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Problem Set II – Arithmetic Coding 
 
 

Problem #1 – Geometric Source 

Probability Mass Function of a White Run:  ೈሺ݈ௐሻ ൌ ሺ1 െ  ௐௐሻೈିଵ

Probability Mass Function of a Black Run:  ಳሺ݈ሻ ൌ ሺ1 െ  ௐௐሻಳିଵ

Expected Length of a White Run:  ܧሾܮௐሿ ൌ ଵ
ೈಳ

 

Expected Length of a Black Run:  ܧሾܮሿ ൌ ଵ
ಳೈ

 

Entropy of White Sequence Length:  ܪሺܮௐሻ ൌ ଵିೈಳ
ೈಳ
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Problem 1[iii] - Entropy of a Geometric Source
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Problem #2 – Binary Arithmetic Coder 

 By comparing the number of zeros in the vectorized Snoopy image to the number of ones, we 

estimate the probability ݂ሺݔ ൌ 0ሻ ൎ 0.2121582, or approximately 21%.  Arithmetically encoding 

this vectorized image stream, we achieve a compression ratio of approximately 1.3380155.  The 

pre-encoded image stream comprises 16384 bits, whereas our encoded sequence consumes only 

12245 bits.  The reconstructed image is a perfect reproduction of the original, pre-encoded image, 

which we expect from a lossless algorithm such as the arithmetic coding routine we implemented: 
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Problem #3 – Arithmetic Coding of Markov-1 Source 

 For a Markov-1 source with symmetric transition probabilities, the number of ones will 

closely parallel the number of zeros; thus, with an approximately equal balance of ones and zeros, 

the estimated entropy of both the original source and the coded sequence hovers about 

ሻߙሺܪ ൌ
1
2 ଶܗܔ 2 

1
2 ଶܗܔ 2 ൌ 1 

 

The inherent entropy rate of the Markov-1 source is not uniformly unity, because symbols 

generally depend closely on their previous values.  Only for the source with symmetric transition 

probabilities (α = 0.5) is the entropy rate approximately unity.  Generally, uneven transition 

probabilities lead to state dependence, which, as the plot reveals, manifests itself in the sub-unity 

entropy rate.  We remedy this sub-optimal entropy rate through arithmetic coding, which allows us 

to approach the ideal entropy rate; to adapt our arithmetic coder to a Markov source, we introduce 

two probability statistics in our symbol probabilities, depending on the current state of the input: 
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Problem 3[i] - Estimated Entropy
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% Markov-1 source characteristics: 
symbol1 = data(1); 
p00 = floor(prob00 * 2^P);      % prob00 = prob{0 -> 0} = 1 - alpha 
p10 = floor(prob10 * 2^P);      % prob10 = prob{1 -> 0} = beta 
  

 ڭ
 
for n = 2 : inLength 
         
    if (data(n-1) == '0') 
        T = A*p00; 
    else 
        T = A*p10; 
    end 
     

 ڭ
 

Once adapted to accommodate Markov-1 source state differences, our binary arithmetic 

coder strives to bring the entropy rate to unity, so that encoded symbols have as little statistical 

dependence as possible: 

 

Indeed, the encoded symbols are now virtually independent, with equal numbers of zeros and ones. 
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Problem 3[ii] - Estimated Entropy Rate
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The compression now resembles the ideal entropy code compression that we computed analytically 

in Problem Set #1.  The arithmetic encoder, by bringing the entropy rate as close as possible to 

unity without compromising image data, effectively removes all statistical redundancy and achieves 

the ideal limit of lossless compression.  As we observe in the following graph, the Golomb code 

remains competitive up to α = 0.5, at which point it departs from the ideal compression ratio: 

 

Even for α < 0.5 – relatively stable Markov processes – the Golomb code performs slightly below 

the arithmetic code, suggesting that, despite its optimality for geometric sources, the Golomb code 

cannot remove all redundancy from Markov sources.  The arithmetic code, though complicated to 

generate, removes redundancy much better, its performance curve corroborates. 
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Problem 3[iii] - Markov-1 Source Compression Ratio for Binary Arithmetic Coder
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