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Problem Set I – Lossless Coding 
 
 

Problem #2 – Markov-1 Source Model 

 The two-dimensional entropy rate function ܪሺߙ,  ሻ isߚ

,ߙሺܪ ሻߚ ൌ െ
ߚ

ߙ ൅ ߚ
ሾሺ1 െ ሻߙ ଶሺ1܏ܗܔ െ ሻߙ ൅ ߙ ଶ܏ܗܔ ሿߙ െ

ߙ
ߙ ൅ ߚ

ሾሺ1 െ ሻߚ ଶሺ1܏ܗܔ െ ሻߚ ൅ ߚ ଶ܏ܗܔ  ሿߚ

 

For both special cases, the entropy rate reduces to ܪሺሼܺ௡ሽሻ ൌ െߙ logଶ ߙ െ ሺ1 െ ሻߙ logଶሺ1 െ   .ሻߙ

For the case ߙ ൌ  the transition probabilities are identical, leading to an equal probability and ,ߚ

proportion of ones and zeros.  In other words, such a source is state-independent; every transition 

matrix looks identical.  For the case ߙ ൅ ߚ ൌ 1, the two transition probabilities are complements; 

any given bit is zero with probability β, and one with probability α.  In this case, α directly denotes 

the proportion of ones in the sequence, whereas β = 1 – α approximates the number of zeros.  For 

ߙ ൌ ߚ ൌ 0.2, our test sequence has a tenth-order entropy of approximately 0.725238 bit, which 

closely approximates the analytical entropy rate of 0.721928 bit. 
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Problem #3 – Run-Length Coding 

If we compress a Markov-1 source sequence with run-length encoding, we can achieve superior 

compression ratios for low ߙ ൌ ߙ and for high ߚ ൌ    .than we can for intermediate values ߚ

 

This plot reveals that, when the probability α is low (less than 0.1), the low probability of transition 

permits extremely lengthy runs, which we can compress quite easily into a few numbers.  For 

example, a run of 100 zeros may occur, leading to a 100-fold reduction in the number of bits.  

However, the gain from the massive summarization of data quickly yields to the large number of 

possible run-lengths, spanning a number of nearly equally likely possibilities; the compression ratio 

quickly decreases to unity as the amount of randomness in the sheer number of possible run lengths 

(1 to 100+) that we must encode overtakes the savings gained from shrinking long runs.  On the 

other end of the scale, for high transition probabilities α > 0.9, the runs are short, and the bit 

alternations frequent, but the number of run-lengths we must encode also shrinks to a small typical 

set {mainly 1 and 2}, allowing us to describe the potential outcomes in fewer bits. 
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Problem 3[iii] - Compression Ratio of a Markov-1 Source Bit Stream
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 The probability mass functions for three representative values of α confirm our hypothesis: 

 

The low probability (α = 0.05) yields a large alphabet of possible run-lengths that we must encode, 

but the longer runs facilitate data reduction from many bits to a single representative count.  The 

intermediate probability (α = 0.5) balances alphabet size (ൎ 16) with common lengths, but the mere 

possibility of longer runs forces us to accommodate them, and, alas, the savings gained from 

compression fails to exceed the amount of uncertainty in the large alphabet of run-lengths.  The 

high probability (α = 0.95) yields an easily encodable alphabet, thereby achieving a maximal 

compression ratio despite the rarity of actual “runs.” 

 When we apply run-length encoding to the images Leisler and Snoopy, we observe that the 

resultant compression ratio depends on how we vectorize our two-dimensional image into a single 
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one-dimensional bit stream; unsurprisingly, the way we scan our image changes the distribution of 

runs, as the following table reveals: 

IMAGE COLUMNWISE (Up ՜ Down) ROWWISE (Left ՜ Right) 

Leisler 1.764204 1.780973 

Snoopy 1.716713 1.844704 

 

Thus, we can maximize our compression ratio by juxtaposing the image and its transposition to 

determine how one might exploit the distribution of runs for the best compression.  For the Snoopy 

image, for instance, the inclusion of text in the transcript bubble creates several runs (lines) of white 

pixels, allowing us to exploit their redundancy in run-length coding; armed with this prescience, we 

scan left to right to encounter these white lines and maximize the length of our runs. 

  



Christopher Tsai 
January 20, 2008 

EE 398 – Image Compression 

Page | 5  
 

Problem #4 – Adaptive Golomb Coder 

If we compress a Markov-1 source sequence with Golomb-coded run-length encoding, then we can 

achieve different compression ratios since the Golomb code should optimal for geometric sources.  

However, it remains to be seen whether or not our Golomb code can compete with the ideal 

entropy coding.  We juxtapose Golomb compression ratios with ideal entropy coding: 

 

The Golomb code compresses the run-length bit stream admirably well for Markov-1 source 

probabilities α < 1, its compression ratio essentially coinciding with the ideal optimum computed as 

binary entropy.  However, for higher transition probabilities – more state alternation, shorter and 

fewer runs – the Golomb code breaks down, failing to compress the data at all; most likely, this 

shortcoming unfolds because the data grow less and less geometric as the state transitions (bit flips) 

occur more frequently.  With fewer runs to exploit in unary coding, the Golomb code mirrors the 

complexity and length of the run-length sequence itself. 
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 Solid initial estimates for A and ܰ௠௔௫ materialize from repeated trial and error.  In 

particular, A represents the average run-length (or most frequently Golomb-encoded value); hence, 

based on our observation from the histograms for α = 0.05, 0.5, and 0.95, we might select A of 4 or 

5, since these run lengths occur quite frequently for intermediate alpha.  Of course, Golomb code 

targeting lower values of α benefit from higher values of A since the possible run lengths stretch 

past 100; conversely, higher values of α demand A of unity, as runs hardly ever occur for frequently 

transitioning source codes.  Meanwhile, because modern technology makes memory an afterthought 

– especially for the simple images we compress here – we need not worry about limiting the amount 

of hindsight our coder taps; instead, we choose ܰ௠௔௫ well above the number of elements in our 

system, ensuring that our Golomb coding algorithm considers the entire input stream. 

 Compressing the Leisler and Snoopy images, we obtain the following compression ratios: 

IMAGE COLUMNWISE 

(GOLOMB) 

COLUMNWISE 

(IDEAL) 

ROWWISE 

(GOLOMB) 

ROWWISE 

(IDEAL) 

Leisler 1.400748 1.764204 1.386630 1.780973

Snoopy 1.525938 1.716713 1.454416 1.844704

 

Juxtaposition with the ideal entropies reveals that the Golomb coder performs quite far from the 

optimum for Leisler and Snoopy images.  Whereas the run-length codes could be compressed as much 

as 1.7 with ideal coding, the Golomb coding can achieve only 1.4 for the Leisler image and 

approximately 1.5 for the Snoopy image.  The ideal entropy coder prevails over the Golomb coder. 


