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Problem Set IV – Predictive Coding 
 
 

Problem #2 – Lossless Encoding of Gray-Level Images 

To build our codebook, we first construct the normalized histogram as a probability mass function 

(PMF) for each one of our five images, as well as their composite sum (added and normalized): 

 
We exploit each statistical distribution by using a variable-length code, with shorter codes 

representing more probable outcomes, as dictated by the PMF.  If we then encode each image using 

a variable length code table, then we can attain a minimum codeword length.  Customizing a set of 
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codewords to fit each separate image’s PMF, we obtain a lower entropy than we would achieve by 

using one single codebook created from the composite image; applying the composite codebook for 

all images might be computationally convenient, but its distance to each individual image is no 

longer optimal, therefore increasing the average code length: 

[bits/pixel] Airfield Boats Bridge Harbour Peppers IMAGE SUM 

Memoryless 
Custom Code 

7.1205 7.0333 5.7056 6.7575 7.5924 7.5129 

Memoryless 
Single Code 

7.8362 7.4766 7.1167 7.2392 7.8957 7.5129 

Pairwise 
Custom Code 

6.1776 5.8996 4.8098 5.6997 6.2574 6.3179 

Pairwise 
Single Code 

6.7996 6.2643 5.8209 6.1100 6.5946 6.3179 

Pairwise 
Custom Code 

Gain 
0.9429 1.1337 0.8957 1.0578 1.3350 1.1950 

Pairwise 
Single Code 

Gain 
1.0365 1.2123 1.2958 1.1292 1.3011 1.1950 

 

Thus, encoding pixels in consideration of their joint statistics with an adjacent pixel improves the 

minimum length code by approximately 1 bit per pixel for all images.  The improvement burgeons 

when we apply this joint encoding technique to the single code result, which indicates that we gain 

even more from knowledge of neighboring pixels when we begin with a more crude solution.  The 

only surprise arises from the fact that this joint encoding on a single code solution works so well 

despite our use of the composite image as the basis!  In other words, all images have strong 

similarities in their joint statistics, allowing us to exploit the neighborhood knowledge even in a 

composite sum of several images; the strong diagonality in the joint histograms manifest this fact.  

As a result, the codebook we generalize across several images works even better because these joint 

statistics are more similar from image to image than their individual pixel-by-pixel counterparts. 
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Problem #3 – Lossless Predictive Coding of Images 

Encoding the prediction errors of each of our five images with each of the four prediction schemes, 

we obtain the following minimum code lengths: 

[bits/pixel] Airfield Boats Bridge Harbour Peppers 
IMAGE 

SUM 
Predictive 

Gain 

Left Neighbor 6.1896 5.1594 5.5403 5.2626 5.2323 5.4769 0.8410 

Minimum 
Variance 

6.0145 4.6936 5.9173 5.2795 5.1909 5.4192 0.8987 

Minimum 
Entropy 

5.9605 4.7056 5.8777 5.2357 5.1339 5.3827 0.9352 

JPEG-LS 5.9905 4.6341 5.3198 5.1271 5.0845 5.2312 1.0867 

 

Thus, predictive coding of the errors rather than the image pixels themselves offers us an 

improvement of approximately 1 bit per pixel no matter the method.  In particular, JPEG-LS excels 

in extracting the most out of prediction, and, to no surprise, since its nonlinear predictor is the most 

complex of all four methods.  The bridge image, with its plethora of edges, responds most favorably 

to JPEG-LS predictive coding, most likely because other forms of predictive coding – especially the 

left-neighbor technique – fail for some orientation of bridge edge. 

   


