	68 78			
	9	10	14	10 26	20 49	79	106	94			
$M_{low} =$	10	$\frac{15}{22}$	23 45	36 80	72 111	140 201	$143 \\ 210$	122			
	22	$\frac{22}{40}$	45 75	102	149	$201 \\ 215$	$\frac{210}{260}$	232			
	50	81 120	119	156 102	210	278 252	306	284			
D. Carbalaud C. Tsai: Effects o		130	109	193	ZOZ	203	269	300 J			

High F	reque	ency	Qu	anti	zatio	on N	latri	x
			T' = G	T				
 Wide range 	of Q: {(0.1, 0.	25, 0	5, 1, 1	2, 4, 8	3, 16,	32}	
 Fair compa normalized t 	rison: F to the sa	or ea ame g	ich Q	all qu tric m	uantiz Iean (ation equiv	matri alent	ces 7 rate)
	32	20	16	24	30	44	47	45
	22	20	21	25	30	59	50	36
	23	19	22	29	42	52	52	34
м	20	23	26	31	48	70	54	33
$M_{high} =$	23	25	39	53	56	77	60	36
	26	35	49	51	57	63	57	36
	45	54	59	59	60	60	50	34
	53	61	57	53	53	40	35	26

480x640

- Higher $Q \rightarrow$ Fewer Features, Lower Robustness, Accuracy
- Lower Resolution → Fewer Features, Larger-Scale Preserved
- Higher Resolution → Spurious Features, Detail Preserved

D. Cerbelaud, C. Tsai: Effects of Image Compression on Extracted Feature Quali

- Intermediate Balance of Features & Rate: 240 x 320, 480 x 640
- To reduce size while retaining features, decimation > quantization

no.4

Scenario-dependent results

A Glimpse into the Future

■ Larger and different data sets → will smoothen fluctuations

- Experiments with more query images
- Probing the nullspace of SURF: where can we best compromise?
- Use of scale, angle, and position information from SURF extraction
- More systematic measurement of "feature robustness"
 - Which scales and positions of features are most resistant?
 - Which types of features respond most favorably to decimation?
 - Which types of features respond most favorably to quantization?

Cerbelaud, C. Tsai: Effects of Image Compression on Extracted Feature Quality no.43

Bibliography [1] Lowe, D. G., "Distinctive Image Features from Scale-Invariant Keypoints", International Journal of Computer Vision, vol. 60, no. 2, pp. 91-110, 2004. [2] Lowe, D. G., "Object Recognition from Local Scale-Invariant Features", Proc. Of the International Conference on Computer Vision, Corfu, Sept. 1999. [3] H. Bay, T. Tuytelaars, and L. V. Gool, "SURF: Speeded Up Robust Features", in Proc. Ninth European Conference on Computer Vision, pp. 404-417, 2006. [4] ITU-T and ISO/IEC JTC1, "Digital Compression and coding of continuous-tone still images", ISO/IEC 10918-1, ITU-T Recommendation T.81 (JPEG), Sept. 1992. [5] G. Takacs, V. Chandrasekhar, N. Gelfand, Y. Xiong, W.-C. Chen, T. Bismpigiannis, R. Grzeszczuk, K. Pulli, and B. Girod, "Outdoors Augmented Reality on Mobile Phone using Loxel-Based Visual Feature Organization," submitted to IEEE Trans. Pattern Analysis and Machine Intelligence.

ts of Image Co

