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Problem Set IX 
Interferometric Digital Elevation Models and Geocoding 

 
Problem #1 – Four-Look Interferogram 

 After reading 1536 azimuth lines of 1280 range samples each, we employ Matlab’s angle function to 

extract the interferogram phase and display it as a resampled high-resolution interferometric fringe pattern: 

 

As we remarked in Problem Set VIII, this fringe pattern features high resolution from resampling and 

interpolation, with well-defined edges and point-like precision.  The stripes (or fringes) of constant phase clearly 

bear 2π periodic wraparound, cycling from –π to π.  At this point, we cannot readily deduce height from the 

image. 
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Problem #1 - Multilooked (4 × 4) Interferogram of Mt. Etna Area
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Problem #2 – The Flat Earth Fringe Pattern 

 In general, we can relate topographical height and range by the relationship: 

߶ ൌ
ߨ4
ߣ

ܤ ඨ1 െ
ଶݖ

ଶݎ · ݏܿ ߙ െ
ݖ
ݎ

· ݊݅ݏ  ߙ

In the flat earth approximation, phase varies only along the range r, which we increment from ݎ by four times 

the slant range pixel spacing to account for the fact that each averaged resolution cell of our four-look image 

comprises four pixels along range.  We evaluate the phase for all r beginning at ݎ and assuming ݖ ൌ   for a flatݖ

earth.  The resulting phase displays as a series of azimuth-independent fringes repeating regularly across range: 

 

However, in the curved earth calculation, the altitude ݖ no longer remains constant along the azimuth, since the 

satellite’s approximately circular motion varies the effective height above ground: 
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Problem #2 - Flat Earth Fringe Pattern
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ሻݐሺݖ ൌ ݖ െ
1
2

ଶݐଶݒ

ܴா௧  ݖ
 

where ݖ represents the nominal spacecraft altitude, t is the azimuth time coordinate, which we increment by 

ସ ୪୭୭୩ୱ
PRF

 from line to line, and v is the spacecraft velocity, which we can easily compute from the effective velocity 

to be ݒ ൌ ݒ · ට ோಶೌೝ
ோಶೌೝା௭

ൎ 7523.753 ୫
௦

.  However, because the spacecraft moves so fast and samples at 

such a high pulse repetition frequency (PRF = 1736 Hz), the additional curvature that we introduce by varying 

the effective height actually does not noticeably change the fringe pattern that we remove from our 

interferogram.  While the phase does vary slightly along the azimuth, the changes appear visually as only a slight 

slant in fringe stripes: 

 

Notice that the fringes appear slightly offset to the left as we move down a single stripe from top to bottom.  

The curvature is most prominent along the edges of the image, farthest from our reference range bin. 
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Problem #2S - Curved Earth Fringe Pattern
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Problem #3 – Removal of the Flat Earth Fringe Pattern 

Flat Earth Fringe Pattern:  ߶ ൌ ସగ
ఒ

ܤ ቈට1 െ ௭మ

మ · ݏܿ ߙ െ ௭


· ݊݅ݏ  ߙ

In order to remove this phase from our original interferogram, we can simply subtract it from the angle result 

that we previously displayed as an image.  However, because this phase subtraction will bring our interferogram 

data values out of the domain  ൣ– ,ߨ  ൧, we choose instead to modulate the interferogram with a complexߨ

correction exponential containing the conjugate phase of the flat earth fringe pattern before applying angle: 

߶ ൌ െ ସగ
ఒ

ܤ ቈට1 െ ௭మ

మ · ݏܿ ߙ െ ௭


· ݊݅ݏ  .ߙ

݁·థೕ ൌ ݁
ି·ସగ

ఒ ቈටଵି௭మ

మ·ܿݏ ఈି௭
·݊݅ݏ ఈ

 

Once we remove this phase from our interferogram, our fringes begin to resemble contour lines of elevation: 
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Problem #3 - Corrected Interferogram with Flat Earth Removed
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Even though the phase periodicity prevents us from immediately extracting true elevation from this 

interferogram, we can tell that fringes of constant phase represent lines of constant elevation, as the circular 

pattern resembles a gradual ascent from the peripheral flat terrain to the central peak of Mt. Etna. 

 Interestingly, this corrected interferogram depends quite sensitively on the orientation angle α, 

ߙ ൌ െ1݊ܽݐ ఼
צ

 ߠ െ 90° ൎ െ135.0462°. 

However, if we instead employ the given value (α = -135.0°), then the fringe pattern changes slightly: 

 

The shape of the fringe pattern surrounding Mt. Etna has metamorphosed, with a particularly more 

prominent ridge line in the lower right of the summit.  The color (phase history) has also slightly shifted. 
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Problem #3 - Corrected Interferogram with Flat Earth Removed (α  = 135o)
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Removing the curved earth fringe pattern from the original interferogram yields an image that looks nearly 

identical to the fringe pattern with flat earth removed: 

 

As we discovered when observing the curved earth fringe pattern, the corrections that we make to the flat earth 

fringe pattern by varying the height along the azimuth merely slant the fringes of constant phase, so the resulting 

interferogram with curved earth removed unsurprisingly looks nearly identical to the interferogram that we 

formed from subtracting the flat earth model. 

  

Range Bin

A
zi

m
ut

h 
Li

ne
Problem #3S - Corrected Interferogram with Curved Earth Removed
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Problem #4 – Ambiguity Height 

Depending on where we set our reference range (or, equivalently, our reference angle), the ambiguity 

height that results from this 2π phase periodicity will vary.  The contours or fringes of constant phase will repeat 

after 2π radians of phase difference, so each fringe corresponds to a height difference (the ambiguity height) of 

ߨ2 ൌ െ
ܤߨ4
ݎߣ

ቈ
ݏܿ ߙ

݊ܽݐ ߠ
 ݊݅ݏ ߙ  ݖ݀

For a given reference range, our ambiguity height is approximately 

ݖ݀ ൌ
െݎߣ

ܤ2  ݏܿ ߙ
݊ܽݐ ߠ

 ݊݅ݏ ൨ߙ
 

However, the height depends on the choice of ݎ and  ߠ , as we can visualize in a plot of ݀ݖ vs. ݎ : 

 

If we place our reference range at the central range bin (index 640), then the ambiguity height is approximately 

554.966438 meters.  Nevertheless, complete topographic reduction requires inclusion of the range dependence, 

which we forego here.  The curved earth ambiguity heights remain nearly exactly the same, since we consider 

only deviations in height; the absolute heights of the flat and curved earths differ, but, designating our reference 

altitude to be ݖ at the central azimuth line (line 768), the differential uncertainties ݀ݖ do not. 
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Problem #4 - Ambiguity Height as a Function of Range Bin
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Problem #5 – Phase Unwrapping 

 Unwrapping the flattened interferogram on the tree computers, we compress the number of data points 

but obtain both amplitude and unwrapped phase.  Plotting the amplitude yields the reflectivity or brightness scale 

map that we have grown accustomed to viewing: 

 

From the amplitude map, we observe several discrete point-like scattering targets reflecting especially well at the 

viewing geometry.  The majority of the map is relatively dark in L-band, suggesting relatively flat terrain, whereas 

a set of points on the left side of Mt. Etna appears distinctly bright, possibly because of the material difference of 

the surrounding terrain.  Mt. Etna is a particularly active strato volcano, so its ejecta – lava or landslides – could 

have roughened the left surface (relative to 24 cm wavelength) to yield high L-band reflectivity. 

 More importantly, however, we also obtain the unwrapped phase, which we will relate to elevation: 
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Problem #5A - Amplitude of Unwrapped Flattened Interferogram
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The unwrapped phase image begins to resemble a topographic elevation map, with the summit of Mt. Etna 

appearing reddish-orange due to its peak heights, and surrounding regions appearing progressively bluer to 

indicate lower heights closed to sea level. 

 Unwrapping the curved-earth approximation yields a similar result with slightly more contrast in the 

amplitude image: 
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Problem #5B - Phase of Unwrapped Flattened Interferogram
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The finer speckles of the ground protrude slightly more prominently under the curved-earth assumption, 

renewing our hope that we have applied the more accurate model.  The differences in detail are not earth-

shattering, but we see enough small discrepancies – the white dots in the upper half of the image, the finer ridge 

lines, the more refined crater holes, and the slightly improved contrast – to know that our procedure has 

improved the image, if only marginally. 

Likewise, we plot the unwrapped phase for the curved-earth approximation: 
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Problem #5S - Amplitude of Unwrapped Curved-Earth Interferogram
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 With such a flowing coalescence of colors on a two-dimensional image, it is difficult to perceive the 

effect of our curved earth assumption, but we shall see in our three-dimensional Digital Elevation Model (DEM) 

that the curvature we have considered is, indeed, subtly present.  
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Problem #5S - Phase of Unwrapped Curved-Earth Interferogram
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Problem #6 – Digital Elevation Model (DEM) 

 In order to convert our unwrapped phase values into a model of surface height, we must normalize our 

scale by dividing by the phase periodicity 2π.  Then, we build our entire elevation model around the single point 

of whose height we are certain; knowing that Mt. Etna has a peak height of 3350 m, we must ensure that our 

phase-normalized map has this maximum value.  To scale all points accordingly, we subtract the current 

maximum from the map and add the known peak height of 3350 m, essentially forcing a shift of the imaged peak 

to the known peak height.  Because we subtract and add the same standardization to each point, our resulting 

height model begins at 3350 m and scales down to lower elevations accordingly, with zero occurring at sea level 

due to normalization of the unwrapped phase.  We set sea level at 0 m, and clip our image to [0 m, 3350 m] to 

obtain the Digital Elevation Model (DEM) pictured below: 
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Problem #6 - Digital Elevation Model of Mt. Etna Area
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 As desired, the peak of Mt. Etna appears as the maximum height (3350 m) in the image, with 

successively lower regions surrounding the peak appearing lower (more orange), all the way down to sea level at 

0 m.  Topographically, our DEM appears sensible considering the sloping surface around Mt. Etna.  Because we 

began with the unwrapped phase, we are no longer sensitive to backscatter or point target brightness, allowing us 

to focus exclusively on the topographic height of our region.  However, because the two dimensions (range and 

azimuth) still feature bin numbers, our DEM remains in radar coordinates. 

 We derive a similar DEM from the curved-earth model: 
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Problem #6S - Curved Earth Digital Elevation Model of Mt. Etna Area
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Problem #7 – Mapping Correlation into Height Error 

 Because the correlation offers a quantitative measure of our interferogram’s accuracy in representing 

phase and hence range, we can use it also to quantify our digital elevation model’s topographic height error, since 

we derived our DEM from the interferogram.  Having already acquired the correlation map, we simply scale it 

according to the standard deviation relationship to obtain height error from phase error. 

 Assuming that our system operates with a high signal-to-noise ratio (SNR), and assuming that the 

correlations ρ collected in our map are predominantly thermal, we approximate topographic height error: 

௭ߪ ൌ
ݎߣ

ܤߨ4
݊݅ݏ ߠ

ߠ൫ݏܿ െ ൯ߙ
ඨ

1 െ ߩ
ߩ2

 

Mapping correlations ρ  to height errors ߪ௭ for each point in our DEM, we obtain a standard deviation map: 

 

Even though the height error exceeds 70 m for several pixels, the mean error hovers around 36.52 m, which is 

tolerable for heights on the order of 3350 m.  As we noted previously when compiling the correlation maps, the 
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Problem #7 - Standard Deviation in Height of Mt. Etna Area
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most significant errors seem to occur on the mountain itself, where the slope is steepest and the heights largest.  

In fact, a side-to-side comparison of our amplitude map and this height error map reveals striking similarities: 

 

For example, the roughest locations with the highest frequency of ridges in the amplitude image appear with the 

greatest error in the standard deviation image; even the small crater-like holes appear distinctly in both images.  

Similarly, the flatter regions surrounding the mountain appear smooth not only in the amplitude image but also in 

the standard deviation image, where our height estimation error is minimal.  Thus, based on correlation, our DEM 

provides seemingly accurate characterization of lower heights and flatter slopes in general, with steadily decreasing 

accuracy and increasing error as we ascend Mt. Etna and its numerous ridges.  We attribute this error to the 

ambiguity height, as even small uncertainties in height begin to matter more as the height changes more quickly; as 

we ascend the steep slopes of Mt. Etna, it becomes more difficult to characterize the height accurately because it 

varies so rapidly. 

 On the other hand, our characterization of height error is incomplete; we assumed only thermal 

correlation, omitting spatial and temporal correlation from our calculation.  Furthermore, we mapped errors from 

only phase noise, neglecting the typically smaller baseline noise and often-dominant orientation noise.  Thus, to 
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Problem #5A - Amplitude of Unwrapped Flattened Interferogram
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Problem #7 - Standard Deviation in Height of Mt. Etna Area
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obtain a definitive error model, we would have to consider these other forms of error and include spatial and 

temporal correlation. 

 For the curved earth problem, we cannot employ the flat-earth expression relating phase and height errors.  

Instead, we must re-derive the part of the relationship that assumes a flat earth: 

డ௭
డథ

ൌ డ௭
డఏ

· డఏ
డఋ

· డఋ
డథ

. 

The expressions relating look angle and slant range difference remain the same: 

ߠ߲
ߜ߲

ൌ െ
1

ܤ cosሺߠ െ  ሻߙ

ߜ߲
߲߶

ൌ െ
ߣ

ߨ4
 

However, to relate the varying altitude with the look angle, we must now differentiate the Law of Cosines: 

cos ߠ ൌ െ
ሺܴா௧  ሻଶݖ  ݎ

ଶ െ ܴா௧
ଶ

2 · ݎ · ሺܴா௧  ሻݖ  

߲
ߠ߲

ሾcos ߠ߲ ሿߠ ൌ െ
߲

ݖ߲
ቈ
ሺܴா௧  ሻଶݖ  ݎ

ଶ െ ܴா௧
ଶ

2 · ݎ · ሺܴா௧  ሻݖ   ݖ߲ 

ݖ߲
ߠ߲

ൌ െ
2 · ݎ · ሾܴா௧  ሻሿଶݐሺݖ · sin ߠ

ሾܴா௧  ሻሿଶݐሺݖ െ ݎ
ଶ  ܴா௧

ଶ  

As a result of this slight correction, the standard deviation formula relating height and correlation also changes: 

ݖ߲
߲߶

ൌ െ
ߣ · ݎ · ሾܴா௧  ሻሿଶݐሺݖ · sin ߠ

ܤߨ2 · cosሺߠ െ ሻߙ · ሾܴா௧  ሻሿଶݐሺݖ െ ݎ
ଶ  ܴா௧

ଶ  

௭ߪ ൌ
ݎߣ

ܤߨ4
݊݅ݏ ߠ

ߠ൫ݏܿ െ ൯ߙ
·

2 · ሾܴா௧  ሻሿଶݐሺݖ

ሾܴா௧  ሻሿଶݐሺݖ െ ݎ
ଶ  ܴா௧

ଶ · ඨ
1 െ ߩ

ߩ2
 

Notice that the altitude ݖሺݐሻ is no longer a simple constant, instead depending on the azimuth slow time 

coordinate, because our spacecraft no longer follows a straight-line trajectory but rather a circular one.  Thus, in 

addition to changing our equation for computing the height error, we must also substitute a different azimuth-

dependent height. 

As before, we assume that our correlation is purely thermal, and we neglect baseline and orientation 

errors.  Applying this new relation to the same correlation data, we obtain the image: 
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As expected, the changes are not visibly earth-shattering, as the mean height error still hovers around 37.7729 m 

(after the lines of useless junk data have been removed from the rightmost range bins).  Thus, the curved earth 

approximation does not dramatically improve our height error estimate.  
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Problem #7S - Standard Deviation in Curved-Earth Height of Mt. Etna Area
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Problem #8 – Geocoding 

 Before we resample our image, we must convert from radar coordinates to ground coordinates in earth 

distances.  To convert our slant range values into ground range coordinates, we compute 

௨ௗݎ ൌ ඥݎଶ െ ሺݖ െ ݄ாெሻଶ 

...or, in the case of a spherical (curved) earth, we project the central angle onto the surface of the earth: 

௨ௗݎ ൌ ߚ · ܴா௧ ൌ െ1ݏܿ ቆ
ሺܴா௧  ሻଶݖ  ሺܴா௧  ݄ாெሻଶ െ ଶݎ

2 · ሺܴா௧  ሻݖ · ሺܴா௧  ݄ாெሻ ቇ · ܴா௧ 

Along the azimuth direction, we apply the same ground pixel spacing as in range to obtain square pixels. 

Under the flat earth approximation, our first coordinate conversion from radar coordinates into the earth grid 

results in a perforated DEM, reflecting the fact that our resampling is non-linear; the mapping is not one-to-one: 
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Problem #8A - Geocoded Digital Elevation Model of Mt. Etna Area
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In order to fill the holes with reasonable pixel values, we can apply smoothening filters such as mean and 

median filters, or we can interpolate point-by-point.  Filters are faster to apply than pointwise interpolation, but we 

can tap more sophisticated algorithms to produce more authentic images if we interpolate.  For example, if we 

linearly interpolate each azimuth line, we compile the patched image: 

 

To check that our interpolation is valid, we might also plot the amplitude image with the same interpolation 

algorithm applied, leading to the visually intact display of surface brightness: 
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Problem #9A - Interpolated Geocoded Elevation
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Since we can still recognize features in this amplitude image, we can rest assured that the interpolation properly 

patches the holes in the elevation image as well.  Let us apply a median filter to the geocoded data to compare the 

effects, since median filters are typically more resistant to outliers (like the specks that we see) than both mean and 

interpolation filtering: 
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Problem #9A - Interpolated Geocoded Amplitude
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Compared to the linearly interpolated geocoded DEM, the median-filtered result retains more of the high-elevation 

points.  However, at the same time, the upper-right corner of the image also appears at a slightly higher elevation, 

as the increased amount of blue suggests that the median filter obtains a generally higher elevation throughout the 

image, perhaps because the median is more resistant to low outliers that might weigh more heavily in the 

interpolation.  Furthermore, the median filter works two-dimensionally, drawing points from several lines as 

opposed to linear one-dimensional line-by-line interpolation. 

Finally, we expand our sinc interpolation to the spherical coordinate system, which we geocode using the 

central angle projection onto earth’s curved surface.  Applying the same algorithm, we obtain the geocoded DEM: 
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Problem #9B - Median-Filtered Geocoded DEM
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As we discovered in the interferogram, accounting for the slight curvature of earth offers little improvement over 

the flat earth approximation, but the consideration of even the slightest curvature – even if the consideration is not 

exact in its substitution of effective altitude – refines our DEM slightly, as we can ascertain in the interpolated 

amplitude image:  
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Problem #9C - Spherically Geocoded Elevation of Mt. Etna Area
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Once again, we consult the amplitude function to verify that our interpolation preserves geophysical sense, and the 

interpolation succeeds again, not only in patching the holes in our grid resampling but also maintaining order in the 

specific locations of features.  

 Finally, we can improve our geocoded DEM slightly with other finer techniques, such as two-dimensional 

interpolation, which yields the following image: 
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Problem #9A - Interpolated Geocoded Amplitude
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Problem #9C - Spherically Geocoded Amplitude of Mt. Etna Area
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Problem #9D - Spherically Geocoded Elevation of Mt. Etna Area
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We can also apply different coloring schemes to accentuate the geography of Mt. Etna: 

 

 Last but certainly not least, we apply the curved-earth corrected to the range projection equations, thus 

refining the range and azimuth grid to reflect the slight curvature of our imaged region: 

௨ௗݎ ൌ ߚ · ܴா௧ ൌ െ1ݏܿ ቆ
ሾܴா௧  ሻሿଶݐሺݖ  ሺܴா௧  ݄ாெሻଶ െ ଶݎ

2 · ሾܴா௧  ሻሿݐሺݖ · ሺܴா௧  ݄ாெሻ ቇ · ܴா௧ 

Geocoding under this assumption, we obtain slightly corrected elevation and amplitude DEM plots: 
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Problem #9C - Spherically Geocoded Elevation of Mt. Etna Area
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As verification, the amplitude tells us that we have interpolated correctly, as the features remain geographically 

intact with only slight degradation in the resolution due to linear interpolation: 
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Problem #9S - Spherically Geocoded Elevation for a Curved Earth
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Though slightly blurred from our interpolation scheme, the brightness amplitude image still displays Mt. Etna in all 

her glory.  As we noted previously, curved earth considerations round the surface appearance and accentuate 

details slightly more than the flat-earth image, but the difference is not otherwise noticeable.  Finally, we construct 

a three-dimensional DEM: 
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Problem #9S - Spherically Geocoded Amplitude for a Curved Earth
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 From this visual model of the surface near Mt. Etna, we perceive not only the steepness of the slope 

leading to the mountain’s peak at 3350 m, but also the elliptical contour lines that display the ascent (or descent) in 

elevation.  Even though our ambiguity height prevents us from assigning each pixel a definitive elevation above sea 

level, we can interpolate, both algorithmically and graphically, to produce such a surface. 

Though the distinction may be difficult to perceive, we nevertheless concede that the curved-earth has 

introduced a slight curvature to our elevation model.  The curvature is not extreme, because the earth is massive, 

and we have imaged but a small patch of it; nevertheless, we can see from the slightly bending shape of the surface 

– especially along the azimuth for a fixed range cross-section – that we have accounted for the slight curvature 

along the earth’s surface.  Most of this observed bending actually results from the physical topographic variation in 

elevation, but earth’s spherical shape also contributes, if only slightly. 

 

Please see hand-written notes for all curved earth derivations. 


