
Christopher Tsai
January 20, 2008

EE 398 – Image Compression

Page | 1

Problem Set I – Lossless Coding

Problem #2 – Markov-1 Source Model

 The two-dimensional entropy rate function ܪሺߙ, ሻ isߚ

,ߙሺܪ ሻߚ ൌ െ
ߚ

ߙ ߚ
ሾሺ1 െ ሻߙ ଶሺ1ܗܔ െ ሻߙ ߙ ଶܗܔ ሿߙ െ

ߙ
ߙ ߚ

ሾሺ1 െ ሻߚ ଶሺ1ܗܔ െ ሻߚ ߚ ଶܗܔ ሿߚ

For both special cases, the entropy rate reduces to ܪሺሼܺሽሻ ൌ െߙ logଶ ߙ െ ሺ1 െ ሻߙ logଶሺ1 െ .ሻߙ

For the case ߙ ൌ the transition probabilities are identical, leading to an equal probability and ,ߚ

proportion of ones and zeros. In other words, such a source is state-independent; every transition

matrix looks identical. For the case ߙ ߚ ൌ 1, the two transition probabilities are complements;

any given bit is zero with probability β, and one with probability α. In this case, α directly denotes

the proportion of ones in the sequence, whereas β = 1 – α approximates the number of zeros. For

ߙ ൌ ߚ ൌ 0.2, our test sequence has a tenth-order entropy of approximately 0.725238 bit, which

closely approximates the analytical entropy rate of 0.721928 bit.

0.2
0.4

0.6
0.8

0.2

0.4

0.6

0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

Problem 2[ii] - Entropy Rate Function of a Markov-1 Source

β

E
nt

ro
py

 H
(α

, β
)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Christopher Tsai
January 20, 2008

EE 398 – Image Compression

Page | 2

Problem #3 – Run-Length Coding

If we compress a Markov-1 source sequence with run-length encoding, we can achieve superior

compression ratios for low ߙ ൌ ߙ and for high ߚ ൌ .than we can for intermediate values ߚ

This plot reveals that, when the probability α is low (less than 0.1), the low probability of transition

permits extremely lengthy runs, which we can compress quite easily into a few numbers. For

example, a run of 100 zeros may occur, leading to a 100-fold reduction in the number of bits.

However, the gain from the massive summarization of data quickly yields to the large number of

possible run-lengths, spanning a number of nearly equally likely possibilities; the compression ratio

quickly decreases to unity as the amount of randomness in the sheer number of possible run lengths

(1 to 100+) that we must encode overtakes the savings gained from shrinking long runs. On the

other end of the scale, for high transition probabilities α > 0.9, the runs are short, and the bit

alternations frequent, but the number of run-lengths we must encode also shrinks to a small typical

set {mainly 1 and 2}, allowing us to describe the potential outcomes in fewer bits.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

3.25

3.5

3.75

4

Transition Probability α

R
un

-L
en

gt
h

C
om

pr
es

si
on

 R
at

io

Problem 3[iii] - Compression Ratio of a Markov-1 Source Bit Stream

Christopher Tsai
January 20, 2008

EE 398 – Image Compression

Page | 3

 The probability mass functions for three representative values of α confirm our hypothesis:

The low probability (α = 0.05) yields a large alphabet of possible run-lengths that we must encode,

but the longer runs facilitate data reduction from many bits to a single representative count. The

intermediate probability (α = 0.5) balances alphabet size (ൎ 16) with common lengths, but the mere

possibility of longer runs forces us to accommodate them, and, alas, the savings gained from

compression fails to exceed the amount of uncertainty in the large alphabet of run-lengths. The

high probability (α = 0.95) yields an easily encodable alphabet, thereby achieving a maximal

compression ratio despite the rarity of actual “runs.”

 When we apply run-length encoding to the images Leisler and Snoopy, we observe that the

resultant compression ratio depends on how we vectorize our two-dimensional image into a single

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135
0

0.01

0.02

0.03

0.04

0.05

0.06

Run Length

P
ro

ba
bi

lit
y

Problem 3[iii] - Run Length Probability Mass Function (α = 0.05)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

0.1

0.2

0.3

0.4

0.5

Run Length

P
ro

ba
bi

lit
y

Problem 3[iii] - Run Length Probability Mass Function (α = 0.5)

1 2 3 4
0

0.2

0.4

0.6

0.8

1

Run Length

P
ro

ba
bi

lit
y

Problem 3[iii] - Run Length Probability Mass Function (α = 0.95)

Christopher Tsai
January 20, 2008

EE 398 – Image Compression

Page | 4

one-dimensional bit stream; unsurprisingly, the way we scan our image changes the distribution of

runs, as the following table reveals:

IMAGE COLUMNWISE (Up ՜ Down) ROWWISE (Left ՜ Right)

Leisler 1.764204 1.780973

Snoopy 1.716713 1.844704

Thus, we can maximize our compression ratio by juxtaposing the image and its transposition to

determine how one might exploit the distribution of runs for the best compression. For the Snoopy

image, for instance, the inclusion of text in the transcript bubble creates several runs (lines) of white

pixels, allowing us to exploit their redundancy in run-length coding; armed with this prescience, we

scan left to right to encounter these white lines and maximize the length of our runs.

Christopher Tsai
January 20, 2008

EE 398 – Image Compression

Page | 5

Problem #4 – Adaptive Golomb Coder

If we compress a Markov-1 source sequence with Golomb-coded run-length encoding, then we can

achieve different compression ratios since the Golomb code should optimal for geometric sources.

However, it remains to be seen whether or not our Golomb code can compete with the ideal

entropy coding. We juxtapose Golomb compression ratios with ideal entropy coding:

The Golomb code compresses the run-length bit stream admirably well for Markov-1 source

probabilities α < 1, its compression ratio essentially coinciding with the ideal optimum computed as

binary entropy. However, for higher transition probabilities – more state alternation, shorter and

fewer runs – the Golomb code breaks down, failing to compress the data at all; most likely, this

shortcoming unfolds because the data grow less and less geometric as the state transitions (bit flips)

occur more frequently. With fewer runs to exploit in unary coding, the Golomb code mirrors the

complexity and length of the run-length sequence itself.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

3.25

3.5

3.75

4

Transition Probability α

C
om

pr
es

si
on

 R
at

io

Problem 4[ii] - Compression Ratio of a Markov-1 Source Bit Stream

Ideal
Golomb

Christopher Tsai
January 20, 2008

EE 398 – Image Compression

Page | 6

 Solid initial estimates for A and ܰ௫ materialize from repeated trial and error. In

particular, A represents the average run-length (or most frequently Golomb-encoded value); hence,

based on our observation from the histograms for α = 0.05, 0.5, and 0.95, we might select A of 4 or

5, since these run lengths occur quite frequently for intermediate alpha. Of course, Golomb code

targeting lower values of α benefit from higher values of A since the possible run lengths stretch

past 100; conversely, higher values of α demand A of unity, as runs hardly ever occur for frequently

transitioning source codes. Meanwhile, because modern technology makes memory an afterthought

– especially for the simple images we compress here – we need not worry about limiting the amount

of hindsight our coder taps; instead, we choose ܰ௫ well above the number of elements in our

system, ensuring that our Golomb coding algorithm considers the entire input stream.

 Compressing the Leisler and Snoopy images, we obtain the following compression ratios:

IMAGE COLUMNWISE

(GOLOMB)

COLUMNWISE

(IDEAL)

ROWWISE

(GOLOMB)

ROWWISE

(IDEAL)

Leisler 1.400748 1.764204 1.386630 1.780973

Snoopy 1.525938 1.716713 1.454416 1.844704

Juxtaposition with the ideal entropies reveals that the Golomb coder performs quite far from the

optimum for Leisler and Snoopy images. Whereas the run-length codes could be compressed as much

as 1.7 with ideal coding, the Golomb coding can achieve only 1.4 for the Leisler image and

approximately 1.5 for the Snoopy image. The ideal entropy coder prevails over the Golomb coder.

