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Problem Set III – Quantization 
 
 

Problem #2.1 – Lloyd-Max Quantizer 

To train both the Lloyd-Max Quantizer and our Entropy-Constrained Quantizer, we employ the 

following training set of images, sampling every four lines and every four columns: 

       

We set our Lagrange multiplier to zero and our termination tolerance to Ԗ = 0.001.  As 

recommended, we replace the codeword in an empty cell with a new codeword, generated by 

splitting the most populated cell.  Implementing the algorithm with a full cost-minimum search, we 

obtain the following optimal codebook probabilities for the 3-bit and 4-bit quantizer: 
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Problem 2.1 - Probabilities for 3-Bit Lloyd-Max Quantization Output
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We first notice that the 4-bit quantization contains – unsurprisingly – more levels and therefore finer 

approximation of the true probability density.  Furthermore, both mass functions ascertain the 

relative paucity of image pixel intensities beyond 225.  Hence, the images contain few bright whites, 

as our normalized histograms reveal.  These probability mass functions form the basis of our fixed 

length code, which yields the following rate-distortion pairs: 
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Problem 2.1 - Probabilities for 4-Bit Lloyd-Max Quantization Output
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Problem 2.1 - Rate-Distortion Pairs for 3-bit and 4-bit Lloyd-Max Quantization
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From the 3-bit and 4-bit rate-distortion curves, we can measure the slope to quantify the amount by 

which we can decrease distortion (elevating the PSNR) by increasing rate (fine-tuning quantization).  

The Lloyd-Max Quantizer fixed-length code offers a rate-distortion curve slope of 5.157163 dB/bit, 

while the theoretically optimal entropy code exchanges 5.810281 dB of PSNR for each additional bit 

of quantization.  Meanwhile, we can track the algorithm’s convergence by measuring the distortion 

at each step and watching its monotonic decrease: 

 

The 3-bit quantization algorithm, containing fewer levels and hence a simpler codebook, converges 

in only 13 iterations, whereas the 4-bit quantization algorithm starts with a lower distortion thanks 

to its improved resolution but also requires more steps to converge based on its self-comparison 

termination metric; the 4-bit quantization requires 18 iterations to converge. 
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Problem 2.1 - Monotonically Decreasing Distortion
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Problem #2.2 – Entropy-Constrained Scalar Quantization 

Tapping the same training set of boats, harbour, and peppers, we train our entropy-constrained scalar 

quantizer without discarding empty bins; because removing a codeword does not waste any bits in 

the entropy-constrained algorithm, we eradicate empty cells.  We again set Ԗ = 0.01 as our 

termination tolerance criterion, but we now vary the Lagrange multiplier λ over the set {0, 5, 10, 30, 

62, 70, 90}.  Beginning out iterative process with a 4-bit uniform quantizer, we obtain the following 

probability mass functions for the λ = 0 and the λ = 70 cases: 
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Problem 2.2 - Probabilities for Entropy-Constrained Quantization (λ = 0)

0  25 50 75 100 125 150 175 200 225 250
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Quantized Pixel Intensity

P
ro

ba
bi

lit
y 

p Y

Problem 2.2 - Probabilities for Entropy-Constrained Quantization (λ = 70)
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We observe that the higher Lagrange multiplier actually yields a coarser quantization, leading to 

fewer levels and hence poorer resolution.  Let us compare the rate-distortion curves with those of 

our Lloyd-Max Quantizer: 

 

The graph reveals that the entropy-constrained scalar quantization algorithm performs, as its name 

suggests, extremely well, narrowly outperforming even the optimal entropy code computed under 

the Lloyd-Max Quantization algorithm.  However, for all intents and purposes, the entropy-

constrained code, under the assumption of a theoretically optimal entropy code, meets the optimal 

entropy limit.  The rate-distortion curve sports a slope of approximately 5.719414 dB/bit. 

 Finally, we consider the convergence of the distortion as we vary the Lagrange multiplier.  

As one might expect, the Lagrange multiplier controls how quickly we converge to the optimal 

codebook, although excessively large values of the multiplier result in overshoot: 
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Problem 2.2 - Rate-Distortion Pairs for Scalar Quantization
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For large values of λ ൐ 50, the distortion remains extremely high, even after convergence.  This 

makes sense; the higher we charge for increasing the rate R, the more content we become in settling 

for distortion.  In other words, the optimal distortions are so high for large Lagrange multipliers 

because we harden the cost of increased rate, resulting in lower bit rates, coarser quantization, fewer 

levels, and, ultimately, higher distortion.  We can focus on the curves for lower λ, noting that λ ൌ 30 

offers the fastest convergence: 
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Problem 2.2 - Distortion of Entropy-Constrained Quantizers
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In particular, it appears that the λ = 10 algorithm offers the best balance of rapid convergence and 

low distortion: 
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