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Problem Set II 
Orbits and Gravity 

Earth, Moon, and Sky 
 

Problem 1 – Planet-Moon Barycenters 

The barycenter of a two-body system is the center of mass of the two bodies: 

 

 

 

Defining the origin at the planet’s center so that the moon’s radial coordinate is ݎெ௢௢௡, we can 

compute the barycenter’s distance from the center of Earth by calculating the center of mass as a 

mass-weighted distance: 

ா௔௥௧௛ܯ · ሺݎ஼ெ െ ா௔௥௧௛ሻݎ ൌ ெ௢௢௡ܯ · ሺݎ஼ெ െ  ெ௢௢௡ሻݎ

ா௔௥௧௛ܯ · ሺݎ஼ெ െ ா௔௥௧௛ሻݎ ൌ ெ௢௢௡ܯ · ሺݎெ௢௢௡ െ  ஼ெሻݎ

ሺܯா௔௥௧௛ ൅ ெ௢௢௡ሻܯ · ஼ெݎ ൌ ா௔௥௧௛ܯ · ா௔௥௧௛ݎ ൅ ெ௢௢௡ܯ ·  ெ௢௢௡ݎ

஼ெݎ ൌ
ா௔௥௧௛ܯ

ሺܯா௔௥௧௛ ൅ ெ௢௢௡ሻܯ · ሺ0 ݉ሻ ൅
ெ௢௢௡ܯ

ሺܯா௔௥௧௛ ൅ ெ௢௢௡ሻܯ ·  ெ௢௢௡ݎ

஼ெݎ ൌ
ெ௢௢௡ܯ

ா௔௥௧௛ܯ ൅ ெ௢௢௡ܯ
·  ெ௢௢௡ݎ

஼ெݎ ൎ
ሺ735 ൈ 10ଶ଴ ݇݃ሻ

ሺ5.977 ൈ 10ଶସ ݇݃ሻ ൅ ሺ735 ൈ 10ଶ଴ ݇݃ሻ · ሺ384 ൈ 10଺ ݉ሻ 

ࡹ࡯࢘   ൎ ૝. ૟૟૝ૠ૜ૡ ൈ ૚૙૟ m from the center of Earth a   

The equatorial radius of Earth is about 6.378 ൈ 10଺ m, so ݎ஼ெ ൎ 4.664738 ൈ 10଺ ݉ < ݎா௔௥௧௛.  

Thus, the barycenter of Earth and the Moon lies inside the Earth, within one radius. 

We repeat this analysis for Pluto and its moon Charon: 

஼ெݎ ൌ
஼௛௔௥௢௡ܯ

௉௟௨௧௢ܯ ൅ ஼௛௔௥௢௡ܯ
·  ஼௛௔௥௢௡ݎ

Center of Mass

Distance between Body Centers = ݎெ௢௢௡
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஼ெݎ ൎ
ሺ19 ൈ 10ଶ଴ ݇݃ሻ

ሺ0.0025 · 5.977 ൈ 10ଶସ ݇݃ሻ ൅ ሺ19 ൈ 10ଶ଴ ݇݃ሻ · ሺ19.7 ൈ 10଺ ݉ሻ 

ࡹ࡯࢘   ൎ ૛. ૛૛૛૜૞૝ ൈ ૚૙૟ m from the center of Pluto a   

The equatorial radius of Pluto is about 1.15 ൈ 10଺ m, so ݎ஼ெ ൎ 2.222354 ൈ 10଺ ݉ > ݎ௉௟௨௧௢.  

Thus, the barycenter of Pluto and Charon lies outside Pluto, but much closer to Pluto than Charon. 

Problem 2 – Polar Equation for a Conic Section 

The standard polar equation for a conic section is 

ݎ ൌ
݌

1 ൅ ݁ · ߠሺݏ݋ܿ െ ߱ሻ 

…where e is the eccentricity and p is a constant.  For e = 0.5, a = 1, ߱ = ஠
ସ
, and p = 1, the conic 

section appears to be an ellipse: 
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As we vary the angular displacement ω in the cosine argument, the ellipse rotates about the origin: 

 

The major axis of the ellipse is always tilted at inclination ω with respect to the positive x-axis: 

 

Thus, the value of ω influences the orientation of the ellipse’s major axis with respect to the 

horizontal, and varying its value will rotate or tilt the ellipse and its major and minor axes. 

 Because ݁ ൌ ୡ
ୟ
, the focal distance ܿ ൌ ܽ݁ ൌ ሺ1ሻሺ0.5ሻ ൌ 0.5.  The distance between the two 

foci is twice this focal distance, as pictured on the following page:  
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The distance between the ellipse’s two foci is  d = 2ܿ ൌ 2ܽ݁ = 2(1)(0.5) = 1  . 

 
 
 
 
 
 
 
 

Problem 3 – Eccentricity of Earth’s Heliocentric Orbit 

 The orbital eccentricity of the Earth’s orbit around the Sun is approximately 0.017, 

according to Appendix 7.  Noting that the semimajor axis of Earth’s elliptical orbit around the Sun 

is approximately 1 AU ൎ 1.496 ൈ 10ଵଵm, the semiminor axis of Earth’s elliptical orbit is therefore 

ܾ ൌ ඥܽଶ െ ܿଶ ൌ ܽඨ1 െ ቀ
ܿ
ܽቁ

ଶ
ൌ ܽඥ1 െ ݁ଶ 

ܾ ൎ ܽඥ1 െ ሺ0.017ሻଶ ൎ 0.9998555 · ܽ 

Because ࢇ ൎ ૚ ࢁ࡭ ൎ ૚. ૝ૢ૟ ൈ ૚૙૚૚ ࢈ ,࢓ ൎ ૙. ૢૢૢૡ૞૞૞ ࢁ࡭ ൎ  ૚. ૝ૢ૞ૠૡ૜ૡ ൈ ૚૙૚૚ ࢓.  

The axes differ by only ୟିୠ
ୠ

ൎ ଵ AU ି଴.ଽଽଽ଼ହହହ AU
଴.ଽଽଽ଼ହହହ AU

ൎ 0.0001445 ൎ 0.01445%.  This percentage is 

low enough for us to consider Earth’s orbit circular; the eccentricity’s proximity to zero makes the 

elliptical orbit virtually circular. 

 The focal distance of the Sun from the center of Earth’s elliptical orbit is ܿ ൌ ܽ݁ ൎ

 Thus, the Earth’s distances from the Sun at perihelion and aphelion are  .ܷܣ 0.017

࢔࢕࢏࢒ࢋࢎ࢏࢘ࢋ࢖࢘  ൌ ࢇ െ ࢉ ൎ ૙. ૢૡ૜ ࢁ࡭ ൎ ૚. ૝ૠ૙૞૟ૡ ൈ  ૚૙૚૚ ࢓  

࢔࢕࢏࢒ࢋࢎ࢖ࢇ࢘  ൌ ࢇ ൅ ࢉ ൎ ૚. ૙૚ૠ ࢁ࡭ ൎ ૚. ૞૛૚૝૜૛ ൈ  ૚૙૚૚ ࢓  

a 

a-c c c 
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The Earth is only 
௥ೌ೛೓೐೗೔೚೙ି௥೛೐ೝ೔೓೐೗೔೚೙

௥ೌ ೡ೐ೝೌ೒೐
ൎ ଵ.଴ଵ଻ ஺௎ି଴.ଽ଼ଷ ஺௎

ଵ ஺௎
 ൎ 0.034 ൎ 3.4% closer to the Sun at 

perihelion than at aphelion. 

 Perihelion occurs in January, during the Southern Hemisphere summer.  Because the Earth 

is closer to the Sun at perihelion, the Earth must travel faster during this time to sweep out the same 

area that it would sweep in the same time interval at aphelion; by Kepler’s Second Law, the Earth 

must spend less time around perihelion than it does near aphelion, meaning that the Southern 

Hemisphere experiences a slightly shorter summer (during Earth’s perihelion) than the Northern 

Hemisphere (during Earth’s aphelion).  However, the Earth’s closer proximity to the Sun during the 

Southern Hemisphere summer partially compensates for the summer’s shorter duration, in that the 

Sun will be slightly closer to Earth’s surface during the shorter summer, resupplying some of the 

“lost” heat from the slight decrease in summer days by shining more intense light.  Nevertheless, 

neither the difference in distance to the Sun nor the duration discrepancy will produce noticeable 

effect on humans; the elliptical orbit is so close to circular (e ൎ 0) that macroscopic variables like 

temperature and tan darkness exhibit almost no dependence on the slightly smaller distance or 

slightly shorter summer.  The Southern Hemisphere summer may be slightly hotter and shorter, but 

not to any significant degree. 

Problem 4 – Titius’ Sequence 

 In 1766, a man named Daniel Titius wrote the number sequence: 

0, 3, 6, 12, 24, 48, 96, 192, 384, 768, 1536, … 

Adding four to each number in the sequence, he obtained the sequence: 

4, 7, 10, 16, 28, 52, 100, 196, 388, 772, 1540, … 

Dividing the sum by ten, Daniel Titius yielded the sequence: 

0.4, 0.7, 1, 1.6, 2.8, 5.2, 10, 19.6, 38.8, 77.2, 154, … 

Tabulated beside the semimajor axes [AU] of the planetary orbits around the Sun, we see 
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Planet Semimajor Axis [AU] Titius’ Sequence 
Mercury 0.3871 0.4 
Venus 0.7233 0.7 
Earth 1.0000 1 
Mars 1.5237 1.6 
Ceres 2.7671 2.8 

Jupiter 5.2028 5.2 
Saturn 9.538 10 
Uranus 19.191 19.6 

Neptune 30.061 38.8 
Pluto 39.529 77.2 

 

From the similarity in value of the eight terms in Titius’ sequence, it would appear that the 

semimajor axes of large planetary bodies’ orbits around the Sun follow the same sequence that Titius 

fabricated mathematically, with the orbital semimajor axis of the planet closest to the Sun (Mercury) 

described by the first term in the sequence (0.4 AU).  In fact, even before astronomers knew of 

Ceres, Titius’ sequence accurately predicted the existence of this massive asteroid orbiting the Sun 

with a semimajor axis of approximately 2.8 AU.  Thus, the mathematical sequence seemed to reveal 

the size of planetary orbits mystically, with no rhyme or reason, while also validating the adoption of 

the earthcentrically defined astronomical unit (AU) as a sort of natural measurement of orbit 

distances. 

 However, as the semimajor axis of Neptune differs considerably from the ninth term in 

Titius’ sequence, we see that the entire hypothesis was nothing more than mere coincidence.  All in 

all, this sequence reaffirms the notion that we can fit any set of data with a simple mathematical 

model if the sequence is small enough – least-squares or trial-and-error provide us with the means.  

Unfortunately, Titius’ sequence is nothing more than that: a mathematical model that fits 

exceptionally well for a set of eight data points but fails to extrapolate outside the domain of interest.  
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Problem 2.19 

Let ܯ௣௟௔௡௘௧ be the mass of the orbiting planet whose orbit has a semimajor axis of ܽ௣௟௔௡௘௧= 4 AU. 

Let ݉௔௦௧௘௥௢௜ௗ be the mass of the asteroid whose orbit has a semimajor axis of ܽ௔௦௧௘௥௢௜ௗ= 10 AU. 

Let ܯ௦௨௡ be the mass of the Sun, about which our planet and asteroid orbit. 

Not knowing the mass of either the planet or the asteroid, we must assume that the Sun is much 

more massive than both orbiting bodies: ܯ௦௨௡ ب ௦௨௡ܯ  ௣௟௔௡௘௧ andܯ ب ݉௔௦௧௘௥௢௜ௗ.  In that case, 

Newton’s Law of Gravity reduces to 

ܲଶ

ܽଷ ൌ
ଶߨ4

ܩ · ሺܯ௦௨௡ ൅ ݉ሻ ൎ
ଶߨ4

ܩ · ௦௨௡ܯ
 

ܲ ൎ ඨ
ଶܽଷߨ4

ܩ · ௦௨௡ܯ
 

Recalling that one astronomical unit (AU) amounts to 1.496 ൈ 10ଵଵ m, we calculate periods: 

௣ܲ௟௔௡௘௧ ൎ ඨ
ଶܽ௣௟௔௡௘௧ߨ4

ଷ

ܩ · ௦௨௡ܯ
ൎ ඩ

ଶሺ4ߨ4 · 1.496 ൈ 10ଵଵ ݉ሻଷ

൬6.672 ൈ 10ିଵଵ ܰ ݉ଶ

݇݃ଶ൰ · ሺ1.989 ൈ 10ଷ଴ ݇݃ሻ
ൎ  ݏݎܽ݁ݕ 8

௔ܲ௦௧௘௥௢௜ௗ ൎ ඨ4ߨଶܽ௔௦௧௘௥௢௜ௗ
ଷ

ܩ · ௦௨௡ܯ
ൎ ඩ

ଶሺ10ߨ4 · 1.496 ൈ 10ଵଵ ݉ሻଷ

൬6.672 ൈ 10ିଵଵ ܰ ݉ଶ

݇݃ଶ൰ · ሺ1.989 ൈ 10ଷ଴ ݇݃ሻ
 ൎ  ݏݎܽ݁ݕ 31.625

We can check these results using Kepler’s AU-years formulation, again assuming a massive Sun: 

࢚ࢋ࢔ࢇ࢒࢖ࡼ   ൎ ටܽ௣௟௔௡௘௧
ଷ ൎ ඥሺ4 ܷܣሻଷ ൎ 8 years a     

ࢊ࢏࢕࢘ࢋ࢚࢙ࢇࡼ   ൎ ටܽ௔௦௧௘௥௢௜ௗ
ଷ ൎ ඥሺ10 ܷܣሻଷ ൎ 31.623 years a 
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Problem 2.22 

 Newton showed that the periods and distances in Kepler’s Third Law depend on the masses 

of the objects.  At 1 astronomical unit (AU) from the Sun, Earth revolves around the Sun with a 

period of approximately   ௘ܲ௔௥௧௛ ൎ ට ௔೐ೌೝ೟೓
య

ெೞೠ೙ାெ೐ೌೝ೟೓
ൎ ඨ

ሺଵ ஺௎ሻయ

ሺଵ ௦௨௡ ௠௔௦௦ሻା൬ఱ.వళళ ൈ భబమరೖ೒
భ.వఴవ ൈ భబయబೖ೒

 ௦௨௡ ௠௔௦௦൰
ൎ 1 year. 

However, if the Sun had twice its true mass instead, we must double the radicand’s denominator: 

  ௘ܲ௔௥௧௛ ൎ ට ௔೐ೌೝ೟೓
య

ெೞೠ೙ାெ೐ೌೝ೟೓
ൎ ඨ

ሺଵ ஺௎ሻయ

ሺଶ ௦௨௡ ௠௔௦௦ሻା൬ఱ.వళళ ൈ భబమరೖ೒
భ.వఴవ ൈ భబయబೖ೒

 ௦௨௡ ௠௔௦௦൰
ൎ 0.7071 year ൎ 258.27 days. 

We can verify this result with Newton’s Law of Gravitation, assuming that ܯ௦௨௡ ب  :௘௔௥௧௛ܯ

௘ܲ௔௥௧௛ ൎ ටସగమ௔೐ೌೝ೟೓
య

ீ·ଶெೞೠ೙
ൎ ඨ

ସగమሺଵ.ସଽ଺ൈଵ଴భభ ௠ሻయ

൬଺.଺଻ଶൈଵ଴షభభ ே ೘మ

ೖ೒మ൰·ሺଶ·ଵ.ଽ଼ଽൈଵ଴యబ ௞௚ሻ
 ൎ 22,316,026 seconds ൎ 258.287 days. 

Problem 3.17 

 

 During a lunar eclipse, the Moon enters the shadow of the Earth from the  west  side, since, 

from a terrestrial perspective, the Moon travels eastward through the sky relative to the Sun and stars: 
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Problem 3.20 

 When the Earth’s tilt is 23°, the Sun passes through the zenith at noon on the first summer 

day (ൎJune 22) for all locations at 23° N latitude, denoting the Tropic of Cancer at 23° N latitude.  

Meanwhile, during this summer solstice, the North Pole and all locations within 23° latitude of the 

North Pole receive an uninterrupted 24-hour-long day of sunlight, thus joining all locations at or 

north of 67° latitude as part of the Arctic Circle: 

 

 

For this actual tilt of 23°, the Tropic of Cancer and the Arctic Circle are (67° - 23°) = 44° apart. 

(90° െ 23°)
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 If the tilt of the Earth’s axis of rotation were only 16°, then the Sun would pass through the 

zenith at noon on the first summer day for locations at 16° N latitude, shifting the Tropic of Cancer 

to 16° N latitude.  Meanwhile, the uninterrupted 24-hour-long day of sunlight would affect only 

locations at or above 74° latitude, moving the Arctic Circle northward to 74° N latitude.  The line of 

tangency always occurs at the complement latitude of the zenith normal, as pictured below: 

 

 Thus, the difference in latitude between the Arctic Circle and the Tropic of Cancer would increase 

to a total of (74° - 16°) = 58°. 

 With this milder tilt to Earth’s axis, Earth’s seasons would be less pronounced.  All four 

seasons would still exist, but the Sun’s rays would give less preference to either hemisphere during 

Earth’s revolution about the Sun: 

 

(90° െ 16°)16°
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 In other words, the weaker axial tilt would temper the differences between seasons.  For 

example, during the Northern Hemisphere’s summer, the Northern Hemisphere would lean less 

vigorously toward the Sun, and the Sun’s time above horizon would also decrease from its typical 

15-hour duration; conversely, during the Northern Hemisphere’s winter, the Northern Hemisphere 

would lean less vigorously away from the Sun, and the number of daylight hours would not be dip as 

low as 9 hours as they currently do during winter.  Meanwhile, the angle at which the sunlight strikes 

the surface would generally oscillate with a lower standard deviation, varying less wildly between 

summer and winter and staying closer to a moderate value.  All in all, the extremities of the summer 

and winter seasons would move closer to the mean, precipitating more moderate fluctuation in 

temperature and relatively constant (11-13) daylight hours per day throughout the year. 

 If the strength of seasons fluctuated as a sinusoid, then the decreased axial tilt would reduce 

the amplitude, as depicted below: 
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