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Problem Set III 
System Design and Sidelobe Reduction 

 
Problem #1 – In-Phase/Quadrature vs. Offset Video 

 For the In-Phase/Quadrature (I/Q) system, we process the complex-valued chirp signal centered on 

the carrier frequency fc = 10 MHz.  We specify this center frequency when generating the chirp signal from 

our Matlab function, and the resultant chirp has both real and imaginary components; we plot the real part: 
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Problem #1A - I/Q Chirp Pulse with Slope = 1011 Hz/s, τp = 30 μs, fs = 20 MHz, fc = 10 MHz

 

Applying the Fast Fourier Transform (FFT) to the complex signal, we observe a magnitude spectrum 

centered at 10 MHz: 

-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 107

-20
-18
-16
-14
-12
-10
-8
-6
-4
-2
0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

Frequency [Hertz]

M
ag

ni
tu

de
 S

pe
ct

ru
m

 [d
ec

ib
el

 s
ca

le
]

Problem #1A - Centered Magnitude Spectrum of the Complex I/Q Chirp Pulse
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In our plot, we also see spectral content around -10 MHz, but this merely reflects the cyclical nature of the 

FFT rather than actual frequency content in the negative spectrum.  Because our signal is complex (I/Q), its 

magnitude spectrum must necessarily contain only one side.  By correlating the complex chirp with a matched 

filter through multiplication in the frequency domain, we obtain a compressed pulse.   
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] Problem #1A - System Impulse Response of Compressed I/Q Chirp

 

 
Impulse Response
Envelope
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Problem #1A - System Impulse Response of Compressed I/Q Chirp

 

The resultant signal is completely real since matched filtering removes the chirp’s complex phase.  The pulse 

envelope resembles a sinc function since the spectrum is a rectangular band centered on a carrier frequency.  

Note the actual impulse response oscillates with a high frequency since the signal rests on a 10 MHz carrier. 

 Instead of processing complex data in I/Q format, suppose our system samples purely the real part.  

We can still reconstruct the complete signal and compress it identically, but we must first sample at twice the 

bandwidth to accommodate the negative frequency replica that results from a real signal; because our sampled 

chirp signal is now real rather than complex, its spectrum is hermitian, so we must extend the bandwidth to 
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contain the hermitian conjugate side so that the positive and negative sides do not alias.  By extracting only 

the real part, we see the two-sided spectrum: 
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Problem #1B - Magnitude Spectrum of the Offset Video Chirp Pulse

fmax = 11.5 MHz

|f|min = 8.5 MHz

fmin = -11.5 MHz

 

The maximum frequency in the spectrum is approximately 11.5 MHz, while the negative side extends to 

approximately -11.5 MHz.  Since each side spectrum’s bandwidth is still the product of chirp frequency slope 

and pulse width [sτ = (1011 Hz)(30 μs) = 3 MHz], the total effective bandwidth is approximately 6 MHz, 

forcing us to sample at twice the frequency to accommodate the additional spectral content.  First, notice that 

the two side spectra interfere very little because our carrier frequency centers each portion well above half a 

bandwidth from zero frequency, with DC phase cancelling nearly perfectly; meanwhile, our higher sampling 

frequency precludes FFT aliasing.  While the magnitude spectrum appears symmetric, the phases of the two 

sides are actually opposites due to the hermitian symmetry of a real signal’s spectrum, so we must take care to 

extract the right half-spectrum if we plan to use a complex reference chirp for which the phase matters.  

Upon halving the spectrum (through truncation in Matlab), we discard the negative half-spectrum and 

multiply the basebanded right half-spectrum (shifted about zero frequency) with our reference spectrum, 

obtaining the same pulse compression seen in the I/Q complex chirp case: 
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] Problem #1B - System Impulse Response of Compressed Offset Video Chirp

 

 
Impulse Response
Envelope
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Problem #1B - System Impulse Response of Compressed Offset Video Chirp

 

Thus, as expected, the two processing methods – I/Q and Offset Video – produce exactly the same impulse 

response compressed pulse, in both magnitude and phase.  Our choice largely depends on the type of signal 

our receiver or processor must accept, and other system design specifications.  Each one possesses its own 

advantages.  For example, the I/Q system requires a much lower sampling frequency equivalent to the signal 

bandwidth, but sampling both real and imaginary components will demand two samplers offset exactly 90° in 

phase, thus placing significant timing and synchronization restraints on our sampling hardware.  The Offset 

Video system, on the other hand, requires twice as much bandwidth and sampling frequency while 

necessitating more complicated coding (from basebanding the right half-spectrum) as well as care (due to the 

asymmetry in phase of the two half-spectra), but loosens the system constraints, since we need only one 

analog A/D converter, which also tends to operate at higher speeds without the need to synchronize with any 

other sample. 
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Problem #2 – Peak and Integrated Sidelobe Ratios 

 To compute the Peak Sidelobe Ratio (PSLR) and Integrated Sidelobe Ratio (ISLR), we could employ 

the decibel scale plot or simply approximate our impulse response as a sinc function that we can numerically 

integrate.  For the PSLR, we inspect the plot and obtain a PSLR of -13.36 dB ratio when defining 

[ ] [ dBdB peaklobemainpeaksidelobefirst
peaklobemain

peaksidelobefirstPSLR −≡≡ ] . 

Notice that this definition uses the first sidelobe peak rather than the maximum sidelobe peak.  To compute the 

ISLR, we either integrate a model sinc function (done analytically in hand calculations), or employ Matlab’s 

numerical integration function trapz on the compressed pulse absolute envelope with the definition: 
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This definition yields an ISLR of approximately 0.10756 ≈ -9.68338 dB for the compression in Problem #1. 

 If we first multiply our reference spectrum by some weighting or window function, then we can 

decrease the PSLR and ISLR, allowing us to obtain higher time resolution and lower noise floors in our 

compressed pulse.  We apply a variety of windows assuming the form ⎟
⎠
⎞

⎜
⎝
⎛−+

BW
fww π2cos)1(  and compute the 

resultant PSLR and ISLR. The optimal weighting factor w appears to be 0.57 for PSLR and 0.51 for ISLR: 
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Problem #2 - Peak and Integrated Sidelobe Ratios of Chirp with Spectral Weighting [w+(1-w)cos(2πf/B)]

 

 
Peak Side Lobe Ratio (PSLR)
Integrated Side Lobe Ratio (ISLR)

ISLR minimized at w = 0.51

PSLR minimized at w = 0.57
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The Hamming window ⎟
⎠
⎞

⎜
⎝
⎛+

BW
fπ2cos46.054.0  uses the average of these two optimal values: w = 0.54, thereby 

compromising between optimal PSLR (for sharp peak detection) and optimal ISLR (for minimal sidelobe 

power).  Interestingly, weightings around these optima yield sidelobes that increasing in magnitude farther 

from the main lobe, contrary to the typical decreasing trend.  Take 0.54, for example: 
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Problem #2 - Windowed Impulse Response with Weighting Factor w = 0.54

 

Remark the rise in sidelobe power due to the heavier weighting near the main lobe; cosine windows with 

intermediate weighting factors no longer average sidelobes arithmetically.  As a result, the optimal PSLR 

differs if we instead define it with the maximum sidelobe peak rather than the first sidelobe peak: 
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Problem #2 - Peak and Integrated Sidelobe Ratios of Chirp with Spectral Weighting [w + (1 - w)cos(2πf/B)]

 

 
Peak Side Lobe Ratio (PSLR)
Integrated Side Lobe Ratio (ISLR)

ISLR minimized at w = 0.51

PSLR minimized at w = 0.58

 

The ISLR attains minimum at the same location, but the PSLR now reaches its optimal value for w = 0.58. 

 6



Christopher Tsai 
January 31, 2007 

EE 355 – Imaging Radar and Its Applications 

Problem #3 – Peak and Integrated Sidelobe Ratios of Mismatched Chirps 

 If we overestimate our transmitted chirp signal’s slope by even 2% or 5% and employ a matched 

filter that does not exactly match our chirp, then the resulting pulse compression degrades from the ideal 

compression; we can see the degeneration of quality in both an increased PSLR and ISLR, indicating that our 

mismatched filter output has not only higher sidelobes (relative to the main lobe) but also a greater fraction of 

power in the sidelobes. 

Reference Chirp Slope 1.02 × 1011 (2%) 1.02 × 1011 (2%) 1.05 × 1011 (2%) 1.05 × 1011 (5%) 
Hamming Windowed?     

Peak Sidelobe Ratio -9.92894 dB -40.0027 dB -0.8441 dB -37.6393 dB 
Integrated Sidelobe Ratio -7.27684 dB -19.3752 dB 2.1595 dB -20.3705 dB  

 

Mismatched pulse compression decreases the main lobe’s relative height above the sidelobes while also 

placing more power and width in the sidelobes.  For example, if we overestimate the signal slope by 2%, we 

obtain the following compressed pulse: 
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] Problem #3A - System Impulse Response of Compressed Chirp with 2% Slope Overestimation

 

 
Impulse Response
Envelope
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] Problem #3A - System Impulse Response of Compressed Chirp with 2% Slope Overestimation

 

The first sidelobe is much closer to the main lobe, and the main lobe no longer appears narrow because much 

of the power resides in the sidelobes, which are wide and thick.  At 5% slope overestimation, the pulse 

compression is virtually no longer a “compression”:  
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] Problem #3C - System Impulse Response of Compressed Chirp with 5% Slope Overestimation

 

 
Impulse Response
Envelope
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] Problem #3C - System Impulse Response of Compressed Chirp with 5% Slope Overestimation

  

The main lobe does not visibly protrude, as the sidelobes rise to the point of obscuring it, and the effective 

pulse width now must include sidelobes since the heights are comparable, meaning that the pulse no longer 

compresses as much as it potentially can.  Notice that PSLR is only -0.844094 dB in the 5% slope 

overestimation case; the sidelobes rise to virtually the same height as the main lobe!  Meanwhile, the ISLR is a 

positive quantity, so the sidelobes contain even more power than the main lobe; this kind of sidelobe 

dominance would disrupt proper radar imaging with the pulse, as strong and powerful sidelobes would 

produce intense replica images, precipitating potentially irreversible interference if extremely bright targets 

appear adjacent to very dark targets. 

 Even though we can never attain the minimal PSLR and ISLR values achieved with the perfectly 

matched filter, we can nevertheless improve pulse compression by applying Hamming weighting to the 

reference spectra before convolution; this weighting still suppresses sidelobes, allowing the main lobes to 

protrude more prominently.  Because we do not know the true chirp frequency slope, we cannot apply a 

window with the exact equivalent bandwidth BW in ⎟
⎠
⎞

⎜
⎝
⎛+

BW
fπ2cos46.054.0 , but the resultant error makes 

virtually no noticeable difference.  The improvement is noticeable even in 2% slope overestimation: 
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] Problem #3B - System Impulse Response of Hamming-Windowed Chirp with 2% Slope Overestimation

 

 
Impulse Response
Envelope
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] Problem #3B - System Impulse Response of Hamming-Windowed Chirp with 2% Slope Overestimation

 

Because the Hamming window comprises a cosine spectrum, its time equivalent comprises a pair of delta 

functions surrounding the central impulse; as a result, convolution with the Hamming window in time widens 

the main lobe of the compressed pulse, since the two delta functions, spaced (1/Bandwidth) apart, produce 

slightly shifted replicas of the main sinc pulse, which add to form the smeared spectrum seen above.  In fact, 

if we examine the main lobe carefully enough, we notice that the first sidelobe appears to have merged into 

the main lobe; thus, for PSLR and ISLR computations, we ignore this merging and assume that the first 

sidelobe appears farther out, where the crest is distinctly separate from the widened main lobe body.  

However, we cannot ignore the fact that the increase in PSLR and main lobe protrusion comes at the cost of 

resolution, since the window widens the main lobe, damaging our ability to resolve backscatter of point 

targets.  The 5% overestimation filter output further accentuates this widening: 
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] Problem #3C - System Impulse Response of Hamming-Windowed Chirp with 5% Slope Overestimation

 

 
Impulse Response
Envelope
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] Problem #3C - System Impulse Response of Hamming-Windowed Chirp with 5% Slope Overestimation

 

Here, the effective pulse width has increased from approximately 1 μs in the ideal matched reference chirp to 

nearly 2 μs in the windowed mismatched reference chirp.  Most of this coarsening in the resolution arises 

from the smearing of sinc convolution with the window’s time impulses, but we also see merged sidelobes 

around +/- 1.25 μs as well.  However, we do not regret the loss of resolution; in return for lost resolution, 

the window has granted our main lobe with considerably more prominent protrusion from the sidelobes, 

which, despite their power, now sit noticeably below the main lobe; recall that these sidelobes rose 

comparably to the main lobe height before we applied windowing, leaving virtually no choice in this 5% case.  

Comparing the windowed cases of our two different mismatched reference signals, we see that the 

windowing also reduces the PSLR and ISLR sensitivity to error; in other words, the PSLR and ISLR remain 

comparable whether we overestimate by 2% or by 5%, so the resultant pulse changes less with successive 

error, making performance much more predictable for small deviations from the actual chirp slope. 

 All in all, we conclude that windowing becomes an absolute necessity in the event of even slight 

mismatches in reference chirps, for even 2% slope overestimation error results in much higher PSLR and 

ISLR in the compressed pulse, and hence potential sidelobe interference during imaging.  By windowing the 

reference spectra before pulse compression, we can salvage the height of our main lobe at the cost of 

approximately doubling the effective duration (and hence resolution) of our pulse. 
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